
VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22

On Locally Strongest Assumption Generation Method for
Component-Based Software Verification

Hoang-Viet Tran∗, Pham Ngoc Hung
Faculty of Information Technology, VNU University of Engineering and Technology,
No. 144 Xuan Thuy Street, Dich Vong Ward, Cau Giay District, Hanoi, Vietnam

Abstract
Assume-guarantee reasoning, a well-known approach in component-based software (CBS) verification,

is in fact a language containment problem whose computational cost depends on the sizes of languages
of the software components under checking and the assumption to be generated. Therefore, the smaller
language assumptions, the more computational cost we can reduce in software verification. Moreover,
strong assumptions are more important in CBS verification in the context of software evolution because
they can be reused many times in the verification process. For this reason, this paper presents a method
for generating locally strongest assumptions with locally smallest languages during CBS verification. The
key idea of this method is to create a variant technique for answering membership queries of the Teacher
when responding to the Learner in the L∗–based assumption learning process. This variant technique is
then integrated into an algorithm in order to generate locally strongest assumptions. These assumptions
will effectively reduce the computational cost when verifying CBS, especially for large–scale and evolving
ones. The correctness proof, experimental results, and some discussions about the proposed method are
also presented.

Keywords: assume-guarantee reasoning; model checking; component-based software verification; locally
strongest assumptions; locally smallest language assumptions

1. Introduction

The assume-guarantee verification
proposed in [1, 2, 3, 4, 5] has been
recognized as a promising, incremental,
and fully automatic method for modular
verification of CBS by model checking [6].
This method decomposes a verification
target about a CBS into smaller parts
corresponding to the individual components

∗ Corresponding author. Email.:
15028003@vnu.edu.vn

such that we can model check each of
them separately. Thus, the method has a
potential to deal with the state explosion
problem in model checking. The key
idea of this method is to generate an
assumption such that the assumption
is strong enough for the component to
satisfy a required property and weak
enough to be discharged by the rest of the
software. The most common rule that is
used in assume-guarantee verification is
the non-circular rule as shown in formula 1.

1



2 H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22

Given a CBS M = M1 ‖ M2, and a
predefined property p, we need to find an
assumption A so that formula 1 holds.

M1 ‖ A |= p
M2 |= A

M1 ‖M2 |= p
(1)

This is actually the language containment
problem of the two couples of components
(M1 ‖ A, p), and (M2, A), i.e., to decide
if L(M1 ‖ A)↑Σp ⊆ L(p), and L(M2)↑ΣA

⊆
L(A), where ‖ is the parallel composition
operator defined in Definition 4, |= and ↑ Σ
is the satisfiability and projection operator
defined in Definition 6, respectively.
Therefore, the stronger the assumption
(i.e., an assumption with smaller language)
is, the more computational cost can be
reduced, especially when model checking
large-scale CBSs. Furthermore, when a
component is evolved in the context of
the software evolution, we can recheck
the evolved CBS effectively by reusing
the generated stronger assumptions. As
a result, generating assumptions with
as small as possible languages is of
primary importance for assume-guarantee
verification of CBSs.

Although the assumption generation
method proposed in [2] has already tried
to generate stronger assumptions than
those generated by the method proposed
in [1], it has not been able to generate
strongest assumptions. This is because
the method proposed in [2] uses a learning
algorithm called L∗ [7, 8] for learning
regular languages. In fact, L∗ algorithm
depends on a minimally adequate Teacher
for being able to generate the strongest

assumptions (i.e., the assumptions with
minimal languages). Therefore, the
algorithms that implement Teacher will
affect the languages of the generated
assumptions. On the other hand, in
the context of software compositional
verification, depends on the implementation
of Teacher, L∗ learning algorithm always
terminates and returns the first assumption
that satisfies the assume-guarantee rules
before reaching the strongest assumptions.
As a result, the assumptions generated by
the assume-guarantee verification method
proposed in [2] are not the strongest
ones. In addition, in fact, there exist
many candidate assumptions satisfying the
assume-guarantee rules. Section 4 shows a
counterexample that there exists another
assumption (denoted by ALS) which is
stronger than the assumption A generated
by the L∗–based assumption generation
method proposed in [2] (i.e., L(ALS)↑ΣA

⊆
L(A)). The problem is how to find the
strongest assumptions (i.e., assumptions
with smallest languages) in the space of
candidate assumptions.

Recently, there are many researches
that have been proposed in improvement
of the L∗–based assumption generation
method proposed in [2]. In the series
of papers presented in [9, 10, 11], Hung
et al. proposes a method that can
generate the state minimal assumptions
(i.e., assumptions with the smallest number
of states) using the depth-limited search.
However, this does not guarantee that
these assumptions have the smallest
languages. In 2007, Chaki and Strichman
proposed three optimizations to the L∗–



H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22 3

based assumption generation method in
which they proposed a method to minimize
the alphabet used by the assumption
that allows us to reduce the sizes of the
generated assumptions [12]. Nonetheless,
in [12], the size of languages of the
generated assumptions is not guaranteed
to be smaller than the size of those
generated by the L∗–based assumption
generation method proposed in [2]. In [13],
Gupta et al. proposed a method to
compute an exact minimal automaton to
act as an intermediate assertion in assume-
guarantee reasoning, using a sampling
approach and a Boolean satisfiability solver.
However, this automaton is not the stronger
assumption with smaller language and this
method is suitable for hardware verification.
Therefore, from the above researches, we
can see that although generating stronger
assumptions is a very important problem,
there is no research into this so far.

For the above reasons, the purpose of
this paper is to generate the strongest
assumptions for compositional verification.
However, for some reasons which will be
explained in more details in Section 4, the
proposed method can only generate the
locally strongest ones. The method is based
on an observation that the technique to
answer membership queries from Learner
of Teacher uses the language of the
weakest assumption, denoted by L(AW ), to
decide whether to return true or false to
Learner [2]. If a trace s belongs to L(AW ),
it returns true even if s may not belongs
to the language of the assumption to be
generated. For this reason, the key idea
of the proposed technique for answering

membership queries is that Teacher will
not directly return true to the query. It will
return “?” to Learner whenever the trace
s belongs to L(AW ). Otherwise, it will
return false. After that, this technique
is integrated into an improved L∗–based
algorithm that tries every possibility that a
trace belongs to language of the assumption
A to be generated. For this purpose, at
the ith iteration of the learning process,
when the observation table (S,E, T ) is
closed with n “?” results, we have the
corresponding candidate assumption Ai
where all “?” results are considered as
true. We decide if (S,E, T ) is closed with
the consideration that all “?” results are
true, this is the same as the assumption
generation method proposed in [2]. The
algorithm tries every k–combination of n
“?” results and considers those “?” results
as false (i.e., the corresponding traces
do not belong to L(A)), where k is from
n (all “?” results are false) to 1 (one
“?” result is false). If none of these k–
combinations is corresponding to a satisfied
assumption, the algorithm will turn all
“?” results into true (all corresponding
traces belong to L(A)) and generate
corresponding candidate assumption Ai
then ask an equivalence query for Ai. After
that, the algorithm continues the learning
process again for the next iteration. The
algorithm terminates as soon as it reaches
a conclusive result. Consequently, with
this method of assumption generation, the
generated assumptions, if exists, will be the
locally strongest assumptions.

The rest of this paper is organized as
follows. Section 2 presents background



4 H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22

concepts which will be used in this
paper. Next, Section 3 reviews the L∗–
based assumption generation method for
compositional verification. After that,
Section 4 describes the proposed method
to generate locally strongest assumptions.
We prove the correctness of the proposed
method in Section 5. Experimental results
and discussions are presented in Section 6.
Related works to the paper are also
analyzed in Section 7. Finally, we conclude
the paper in Section 8.

2. Background

In this section, we present some basic
concepts which will be used in this work.
LTSs. This research uses Labeled
Transition Systems (LTSs) to model
behaviors of components. Let Act be the
universal set of observable actions and let
τ denote a local action unobservable to
a component environment. We use π to
denote a special error state. An LTS is
defined as follows.

Definition 1. (LTS). An LTS M is a
quadruple 〈Q,Σ, δ, q0〉, where:

• Q is a non-empty set of states,

• Σ ⊆ Act is a finite set of observable
actions called the alphabet of M ,

• δ ⊆ Q × Σ ∪ {τ} × Q is a transition
relation, and

• q0 ∈ Q is the initial state.

Definition 2. (Trace). A trace σ of an
LTS M = 〈Q,Σ, δ, q0〉 is a finite sequence
of actions a1a2...an, such that there exists a

sequence of states starting at the initial state
(i.e., q0q1...qn) such that for 1 ≤ i ≤ n,
(qi−1, ai, qi) ∈ δ, qi ∈ Q.

Definition 3. (Concatenation operator).
Given two sets of event sequences P and
Q, P.Q = {pq | p ∈ P, q ∈ Q}, where
pq presents the concatenation of the event
sequences p and q.

Note 1. The set of all traces of M is called
the language of M , denoted by L(M). Let
σ = a1a2...an be a finite trace of an LTS
M . We use [σ] to denote the LTS Mσ =
〈Q,Σ, δ, q0〉 with Q = {q0, q1, ..., qn}, and
δ = {(qi−1, ai, qi)}, where 1 ≤ i ≤ n.

Parallel Composition. The parallel
composition operator ‖ is a commutative
and associative operator up-to language
equivalence that combines the behavior of
two models by synchronizing the common
actions to their alphabets and interleaving
the remaining actions.

Definition 4. (Parallel composition
operator). The parallel composition
between M1 = 〈Q1,ΣM1 , δ1, q

1
0〉 and

M2 = 〈Q2,ΣM2 , δ2, q
2
0〉, denoted by

M1‖M2, is defined as follows. M1‖M2
is equivalent to ∏ if either M1 or M2 is
equivalent to ∏, where ∏ denotes the LTS
〈{π}, Act,ø, π〉. Otherwise, M1‖M2 is an
LTS M = 〈Q,Σ, δ, q0〉 where Q = Q1×Q2,
Σ = ΣM1 ∪ ΣM2, q0 = (q1

0, q
2
0), and

the transition relation δ is given by the
following rules:

(i)α ∈ ΣM1 ∩ ΣM2 , (p, α, p′) ∈ δ1, (q, α, q′) ∈ δ2

((p, q), α, (p′, q′)) ∈ δ
(2)



H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22 5

(ii)α ∈ ΣM1\ΣM2 , (p, α, p′) ∈ δ1

((p, q), α, (p′, q)) ∈ δ (3)

(iii)α ∈ ΣM2\ΣM1 , (q, α, q′) ∈ δ2

((p, q), α, (p, q′)) ∈ δ (4)

Safety LTSs, Safety Property,
Satisfiability and Error LTSs.

Definition 5. (Safety LTS). A safety LTS
is a deterministic LTS that contains no
state that is equivalent to π state.

Note 2. A safety property asserts that
nothing bad happens for all time. A safety
property p is specified as a safety LTS p =
〈Q,Σp, δ, q0〉 whose language L(p) defines
the set of acceptable behaviors over Σp.

Definition 6. (Satisfiability). An LTS M
satisfies p, denoted by M |=p, if and only
if ∀σ ∈ L(M): (σ↑Σp) ∈ L(p), where σ↑Σp

denotes the trace obtained by removing from
σ all occurrences of actions a < Σp.

Note 3. When we check whether an LTS
M satisfies a required property p, an error
LTS, denoted by perr, is created which traps
possible violations with the π state. perr is
defined as follows:

Definition 7. (Error LTS). An error LTS
of a property p = 〈Q,Σp, δ, q0〉 is perr = 〈Q∪
{π},Σp, δ

′, q0〉, where δ′ = δ ∪ {(q, a, π) |
a ∈ Σp and 6∃q′ ∈ Q : (q, a, q′) ∈ δ}.

Remark 1. The error LTS is complete,
meaning each state other than the error
state has outgoing transitions for every
action in the alphabet. In order to verify a

component M satisfying a property p, both
M and p are represented by safety LTSs,
the parallel compositional system M‖perr is
then computed. If some states (q, π) are
reachable in the compositional system, M
violates p. Otherwise, it satisfies p.

Definition 8. (Deterministic finite state
automata) (DFA). A DFA D is a five tuple
〈Q,Σ, δ, q0, F 〉, where:

• Q,Σ, δ, q0 are defined as for
deterministic LTSs, and

• F ⊆ Q is a set of accepting states.

Note 4. Let D be a DFA and σ be a string
over Σ. We use δ(q, σ) to denote the state
that D will be in after reading σ starting
from the state q. A string σ is accepted by
a DFA D = 〈Q,Σ, δ, q0, F 〉 if δ(q0, σ) ∈ F .
The set of all string σ accepted by D is
called the language of D (denoted by L(D)).
Formally, we have L(D) = {σ | δ(q0, σ) ∈
F}.

Definition 9. (Assume-Guarantee
Reasoning). Let M be a system which
consists of two components M1 and M2,
p be a safety property, and A be an
assumption about M1’s environment. The
assume-guarantee rules are described as
following formula [2].

(step 1) 〈A〉 M1 〈p〉
(step 2) 〈true〉 M2 〈A〉

〈true〉 M1||M2 〈p〉

Note 5. We use the formula 〈true〉 M
〈A〉 to represent the compositional formula
M‖Aerr. The formula 〈A〉 M 〈p〉 is true if



6 H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22

whenever M is part of a system satisfying
A, then the system must also guarantee
p. In order to check the formula, where
both A and p are safety LTSs, we compute
the compositional formula A‖M‖perr and
check if the error state π is reachable in the
composition. If it is, the formula is violated.
Otherwise it is satisfied.

Definition 10. (Weakest Assumption) [1].
The weakest assumption AW describes
exactly those traces over the alphabet Σ =
(ΣM1∪Σp)∩ΣM2 which, the error state π is
not reachable in the compositional system
M1‖perr. The weakest assumption AW
means that for any environment component
E, M1‖E |= p if and only if E |= AW .

Definition 11. (Strongest Assumption).
Let AS be an assumption that satisfies the
assume-guarantee rules in Definition 9. If
for all A satisfying the assume-guarantee
rules in Definition 9: L(AS)↑ΣA

⊆ L(A),
we call AS the strongest assumption.

Note 6. Let A be a subset of assumptions
that satisfy the assume-guarantee rules in
Definition 9 and ALS ∈ A. If for all A ∈
A: L(ALS)↑ΣA

⊆ L(A), we call ALS the
locally strongest assumption.

Definition 12. (Observation table). Given
a set of alphabet symbols Σ, an observation
table is a 3-tuple (S,E, T ), where:

• S ∈ Σ∗ is a set of prefixes,

• E ∈ Σ∗ is a set of suffixes, and

• T : (S ∪ S.Σ).E → {true, false}.
With a string s ∈ Σ∗, T (s) = true
means s ∈ L(A), otherwise s <

L(A), where A is the corresponding
assumption to (S,E, T ).

An observation table is closed if ∀s ∈
S,∀a ∈ Σ,∃s′ ∈ S,∀e ∈ E : T (sae) =
T (s′e). In this case, s′ presents the
next state from s after seeing a, sa is
indistinguishable from s′ by any of suffixes.
Intuitively, an observation table (S,E, T )
is closed means that every row sa ∈ S.Σ
has a matching row s′ in S.
When an observation table (S,E, T )

over an alphabet Σ is closed, we define
the corresponding DFA that accepts the
associated language as follows [7]. M =
〈Q,ΣM , δ, q0, F 〉, where

• Q = {row(s) : s ∈ S},

• q0 = row(λ),

• F = {row(s) : s ∈ S and T (s) = 1},

• ΣM = Σ, and

• δ(row(s), a) = row(s.a).

From this way of constructing DFA from
an observation table (S,E, T ), we can see
that each states of the DFA which is being
created is corresponding to one row in S.
Therefore, from now on, we sometimes call
the rows in (S,E, T ) its states.

Remark 2. The DFAs generated from
observation table in this context are
complete, minimal, and prefix-closed (an
automaton D is prefix-closed if L(D)
is prefix-closed, i.e., for every σ ∈
L(D), every prefix of σ is also in
L(D)). Therefore, these DFAs contain
a single non-accepting state (denoted by



H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22 7

nas) [2]. Consider a DFA D = 〈Q ∪
{nas},Σ, δ, q0, Q〉 in this context, we can
calculate the corresponding safety LTS A by
removing the non-accepting state nas and
all of its ingoing transitions. Formally, we
have A = 〈Q,Σ, δ ∩ (Q× Σ× {nas}), q0〉.

3. L∗–based Assumption Generation
Method

3.1. The L∗ Algorithm
L∗ algorithm [7] is an incremental

learning algorithm that is developed by
Angluin and later improved by Rivest
and Schapire [8]. L∗ can learn an

Learner IsEquivalent (D)

IsMember (σ)

true/false

Unknown regular 

language U

yes/no+cex

Teacher

Fig. 1. The interaction between L∗ Learner and
Teacher.

unknown regular language and generate a
deterministic finite automata (DFA) that
accepts it. The key idea of L∗ learning
algorithm is based on the “Myhill Nerode
Theorem” [14] in the formal languages
theory. It said that for every regular set
U ⊆ Σ∗, there exists a unique, minimal
deterministic automaton whose states are
isomorphic to the set of equivalence classes
of the following relation: w ≈ w′ if and
only if ∀u ∈ Σ∗ : wu ∈ U ⇔ w′u ∈ U .
Therefore, the main idea of L∗ is to learn
equivalence classes, i.e., two prefixes are not
in the same class if and only if there is a
distinguishing suffix u.

Let U be an unknown regular language
over some alphabet Σ. L∗ will produce
a DFA D such that L(D) = U . In this
learning model, the learning process is
performed by the interaction between the
two objects Learner (i.e., L∗) and Teacher.
The interaction is shown in Figure 1 [17].
Teacher is an oracle that must be able to
answer the following two types of queries
from Learner.

• Membership queries: These queries
consist of a string σ ∈ Σ∗ (i.e., “is
σ ∈ U?”). The answer is true if σ ∈ U ,
and false otherwise.

• Equivalence queries: These queries
consist of a candidate DFA D whose
language the algorithm believes to
be identical to U (“is L(D) = U?”).
The answer is Y ES if L(D) = U .
Otherwise Teacher returns NO and
a counterexample cex which is a string
in the symmetric difference of L(D)
and U .

3.2. Generating Assumption using L∗

Algorithm
Given a CBS M that consists of two

components M1 and M2 and a safety
property p. The L∗–based assumption
generation algorithm proposed in [2, 17]
generates a contextual assumption using
the L∗ algorithm [7]. The details of
this algorithm are shown in Algorithm 1.
In order to learn an assumption A,
Algorithm 1 maintains an observation
table (S,E, T ). The algorithm starts by
initializing S and E with the empty string λ
(line 2). After that, the algorithm updates



8 H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22

Algorithm 1: L∗–based
assumption generation algorithm

1 begin
2 Let S = E = {λ}
3 while true do
4 Update T using membership

queries
5 while (S,E, T ) is not closed

do
6 Add sa to S to make

(S,E, T ) closed where
s ∈ S and a ∈ Σ

7 Update T using
membership queries

8 end
9 Construct candidate DFA D

from (S,E, T )
10 Make the conjecture C from

D
11 equiResult← Ask an

equivalence query for the
conjecture C

12 if equiResult.Key is Y ES
then

13 return Ai
14 else if equiResult.Key is

UNSAT then
15 return UNSAT + cex
16 else

/* Teacher returns
NO + cex */

17 Add e ∈ Σ∗ that witnesses
the counterexample to E

18 end
19 end
20 end

(S,E, T ) by using membership queries
(line 4). While the observation table is
not closed, the algorithm continues adding
sa to S and updating the observation
table to make it closed (from line 5 to
line 8). When the observation table is
closed, the algorithm creates a conjecture
C from the closed table (S,E, T ) and
asks an equivalence query to Teacher
(from line 9 to line 11). The algorithm
then stores the result of candidate query
to equiResult. An equivalence query
result contains two properties: Key ∈
{Y ES,NO,UNSAT} (i.e., Y ES means
the corresponding assumption satisfies the
assume-guarantee rules in Definition 9;
NO means the corresponding assumption
does not satisfy assume-guarantee rules
in Definition 9, however, at this point,
we could not decide if the given system
M does not satisfy p yet, we can use
the corresponding counterexample cex to
generate a new candidate assumption;
UNSAT means the given system M does
not satisfy p and the counterexample is
cex); the other property is an assumption
when Key is Y ES or a counterexample
cex when Key is NO or UNSAT . If
equiResult.Key is Y ES (i.e., C is the
needed assumption), the algorithm stops
and returns C (line 13). If equiResult.Key
is UNSAT , the algorithm will stops
and returns UNSAT and cex is the
corresponding counterexample. Otherwise,
if equiResult.Key is NO, it analyzes the
returned counterexample cex to find a
suitable suffixes e. This suffix e must be
such that adding it to E will cause the
next assumption candidate to reflect the



H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22 9

difference and keep the set of suffix E closed.
The method to find e is not in the scope of
this paper, please find more details in [8].
It then adds e to E (line 17) and continues
the learning process again from line 4. The
incremental composition verification during
the iteration ith is shown in Figure 2 [2, 17].
In order to answer a membership query

whether a trace σ = a1a2...an belongs
to L(A) or not, we create an LTS [σ]
= 〈Q,Σ, δ, q0〉 with Q = {q0, q1, ..., qn},
and δ = {(qi−1, ai, qi)}, where 1 ≤ i ≤
n. Teacher then checks the formula
〈[σ]〉M1〈p〉 by computing compositional
system [σ]||M1||perr. If the error state π
is unreachable, Teacher returns yes (i.e.,
σ ∈ L(A)). Otherwise, Teacher returns no
(i.e., σ < L(A)).

In regards to dealing with equivalence
queries, as mentioned above in Section 3.1,
these queries are handled in Teacher by
comparing L(A) = U . However, in case
of assume-guarantee reasoning, we have
not known what is U yet. The only
thing we know is that the assumption A
to be generated must satisfy the assume-
guarantee rules in Definition 9. Therefore,
instead of checking L(A) = U , we check if
A satisfies the assume-guarantee rules in
Definition 9.

(step 1) <Ci> M1 <p>

Analysis

Assumption

Generation
Ci

true

false

cex

false

counterexample – strengthen assumption

counterexample – weaken assumption

(step 2) <true> M2 <Ci>

Fig. 2. Incremental compositional verification
during iteration ith.

4. Learning Locally Strongest
Assumptions

As mentioned in Section 1, the
assumptions generated by the L∗–based
assumption generation method proposed
in [2] are not strongest. In the
counterexample shown in Figure 3, given
two component models M1, M2, and a
required safety property p, the L∗–based
assumption generation method proposed
in [2] generates the assumption A. However,
there exists a stronger assumption ALS with
L(ALS)↑ΣA

⊆ L(A) as shown in Figure 3.
We have checked L(ALS)↑ΣA

⊆ L(A) by
using the tool named LTSA [15, 16]. For
this purpose, we described A as a property
and checked if ALS |= A using LTSA.
The result is correct. This means that
L(ALS)↑ΣA

⊆ L(A).
The original purpose of this research is

to generate the strongest assumptions for
assume-guarantee reasoning verification of
CBS. However, in the space of assumptions
that satisfy the assume-guarantee reasoning
rule in Definition 9, there can be a lot of
assumptions. Moreover, we cannot compare
the languages of two arbitrary assumptions
in general. This is because given two
arbitrary assumptions A1 and A2, we can
have a scenario that L(A1) * L(A2) and
L(A2) * L(A1) but L(A1)∩L(A2) , ∅ and
L(A1)∩L(A2) is not an assumption. In this
scenario, we cannot decide if A1 is stronger
than A2 or vice versa. Another situation is
that there exist two assumptions A3 and A4
which are the locally strongest assumptions
in two specific subsets A3 and A4, but we
also cannot decide if A3 is stronger than A4
or vice versa. Besides, we may even have a



10 H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22

admit dispatch

timeout

ack

M1

release
dispatch

out release

cal

M2

out

ack

p

out

dispatch, release

release

ALS

release out

dispatch

proc

out

release

dispatch

release
dispatch, 

out, 

release

release
dispatch

dispatch release

dispatch

dispatch

A

out

Fig. 3. A counterexample proves that the assumptions generated in [2] are not strongest.

situation where there are two incomparable
locally strongest assumptions in a single
set of assumptions A. Furthermore, there
exist many methods to improve the L∗–
based assumption generation method to
generate locally strongest assumptions.
However, with the consideration of time
complexity, we choose a method that can
generate locally strongest assumptions in
an acceptable time complexity.
We do this by creating a variant

technique for answering membership
queries of Teacher. This technique is then
integrated into Algorithm 3 to generate
locally strongest assumptions. We prove
the correctness of the proposed method in
Section 5.

4.1. A Variant of the Technique for
Answering Membership Queries

In Algorithm 1, Learner updates the
observation table during the learning

process by asking Teacher a membership
query if a trace s belongs to the language of
an assumption A that satisfies the assume-
guarantee rules (i.e., s ∈ L(A)?).

L(AW)
L(A)

s

Fig. 4. The relationship between L(A) and
L(AW ).

In order to answer this query, the
algorithm in [2] bases on the language of the
weakest assumption (L(AW )) to consider
if the given trace belongs to L(A). If
s ∈ L(AW ), the algorithm returns true,
otherwise, it returns false. However, when
the algorithm returns true, it has not
known whether s really belongs to L(A).
This is because ∀A : L(A) ⊆ L(AW ). The
relationship between L(A) and L(AW ) is
shown in Figure 4 [17]. For this reason,



H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22 11

Algorithm 2: An algorithm for
answering membership queries
input :A trace s = a0a1...an
output : If s ∈ L(AW ) then “?”,

otherwise false
1 begin
2 if 〈[s]〉M1〈p〉 then
3 return “?”
4 else
5 return false
6 end
7 end

we use the same variant technique as
proposed in [9, 10, 11, 17] for answering
the membership queries described in
Algorithm 2. In this variant algorithm
when Teacher receives a membership query
for a trace s = a0a1...an ∈ Σ∗, it first builds
an LTS [s]. It then model checks 〈[s]〉M1〈p〉.
If true is returned (i.e., s ∈ L(AW )),
Teacher returns “?” (line 3). Otherwise,
Teacher returns false (line 5). The “?”
result is then used in Learner to learn the
locally strongest assumptions.

4.2. Generating the Locally Strongest
Assumptions

In order to employ the variant technique
for answering membership queries proposed
in Algorithm 2 to generate assumption
while doing component-based software
verification, we use the improved L∗–based
algorithm shown in Algorithm 3. Given a
CBS M that consists of two components
M1 and M2 and a safety property p. The
key idea of this algorithm bases on an
observation that at each step of the learning

process where the observation table is
closed (OTi), we can generate one candidate
assumption (Ai). OTi can have many “?”
membership query results (for example,
n results). When we try to take the
combination of k “?” results out of n
“?” results (where k is from n to 1) and
consider all of these “?” results as false
(all of the corresponding traces do not
belong to the language of the assumption
to be generated) while we consider other
“?” results as true, there are many cases
that the corresponding observation table
(OTkj) is closed. Therefore, we can consider
the corresponding candidate Ckj as a new
candidate and ask an equivalence query for
Ckj. In case both of Ai and Ckj satisfy
the assume-guarantee rules in Definition 9,
we always have L(Ckj) ⊆ L(Ai). We
will prove that the assumptions generated
by Algorithm 3 are the locally strongest
assumptions later in this paper. The details
of the improved L∗–based algorithm are
shown in Algorithm 3.

The algorithm starts by initializing S
and E with the empty string (λ) (line 2).
After that, the algorithm updates the
observation (S,E, T ) by using membership
queries (line 4). The algorithm then tries
to make (S,E, T ) closed (from line 5 to
line 8). We decide if (S,E, T ) is closed
with the consideration that all “?” results
are true, this is the same as the assumption
generation method proposed in [2]. When
the observation table (S,E, T ) closed, the
algorithm updates those “?” results in rows
of (S,E, T ) which are corresponding to not
final states to true (line 9). This is because
we want to reduce the number of “?” results



12 H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22

in the observation table (S,E, T ) so that
the number of combinations in the next step
will be smaller. The algorithm then checks
the candidates that are corresponding to
k-combinations of n “?” results which are
considered as false (line from 10 to 20).
This step is performed in some smaller
steps: For each k from n to 1 (line 10),
the algorithm gets a k–combination of n
“?” results (line 11); Turn all “?” results
in the k–combination to false, the other
“?” results will be turned to true (line 12);
If the corresponding observation table
(S,E, T ) is closed (line 13), the algorithm
calculates a candidate Cikj (line 14). After
that, the algorithm asks Teacher an
equivalence query (line 15) and stores
result in result. An equivalence query
result contains two properties: Key ∈
{Y ES,NO,UNSAT} (i.e., Y ES means
the corresponding assumption satisfies the
assume-guarantee rules in Definition 9;
NO means the corresponding assumption
does not satisfy assume-guarantee rules
in Definition 9, however, at this point,
we could not decide if the given system
M does not satisfy p yet, we can use
the corresponding counterexample cex to
generate a new candidate assumption;
UNSAT means the given system M does
not satisfy p and the counterexample is
cex); the other property is an assumption
when Key is Y ES or a counterexample
cex when Key is NO or UNSAT . If
result.Key is Y ES, the algorithm stops
and returns the assumption associated
with result (line 17). In this case, we
have the locally strongest assumption
generated. When the algorithm runs

Algorithm 3: Learning locally
strongest assumptions algorithm

1 begin
2 Let S = E = {λ}
3 while true do
4 Update T using membership

queries
5 while (S,E, T ) is not closed do
6 Add sa to S to make (S,E, T )

closed where s ∈ S and a ∈ Σ
7 Update T using membership

queries
8 end
9 Update “?” results to true in rows

in (S,E, T ) which are not
corresponding to final states

10 for each k from n to 1 do
11 Get k–combination of n “?”

results.
12 Turn all those “?” results to

false, other “?” results are
turned to true.

13 if The corresponding
observation table (S,E, T ) is
closed then

14 Create a candidate
assumption Cikj .

15 result ← Ask an
equivalence query for
Cikj .

16 if result.Key is Y ES
then

17 return
result.Assumption

18 end
19 end
20 end
21 Turn all “?” results in (S,E, T ) to

true
22 Construct candidate DFA D from

(S,E, T )
23 Make the conjecture Ai from D
24 equiResult ← ask an equivalence

query for Ai
25 if equiResult.Key is Y ES then
26 return Ai

27 else if equiResult.Key is
UNSAT then

28 return UNSAT + cex
29 else

/* Teacher returns
NO + cex */

30 Add e ∈ Σ∗ that witnesses the
counterexample to E

31 end
32 end
33 end



H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22 13

into line 21, it means that no stronger
assumption can be found in this iteration
of the learning progress, the algorithm
turns all “?” results of (S,E, T ) to true
and generates the corresponding candidate
assumption Ai (lines from 21 to 23). The
algorithm then asks an equivalence query
for Ai (line 24). If the equivalence
query result equiResult.Key is Y ES,
the algorithm stops and returns Ai as
the needed assumption (line 26). If
equiResult.Key is UNSAT , the algorithm
returns UNSAT and the corresponding
counterexample cex (line 28). This
means that the given system M violates
property p with the counterexample cex.
Otherwise, the equiResult.Key is NO and
a counterexample cex. The algorithm will
analyze the counterexample cex to find a
suitable suffix e. This suffix e must be
such that adding it to E will cause the
next assumption candidate to reflect the
difference and keep the set of suffixes E
closed. The method to find e is not in
the scope of this paper, please find more
details in [8]. The algorithm then adds it
to E in order to have a better candidate
assumption in the next iteration (line 30).
The algorithm then continues the learning
process again from line 4 until it reaches a
conclusive result.

5. Correctness

The correctness of our assumption
generation method is proved through three
steps: proving its soundness, completeness,
and termination. The correctness of the
proposed algorithm is proved based on the

correctness of the assumption generation
algorithm proposed in [2].

Lemma 1. (Soundness). Let Mi =
〈QMi

,ΣMi
, δMi

, qi0〉 be LTSs, where i = 1, 2
and p be a safety property.

1. If Algorithm 3 reports “Y ES and
an associated assumption A”, then
M1||M2 |= p and A is the satisfied
assumption.

2. If Algorithm 3 reports “UNSAT and
a witness cex”, then cex is the witness
to M1||M2 6|= p.

Proof. 1. When Algorithm 3 reports
“Y ES”, it has asked Teacher an
equivalence query at line 15 or
line 24 and get the result “Y ES”.
When returning Y ES, Teacher has
verified that the candidate A actually
satisfied the assume-guarantee rules
in Definition 9 using the proposed
algorithm in [2]. Therefore, M1||M2 |=
p and A is the required assumption
thanks to the correctness of the
learning algorithm proposed in [2].

2. On the other hand, when
Algorithm 3 reports “UNSAT”
and a counterexample cex, all of the
candidate assumptions that have been
asked to Teacher in line 15 did not
satisfy the assume-guarantee rules in
Definition 9. The equivalence query
in line 24 has the result UNSAT and
cex. When returning UNSAT and
cex, Teacher has checked that M
actually violates property p and cex is
the witness. Therefore, thanks to the
correctness of the learning algorithm



14 H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22

proposed in [2], M1||M2 6|= p and cex
is the witness.

Lemma 2. (Completeness). Let Mi =
〈QMi

,ΣMi
, δMi

, qi0〉 be LTSs, where i = 1, 2
and p be a safety property.

1. If M1||M2 |= p, then Algorithm 3
reports “Y ES” and the associated
assumption A is the required
assumption.

2. If M1||M2 6|= p, then Algorithm 3
reports “UNSAT” and the associated
counterexample cex is the witness to
M1||M2 6|= p.

Proof. 1. Compare Algorithm 1 and
Algorithm 3, we can see that
Algorithm 3 is different from
Algorithm 1 at lines from 9 to 21.
On the other hand, these steps are
finite steps asking Teacher some more
equivalence queries. Therefore, in
the worst case, we cannot find out
any satisfied assumption from these
steps, the algorithm is equivalent
to Algorithm 1. Therefore, if
M1||M2 |= p, then in the worst case,
Algorithm 3 returns Y ES and the
corresponding assumption A thanks
to the correctness of the learning
algorithm proposed in [2].

2. The same as the above description,
in the worst case, where no
satisfied assumption can be found
in Algorithm 3 from line 9 to
line 21, Algorithm 3 is equivalent
to Algorithm 1. Therefore, if
M1||M2 6|= p, then Algorithm 3 will

return UNSAT and the associated
cex is the counterexample thanks
to the correctness of the learning
algorithm proposed in [2].

Lemma 3. (Termination). Let Mi =
〈QMi

,ΣMi
, δMi

, qi0〉 be LTSs, where i = 1, 2
and p be a safety property. Algorithm 3
terminates in a finite number of learning
steps.

Proof. The termination of Algorithm 3
follows directly from the above Lemma 1
and 2.

Lemma 4. (Locally strongest assumption).
Let Mi = 〈QMi

,ΣMi
, δMi

, qi0〉 be LTSs,
where i = 1, 2 and p be a safety property.
Let’s assume that M1||M2 |= p and
Algorithm 3 does not return the assumption
immediately after getting the first satisfied
assumption (line 17). It continues running
to find all possible assumptions until all of
the question results are turned into “true”
results in the corresponding observation
table. Let A be the set of those assumptions
and A be the first generated assumption. A
is the locally strongest assumption in A.

Proof. The key idea of Algorithm 3 is
shown in Figure 5. In this learning process,
at the iteration ith, we have a closed table
(Si, Ei, Ti) and the corresponding candidate
assumption Ai in which all “?” results
are considered as true. This means all
of the associated traces with those “?”
results are considered in the language of
the assumption to be generated. If we have
n “?” results in (Si, Ei, Ti), the algorithm



H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22 15

Ai-1

Cik(j-1) Cik1Cikj Ai

(Si,Ei,Ti)

C
k

n combinations with k “?” results considered as 

“false”, where k is from n to 1

(Si-1,Ei-1,Ti-1)

Fig. 5. The key idea of the improved L∗–based
assumption generation method.

will start this iteration by trying to get k–
combinations of n “?” results and consider
all “?” results in those k–combinations as
false, where k is from n to 1. This means
that the algorithm will try to consider those
corresponding traces as not in the language
of the assumption to be generated. By
doing this, the algorithm has tried every
possibility that a trace does not belong
to the language of the assumption to be
generated. This is because k = n means
no trace corresponding to “?” belongs to
the language of the assumption to be
generated. k = n − 1 means only one
trace corresponding to “?” results belongs
to the language of the assumption to be
generated, and so on. On the other
hand, Algorithm 3 stops learning right after
reaching a conclusive result. Therefore, in
the worst case, where all of “?” results
are considered as true, Algorithm 3 is
equivalent to Algorithm 1. In other cases
where there is a candidate assumption
Cikj , Ai that satisfies the assume-
guarantee rules in Definition 9, obviously,
we have L(Cikj) ⊂ L(Ai) because there are
k “?” results in (Si, Ei, Ti) are considered
as false. This means k traces that belong

to L(Ai) but do not belong to L(Cikj).
In case Cikj exists, Cikj is the locally

strongest assumption because the algorithm
has tried all possibilities that n, n−1, ..., k+
1 “?” results do not belong to the language
of the assumption to be generated but it
has not been successful yet. This way, the
algorithm has tries the strongest candidate
assumption first, then weaker candidate
assumptions later. On the other hand,
with one value of k, we have many k–
combinations of n “?” results which can
be considered as false. Each of the k–
combination is corresponding to one Cikj,
where 1 ≤ j ≤ Ck

n. However, we cannot
compare L(Cikj) and L(Cikt), where 1 ≤
j, t ≤ Ck

n. Therefore, Algorithm 3 stops
right after reaching the conclusive result
and does not check all other Cikj with the
same value of k. As a result, the generated
assumption must be the locally strongest
assumption in the same iteration of the
learning process.

We can remove line 21 from Algorithm 3.
At that time, Algorithm 3 can generate
stronger assumptions than those generated
by Algorithm 1. However, it will not
have the list of candidate assumptions
of Algorithm 1 which plays a guideline
role during the learning process. As a
result, the algorithm will become much less
efficient.

Lemma 5. (Complexity). Assume that
Algorithm 1 takes mequi equivalence queries
and mmem membership queries. Assume
that at the iteration ith, there are ni
“?” results. In the worst case where
we have one candidate assumption for
every k–combination of “?”, it will takes



16 H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22

Σni
k=1C

k
ni

equivalence queries, but no more
membership queries. Therefore, in total
and in the worst case, Algorithm 3
takes Σmequi

i=1 Σni
k=1C

k
ni

equivalence queries
and mmem membership queries. As a
result, the complexity of the proposed
algorithm at iteration ith is O(2ni). For
the target of reducing this complexity to a
polynomial one, we have plan to another
research that is based on the baseline
candidate assumption Ai itself, not on its
corresponding observation table (Si, Ei, Ti)
anymore.

6. Experiment and Discussion

This section presents our implemented
tool for the improved L∗–based assumption
generation method, Algorithm 3, and
experimental results by applying the tool
for some test systems. We also discuss
the advantages and disadvantages of the
proposed method.

6.1. Experiment
We have implemented Algorithm 3 in a

tool called Locally Strongest Assumption
Generation Tool (LSAG Tool1) in order to
compare L∗–based assumption generation
algorithm proposed in [2] with Algorithm 3.
The tool is implemented using Microsoft
Visual Studio 2017 Community. The test
is carried out with some artificial test
cases on a machine with the following
system information: Processor: Intel(R)
Core(TM) i5-3230M; CPU: @2.60GHz, 2601
Mhz, 2 Core(s), 4 Logical Processor(s); OS

1http://www.tranhoangviet.name.vn/p/lsagtools.html

Name: Microsoft Windows 10 Enterprise.
The experimental results are shown in
Table 1. In this table, the sizes of
M1, M2, and p are shown in columns
|M1|, |M2|, and |p|, respectively. Column
“Is stronger” shows if the assumptions
generated by Algorithm 3 is stronger than
those generated by L∗–based assumption
generation method. “yes” means that
the assumption generated by Algorithm 3
is stronger than the one generated by
L∗–based assumption generation method
while “no” indicates that the assumption
generated by Algorithm 3 is actually the
same as the one generated by L∗–based
assumption generation method. When they
are not the same (i.e., ALS . Aorg), in
order to check if the assumption generated
by Algorithm 3 (ALS) is stronger than the
one generated by the L∗–based assumption
generation method (Aorg), we use a tool
called LTSA [15, 16]. For this purpose,
we describe Aorg as a property and check
if ALS |= Aorg. If the error state
cannot be reached in LTSA tool (i.e.,
L(ALS) ⊂ L(Aorg)), then the corresponding
value in column “Is stronger” will be
“yes”. Otherwise, we have ALS ≡ A
and the value in column “Is stronger”
will be “no”. Columns “AG Time(ms)”
and “LSAG Time(ms)” show the time
required to generate assumptions for L∗–
based assumption generation method and
Algorithm 3, respectively. Columns
“MAG”, “EQAG” and “MLS”, “EQLS” show
the corresponding number of membership
queries and equivalence queries needed
when generating assumptions using L∗–
based assumption generation method and



H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22 17

Table 1. Experimental results

No.TestCase |M1||M2||p| Is
strongerMAGEQAG

AG
Time (ms)MLSAGEQLSAG

LSAG
Time (ms)

1 TestCase1 3 3 2 no 17 2 51 17 11 106
2 TestCase2 43 5 3 no 161 5 1391 161 14 1601
3 TestCase3 3 5 3 no 254 6 147 254 51 1184
4 TestCase4 3 3 2 no 49 4 23 49 15 184
5 TestCase5 5 4 2 yes 38 3 19 38 17 57
6 TestCase6 4 4 2 yes 79 4 51 38 12 76
7 TestCase7 24 4 2 yes 112 4 732 101 79 1871
8 TestCase8 33 4 2 yes 145 4 2817 129 782 112932

Algorithm 3. From the above experimental
results, we have the following observations:

• For some systems (test case 1, 2, 3, and
4), Algorithm 3 can generate the same
assumptions as the ones generated
by L∗–based assumption generation
method. For other systems (test case 5,
6, 7, and 8), Algorithm 3 can generate
stronger assumptions than the ones
generated by L∗–based assumption
generation method.

• Algorithm 3 requires more time to
generate assumptions than L∗–based
assumption generation method.

• In test case 6 and 8, the number of
membership queries needed to generate
locally strongest assumption MLS is
less than the number of membership
queries needed to generate original
assumption. This is because, in this
case, we can find a satisfied locally
strongest assumption at a step prior to
the step where the original assumption
generation method can generate the
satisfied assumption.

6.2. Discussion
In regards to the importances of the

generated locally strongest assumptions
when verifying CBS, there are several
interesting points as follows:

• Modular verification for CBS is
done by model checking the assume-
guarantee rules with the generated
assumption as one of its components.
This is actually a problem of language
containment of the languages of
components of the system under
checking and the assumption to be
generated. For this reason, the
computational cost of this checking is
affected by the assumption language.
Therefore, the stronger assumption
we have, the more reduction we gain
for the computational cost of the
verification.

• The key idea of this work is to consider
that all possible combinations of traces
which are not in the language of
the assumption A to be generated.
We do that by considering from the
possibility that no trace belongs to
L(A) to the possibility that all traces
belong to L(A). Besides, the algorithm



18 H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22

terminates as soon as it reaches a
conclusive result. Because of this, the
returned assumptions will be the local
strongest ones.

• When a component is evolved after
adapting some refinements in the
context of software evolution, the
whole evolved CBS needs to be
rechecked. In this case, we can reduce
the cost of rechecking the evolved
system by using the locally strongest
assumptions.

• Time complexity of Algorithm 3 is high
in comparison to that of Algorithm 1
when generating the first assumption.
However, this assumption can be
used several times during software
development life cycle. The more
times we can reuse this assumption,
the more computational cost we save
for software verification. Further more,
we are working on a method to reduce
this time complexity of Algorithm 3.

• Locally strongest assumptions
mean less complex behavior so this
assumption is easier for human to
understand. This is interesting for
checking large–scale systems.

• The key point when implementing
Algorithm 3 is how to keep the
observation table closed and
consistent so that the language
of the corresponding assumption
candidate can be consistent with the
observation table. This can be done
with a suitable algorithm to choose
suffix e when adding new item to

suffix list E of the observation table
in line 30. This algorithm is not in the
scope of this paper. Please refer to [8]
for more details.

Despite the advantages mentioned above,
the algorithm needs to try every possible
combinations of “?” results to see if a
trace can be in the language of L(A), the
complexity of the Algorithm 3 is clearly
higher than the complexity of Algorithm 1.
The most complex step in Algorithm 3

is the step from line 10 to line 20
where the algorithm tries every possible
k–combination of n “?” question results
and consider them as false. Therefore,
the complexity of Algorithm 3 depends on
the number of “?” results in each steps
of the learning process. For this reason,
in Algorithm 3, we introduce an extra
step in line 9 to reduce the number of “?”
results that need to be processed. This is
based on an observation that those traces
that are associated to not final states in
the DFA which is corresponding to the
observation table do not have much value
in the assumption to be generated. This is
because those states will be removed when
generating the candidate assumption from
a closed observation table.
In the general case, not all of the

cases that Algorithm 3 requires more
time to generate assumption than the
L∗–based assumption generation method.
For example, if running Algorithm 1, it
takes mequi steps to reach the satisfied
assumption. However, there may be a
step i before mequi where a combination
of “?” results considered as false results
in a satisfied assumption. In this case, the



H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22 19

time required to generate locally strongest
assumption will be less than the time
to generate assumption using L∗–based
assumption generation method.
You may notice that Algorithm 3

bases on Algorithm 1 for making the
observation table (S,E, T ) closed, creating
local candidate assumptions in the ith

iteration of the learning process. We
can apply the method that considers “?”
results as false first when making the
observation table (S,E, T ) closed, if the
corresponding candidate assumption does
not satisfy the assume-guarantee rules
in Definition 9, we can go one step
back to consider one by one “?” results
as true until we find out the satisfied
candidate assumption. However, this
method of finding candidate assumption
has a very much greater time complexity.
We chose the method that bases on the L∗–
based assumption generation method as a
framework for providing baseline candidate
assumptions during the learning process.
We only generate local strongest candidate
assumptions based on those baseline
candidate assumptions. This method of
learning can effectively generate locally
strongest assumptions in an acceptable time
complexity.

7. Related Works

There are many researches related to
improving the compositional verification for
CBS. Consider only the most current works,
we can refer to [2, 9, 10, 11, 12, 13, 17].

Tran et al. proposed a method
to generate strongest assumption for
verification of CBS [17]. However, this

method has not considered assumptions
that cannot be found by the algorithm.
Therefore, the method can only find out
locally strongest assumptions. Although
the method presented by Tran et al.
uses the same variant membership queries
answering technique as proposed by Hung
et al. [9, 10, 11], it has not considered using
candidate assumptions generated by the
method of Cobleigh et al. [2] as baseline
candidates. As a result, the cost for
verification is very high. Sharing the
same idea of using the variant membership
queries answering technique, we take the
baseline candidate assumptions generated
by the method of Cobleigh et al. into
account when trying to find the satisfied
assumptions. This results in an acceptable
assumption generation time. In the
meantime, the generated assumptions are
also locally strongest assumptions.
The framework proposed in [2] by

Cobleigh et al. can generate assumptions
for compositional verification of CBS.
However, because the algorithm is based
on the language of the weakest assumption
(L(AW )), the generated assumptions are
not strongest. By observing this, we
focus on improving the method so
that the algorithm can generate locally
strongest assumptions which can reduce the
computational cost when verifying large–
scale CBS.

In [13], Gupta et al. proposed a method
to compute an exact minimal automaton to
act as an intermediate assertion in assume-
guarantee reasoning, using a sampling
approach and a Boolean satisfiability
solver. This is an approach which is



20 H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22

suitable to compute minimal separating
assumptions for assume-guarantee
reasoning for hardware verification. Our
work focuses on generating the locally
strongest assumptions when verifying CBS
by improving the L∗–based assumption
generation algorithm proposed in [2].

In a series of papers of [9, 10, 11], Hung
et al. proposed a method for generating
minimal assumptions, improving, and
optimizing that method to generate
those assumptions for compositional
verification. However, the generated
minimal assumptions in these works mean
to have a minimal number of states. Our
work shares the same observation that a
trace s that belongs to L(AW ) does not
always belong to the generated assumption
language L(A). Besides, the satisfiability
problem is actually the problem of language
containment. Therefore, our work will
effectively reduce the computational cost
when verifying CBS.

Chaki and Strichman proposed three
optimizations in [12] to the L∗–based
automated assume-guarantee reasoning
algorithm for the compositional verification
of concurrent systems. Among those three
optimizations, the most important one is
to develop a method for minimizing the
alphabet used by the assumptions, which
reduces the size of the assumptions and
the number of queries required to construct
them. However, the method does not
generate the locally strongest assumptions
as the proposed method in this paper.

8. Conclusion

We have presented a method to
generate locally strongest assumptions
for assume-guarantee verification of CBS.
The key idea of this method is to
develop a variant technique for answering
membership queries from Learner of
Teacher. This technique is then integrated
into an improved L∗–based algorithm for
trying every possible combination that
a trace belongs to the language of the
assumption to be generated. Because
the algorithm terminates as soon as it
reaches the conclusive result, the generated
assumptions are the locally strongest
ones. These assumptions can effectively
reduce the computational cost when doing
verification for CBS, especially for large-
scale and evolving ones.
Although the proposed method can

generate locally strongest assumptions for
compositional verification, it still has an
exponential time complexity. On the
other hand, there are many other methods
that can generate other locally strongest
assumptions. We are in progress of
researching a method which can generate
other locally strongest assumptions that
are stronger than those generated by
the proposed method in this paper
but has a polynomial time complexity.
Besides, we are also applying the proposed
method for software in practice to prove
its effectiveness. Moreover, we are
investigating how to generalize the method
for larger systems, i.e., systems contain
more than two components. On the
other hand, the current work is only for
safety properties, we are going to extend



H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22 21

our proposed method for checking other
properties such as liveness properties and
apply the proposed method for general
systems, e.g., hardware systems, real-time
systems, and evolving ones.

Acknowledgments

This work was funded by the Vietnam
National Foundation for Science and
Technology Development (NAFOSTED)
under grant number 102.03-2015.25.

References
[1] D. Giannakopoulou, C. S. P"s"reanu,

H. Barringer, Assumption generation
for software component verification, in:
Proceedings of the 17th IEEE International
Conference on Automated Software
Engineering, ASE ’02, IEEE Computer
Society, Washington, DC, USA, 2002, pp. 3–.
URL http://dl.acm.org/citation.cfm?
id=786769.787035

[2] J. M. Cobleigh, D. Giannakopoulou, C. S.
Păsăreanu, Learning assumptions for
compositional verification, in: Proceedings of
the 9th International Conference on Tools and
Algorithms for the Construction and Analysis
of Systems, TACAS’03, Springer-Verlag,
Berlin, Heidelberg, 2003, pp. 331–346.
URL http://dl.acm.org/citation.cfm?
id=1765871.1765903

[3] E. Clarke, D. Long, K. McMillan,
Compositional model checking, in:
Proceedings of the Fourth Annual Symposium
on Logic in Computer Science, IEEE Press,
Piscataway, NJ, USA, 1989, pp. 353–362.
URL http://dl.acm.org/citation.cfm?
id=77350.77387

[4] O. Grumberg, D. E. Long, Model checking
and modular verification, ACM Trans.
Program. Lang. Syst. 16 (3) (1994) 843–871.
doi:10.1145/177492.177725.
URL http://doi.acm.org/10.1145/
177492.177725

[5] A. Pnueli, In transition from global to
modular temporal reasoning about programs,
in: K. R. Apt (Ed.), Logics and Models of
Concurrent Systems, Springer-Verlag New
York, Inc., New York, NY, USA, 1985, Ch. In
Transition from Global to Modular Temporal
Reasoning About Programs, pp. 123–144.
URL http://dl.acm.org/citation.cfm?
id=101969.101977

[6] E. M. Clarke, Jr., O. Grumberg, D. A. Peled,
Model Checking, MIT Press, Cambridge, MA,
USA, 1999.

[7] D. Angluin, Learning regular sets
from queries and counterexamples,
Inf. Comput. 75 (2) (1987) 87–106.
doi:10.1016/0890-5401(87)90052-6.
URL http://dx.doi.org/10.1016/
0890-5401(87)90052-6

[8] R. L. Rivest, R. E. Schapire, Inference of
finite automata using homing sequences, in:
Proceedings of the Twenty-first Annual ACM
Symposium on Theory of Computing, STOC
’89, ACM, New York, NY, USA, 1989, pp.
411–420. doi:10.1145/73007.73047.
URL http://doi.acm.org/10.1145/73007.
73047

[9] P. Ngoc Hung, T. Aoki, T. Katayama,
Theoretical Aspects of Computing - ICTAC
2009: 6th International Colloquium,
Kuala Lumpur, Malaysia, August
16-20, 2009. Proceedings, Springer
Berlin Heidelberg, Berlin, Heidelberg,
2009, Ch. A Minimized Assumption
Generation Method for Component-
Based Software Verification, pp. 277–291.
doi:10.1007/978-3-642-03466-4_18.
URL http://dx.doi.org/10.1007/
978-3-642-03466-4_18

[10] P. N. Hung, V.-H. Nguyen, T. Aoki,
T. Katayama, An improvement of minimized
assumption generation method for component-
based software verification, in: Computing
and Communication Technologies, Research,
Innovation, and Vision for the Future (RIVF),
2012 IEEE RIVF International Conference
on, 2012, pp. 1–6. doi:10.1109/rivf.2012.
6169862.

http://dl.acm.org/citation.cfm?id=786769.787035
http://dl.acm.org/citation.cfm?id=786769.787035
http://dl.acm.org/citation.cfm?id=786769.787035
http://dl.acm.org/citation.cfm?id=786769.787035
http://dl.acm.org/citation.cfm?id=1765871.1765903
http://dl.acm.org/citation.cfm?id=1765871.1765903
http://dl.acm.org/citation.cfm?id=1765871.1765903
http://dl.acm.org/citation.cfm?id=1765871.1765903
http://dl.acm.org/citation.cfm?id=77350.77387
http://dl.acm.org/citation.cfm?id=77350.77387
http://dl.acm.org/citation.cfm?id=77350.77387
http://doi.acm.org/10.1145/177492.177725
http://doi.acm.org/10.1145/177492.177725
http://dx.doi.org/10.1145/177492.177725
http://doi.acm.org/10.1145/177492.177725
http://doi.acm.org/10.1145/177492.177725
http://dl.acm.org/citation.cfm?id=101969.101977
http://dl.acm.org/citation.cfm?id=101969.101977
http://dl.acm.org/citation.cfm?id=101969.101977
http://dl.acm.org/citation.cfm?id=101969.101977
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://doi.acm.org/10.1145/73007.73047
http://doi.acm.org/10.1145/73007.73047
http://dx.doi.org/10.1145/73007.73047
http://doi.acm.org/10.1145/73007.73047
http://doi.acm.org/10.1145/73007.73047
http://dx.doi.org/10.1007/978-3-642-03466-4_18
http://dx.doi.org/10.1007/978-3-642-03466-4_18
http://dx.doi.org/10.1007/978-3-642-03466-4_18
http://dx.doi.org/10.1007/978-3-642-03466-4_18
http://dx.doi.org/10.1007/978-3-642-03466-4_18
http://dx.doi.org/10.1007/978-3-642-03466-4_18
http://dx.doi.org/10.1007/978-3-642-03466-4_18
http://dx.doi.org/10.1109/rivf.2012.6169862
http://dx.doi.org/10.1109/rivf.2012.6169862


22 H.V. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. , No. (2018) 1–22

[11] P. N. Hung, V. H. Nguyen, T. Aoki,
T. Katayama, On optimization of
minimized assumption generation method for
component-based software verification, IEICE
Transactions 95-A (9) (2012) 1451–1460.
URL http://search.ieice.org/bin/
summary.php?id=e95-a_9_1451

[12] S. Chaki, O. Strichman, Tools and Algorithms
for the Construction and Analysis of Systems:
13th International Conference, TACAS
2007, Held as Part of the Joint European
Conferences on Theory and Practice of
Software, ETAPS 2007 Braga, Portugal,
March 24 - April 1, 2007. Proceedings,
Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007, Ch. Optimized L*-Based
Assume-Guarantee Reasoning, pp. 276–291.
doi:10.1007/978-3-540-71209-1_22.
URL http://dx.doi.org/10.1007/
978-3-540-71209-1_22

[13] A. Gupta, K. L. Mcmillan, Z. Fu,
Automated assumption generation
for compositional verification, Form.
Methods Syst. Des. 32 (3) (2008) 285–301.
doi:10.1007/s10703-008-0050-0.
URL http://dx.doi.org/10.1007/
s10703-008-0050-0

[14] A. Nerode, Linear automaton transformations,
Proceedings of the American Mathematical
Society 9 (4) (1958) 541–544.
URL http://www.jstor.org/stable/
2033204

[15] J. Magee, J. Kramer, Labelled
transition system analyser v3.0,
https://www.doc.ic.ac.uk/ltsa/.

[16] J. Magee, J. Kramer, D. Giannakopoulou,
Behaviour Analysis of Software Architectures,
Springer US, Boston, MA, 1999, pp. 35–49.
doi:10.1007/978-0-387-35563-4_3.
URL https://doi.org/10.1007/
978-0-387-35563-4_3

[17] H.-V. Tran, C. L. Le, P. N. Hung, A strongest
assumption generation method for component-
based software verification, in: Computing
and Communication Technologies, Research,
Innovation, and Vision for the Future, IEEE–
RIVF International Conference, 2016.

http://search.ieice.org/bin/summary.php?id=e95-a_9_1451
http://search.ieice.org/bin/summary.php?id=e95-a_9_1451
http://search.ieice.org/bin/summary.php?id=e95-a_9_1451
http://search.ieice.org/bin/summary.php?id=e95-a_9_1451
http://search.ieice.org/bin/summary.php?id=e95-a_9_1451
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/s10703-008-0050-0
http://dx.doi.org/10.1007/s10703-008-0050-0
http://dx.doi.org/10.1007/s10703-008-0050-0
http://dx.doi.org/10.1007/s10703-008-0050-0
http://dx.doi.org/10.1007/s10703-008-0050-0
http://www.jstor.org/stable/2033204
http://www.jstor.org/stable/2033204
http://www.jstor.org/stable/2033204
https://doi.org/10.1007/978-0-387-35563-4_3
http://dx.doi.org/10.1007/978-0-387-35563-4_3
https://doi.org/10.1007/978-0-387-35563-4_3
https://doi.org/10.1007/978-0-387-35563-4_3

	1 Introduction
	2 Background
	3 L*–based Assumption Generation Method
	3.1 The L* Algorithm
	3.2 Generating Assumption using L* Algorithm

	4 Learning Locally Strongest Assumptions
	4.1 A Variant of the Technique for Answering Membership Queries
	4.2 Generating the Locally Strongest Assumptions

	5 Correctness
	6 Experiment and Discussion
	6.1 Experiment
	6.2 Discussion

	7 Related Works
	8 Conclusion

