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Abstract—Mesh deformation is a fundamental tech-
nique for geometric modeling which is applied suc-
cessfully in a wide range of applications from shape
design to computer animation. Normally, the deformation
transferred from one actor to another actor is based
on all vertices and triangles of a mesh, leading to time-
consuming in terms of a 3D sequential model. To address
this problem, we propose a region-based deformation
transfer that automatically identifies several regions with
the largest displacement in time series, and then exploits
those deformations of such regions. Our experimental
results demonstrate that we can obtain the similar de-
formed mesh in spite of using approximately 50% – 60%
of the facial area, therefore the time decrease significantly
for deformation transfer step.

Index Terms—Deformation transfer, Region of interest,
Sparse PCA

I. INTRODUCTION

In modeling and animation, making new characters
with realistic appearance and expression plays an im-
portant role. With the demand for the development of
many applications, especially in facial animation, the
study based on facial motion transfer has been one of
the most active points in face research areas.

Recently, many approaches based on RGB have been
proposed [1]–[3] for the facial motion transfer, aimed
at transferring facial expressions. These approaches,
however, usually map all of the meshes of the face
leading to time-consuming. Also, they mainly used
for self-reenactment as transferring facial motion on
facial animation of the same person, reconstruction
[4], recognition [5], and face exchange in images [6].
In contrast to previous approaches, Thies et al. [7]
contributes the first monocular facial reenactment in
real time transferring facial expressions of a source
actor video to a target one. Their results outperform
in terms of synthesized face quality. Being inspired
by their model, we propose a new framework which
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transfers expression from 3D source to 3D target – a
core step in the facial reenactment.

The problem is defined as follows: Given two source
and target faces as monocular video, our goal is to
model source and target faces in a 3D model and
transfer the expression of the source faces to the target
ones while preserving target’s shape and identity. In
fact, the movements of muscles beneath the skin of
the face convey an emotional state of an individual
to an observer. Additionally, the contributions of those
muscles to an emotional state are not equal. Therefore,
instead of transferring such expression changes on
the whole source face to the target, we aim to seek
for regions that show the most expression changes
on the source by exploiting sparse representation of
facial data. Then, only the changes of such regions are
transferred to the target. Our experiments recommend
that just using about a half or 60% of the facial area,
we can represent successfully the expression change of
the face and fulfill the transfer task.

In summary, this paper makes the following contri-
butions:

– Identifying regions which contain meaningful
information of expression.

– Transferring expression from the source to the
target based on such regions with much less time.

II. BACKGROUND AND RELATED WORKS

A. 3D Face model

3D Morphable Model of shape

A 3D Morphable Model (3DMM) [3]–[5] of shape
constructed from m face meshes which are in full
correspondence is a powerful 3D statistical model.
Each mesh consists of p vertices and can be described
as a vector v = [x1, y1, z1, . . . , xp, yp, zp]T ∈ Rn,
where n = 3p. The processed meshes are statistically
analysed. Typically the new face can be approximated



as a summation of the mean face v̄ and a linear
combination of m-1 eigenvectors Vi:

v = v̄ +

m−1∑
i=1

αiVi (1)

where α = [α1, . . . , αm−1]T is a weight coefficient
vector that defines a specific shape instance under
the given morphable model. Vi and v̄ are results of
performing principal components analysis on a matrix
formed by stacking the m meshes.

Blendshape Model

Similar to the 3D morphable model, blendshape
model is also an alternative approach based on sta-
tistical models as well. However, not like 3DMM
which is working on shape and texture, the blendshape
model [8] is effectively used for facial expression. The
expression can be generated roughly by a summation
of the rest pose B̄ and a linear combination of the
blendshape displacement Bi as

B = B̄ +

n−1∑
j=1

βjBj (2)

where β = [β1, . . . , βn−1]T is a blending weight vector
of an expression B.

Model of face

Based on a 3DMM and a blendshape model, each
arbitrary face (mesh) with its emotional state can be
formulated as a linear combination of shape bases and
emotion bases:

M(α, β) = v̄ +

m−1∑
i=1

αVi +

n−1∑
j=1

βjBj (3)

Consequently, the facial shape and expression fitting
problem is converted into an optimization problem
where the coefficient vectors α and β have to be
estimated.

B. Mesh deformation transfer

Mesh deformation transfer is a simple way pre-
serving the semantic characteristics of the motion in
mesh animation. Ben et al. [9] transferred poses and
geometry detail via three primary steps. Firstly, the
source and target reference shapes are enclosed with
two polyhedral domains-cages. Secondly, they project
the source deformation onto a linear space of harmonic
map on the source cage. Finally, properties of the
source deformation considered as Jacobians of the map

Figure 1: Correspondences between a 2D image and a
3DMM

at the correspondence points are transferred to the map
on the target cage. Instead of deforming the poses of
a surface mesh, gradient-based editing [10] calculated
original gradient field on a linear coordinate function.
The mesh gradient field is manipulated by applying a
local rotation/ scaling matrix to each original gradi-
ent. New vertex positions are computed such that the
resulting mesh complies with the new gradients. This
derives a weighted least-squares problem solving by a
linear Poisson system.

C. Sparse representation of face data

Matrix factorization is a technique that factorizes a
single matrix into a product of matrices. The different
constraints imposed on the component matrices make
them different from others. Boyd et al [11] achieved
efficiently minimization of sparsity inducing norms
to find robust correspondences between meshes [12]
and to obtain local modifications on constrained static
meshes [13]. Neumann et al. [14] extended Sparse PCA
for animation processing by adding local support map
which is suitable for surface deformations, for instance,
faces or muscle. The sparse matrix decomposition
learns deformation effects visible in 3D mesh anima-
tions and provides capabilities for intuitive editing of
captured mesh animations.

III. METHODOLOGY

Our proposed model with two main stages: fitting
and transferring, aims at transferring changes in an ani-
mated mesh sequence to another one. The input data to
the fitting stage is a sequence of RGB images. Firstly,
the automatic landmark detection algorithm1 is used
to locate 68 landmark points in each face as shown

1https://github.com/davisking/dlib



in Fig. 1. Such points are in correspondence with 68
landmark points in 3D face model. Subsequently, those
pairs of 2D-3D landmark points are exploited in order
to fit shape and pose of a subject, resulting in two shape
and blendshape coefficient vectors as shown in (3) (see
section III-A). For the transferring stage, the regions of
interest of the first animated mesh sequence (source)
are located based on sparse decomposition (see section
III-B). The assumption is that such regions with the
largest displacement contain the vast majority of mean-
ingful information contributing greatly to transferring
procedure. As a result, all deformations of such regions
of interest of the source are transferred to the second
animated sequence (target) (see section III-C).

A. Shape and pose fitting

Our goal is to compute the shape and blending
weights that match the geometry and motion of the
actor. To solve this problem, our work proceeds itera-
tively by alternatively optimizing α and β. For fitting
a single image, results are good for even a single
iteration or up to 300 iterations for full convergence
of all parameters [15].

Optimize α: Calculating the coefficients α describ-
ing the shape of face is processed via two vital stages:
(1) Estimate camera projection parameters C ∈ R3×4

using the known 3D-2D corresponding points, and
(2) Estimate coefficient vector α using known camera
projection matrix C. To solve (1), we apply the Gold
Standard Algorithm [16] which is described in detail in
[17]. Afterward, given an observation of N 2D feature
points in homogeneous coordinate y, the coefficient
vector α is found towards minimizing the following
cost function:

E =

3N∑
i=1

||ym2D,i − yi||2

2σ2
2D

+ ||α||22 (4)

where ym2D are projected points of the 3D feature
points in homogeneous coordinates of the current mesh
with the fixed blendshape coefficient β, ym2D,i =
Pi(v̄ + αV̂h + βB). For constructing matrix V̄h ∈
R4N×m−1 and a block diagonal matrix P ∈ R3N×4N ,
readers are referred to [17] for more detail. Equation
(4) can be written in standard linear least squares
form E = Ax + b where x = α, A = PV̂h, and
b = P(v̄ + βB)− y and solved easily.

Optimize β: Similarly, in order to calculate the
expression coefficient vector β, using the current shape
with fixed shape coefficients α found in the previous
stage, and N pairs of corresponding 3D-2D points (Fig.

Figure 2: Region detection for a male in happy mood
(M043–Happy)

1), firstly we estimate the camera projection matrix C
and then minimize the cost function as follow:

E =

3N∑
i=1

||ym2D,i − yi||2 s.t. 0 ≤ β ≤ 1 (5)

where ym2D,i = Pi(v̄ + αV + βB̂h). Normally, the
expression coefficients are non-negative numbers less
than or equal to 1 [8]. Equation (5) can be written in
standard linear least squares formulation E = Ax +
b where x = β, A = PB̂h, and b = P(v̄ + αV) −
y and solved by non-negative least squares (NNLS)
algorithm.

For the first frame, we use the mean shape to
compute an initial estimation of camera matrix C, then
shape and expression coefficient vectors, α and β,
are solved by (4) and (5) respectively. Iteratively, the
recovered shape face is utilized in order to re-estimate
the camera matrix before seeking for α and β. This
procedure converges in at most 5 iterations [17]. For
the other frames, the preceding vectors α and β are
utilized as the initial coefficients for shape instead of
mean shape in the first frame.

B. Deformed Region detection

Since all 3D faces are fitted using the same 3D
model, they have the equal number of vertices which
are in correspondence over time. Given a sequence
of faces M ∈ RF×3N with each row corresponding
to a face containing N points in 3D, we aims to
extract basic deformation components C ∈ RK×3N ,
and the weights W ∈ RF×K . Each row of C is
a basic deformation and can be specified by users.
To do so, we employ the SPLOCS method from
[14] to obtain deformations C by optimizing a joint
regularized problem:

arg min
W,C

||M−W.C||2F + Ω(C)

s.t. max(W:,k) = 1,W ≥ 0 ∀k
(6)



The locality term Ω(C) is defined as:

Ω(C) =

K∑
k=1

N∑
i=1

Λk,i||c(i)k ||2 (7)

where c(i)k represents the local deformation of the kth

basic deformation for the ith vertex, meanwhile Λk,i

describes the local support map which convert the
geodesic distance from kth centroid vertex to other
vertices in range [dmin, dmax] into a new range [0,1].
In our experiments, K centroid vertices that have the
most displacement are the center of regions which
deform the most during a specified period of time.
By finding such K regions of interest (ROI), we are
able to concentrate on the most deformed regions
for an animation instead of the deformation for all
vertices. This work benefits high-resolution objects
with thousands of vertices and triangles.

C. SPLOC-based deformation

The goal of deformation transfer is to transfer the
change in shape exhibited by the source deformation
onto target [3]. Basically, the deformation of all tri-
angles in the source will be transferred to the target.
However, we focus only on a set of triangles (set L)
that has at least one vertex in any K ROI found in
section III-B. Let (i1, i2, i3) be the vertex indices of
the ith triangle in L. Let ui and ũi be the undeformed
and deformed kth vertices of the source triangle.

U = [ui2 − ui1 , ui3 − ui1 , n] (8)

Ũ = [ũi2 − ũi1 , ũi3 − ũi1 , ñ] (9)

where n and ñ are the cross product between the first
and second element of U and Ũ respectively, n =
(ui2 −ui1)× (ui3 −ui1)/

√
(ui2 − ui1)× (ui3 − ui1).

A closed form expression for the source deformation
gradient Qi ∈ R3×3 that transform the source triangles
from neutral to deformed is given by Qi = ŨU−1.

The deformed target ṽi = Mi(α
T , βT ) is then

found based on the undeformed (Neutral) state vi =
Mi(α

T , βT
N ) by solving the least-squares problem [7].

Let V = [vi2 − vi1 , vi3 − vi1 ] and Ṽ = [ṽi2 − ṽi1 , ṽi3 −
ṽi1 ], then the optimal unknown target deformation βT

N

is the minimizer of:

E(βT
N ) =

|L|∑
i=1

||QiV−Ṽ||2F s.t. 0 ≤ βT
N ≤ 1 (10)

This problem can be rewritten in the canonical least-
squares form by substitutions:

E(x) = ||Ax− b||22 s.t. 0 ≤ x ≤ 1; x = βT
N (11)

The matrix A ∈ R6L×D where D is the number
of expression (D=6 in this case: Happy, Sad, Angry,
Surprise, Disgust, Fear)

IV. EXPERIMENTS

A. Datasets

We carried out experiments on BU–4DFE (3D +
time) dataset [18]. The 3D facial expressions are cap-
tured at 25 fps, and last for around 4 seconds. There
are 101 subjects in total (58 men and 43 women), and
each shows six basic facial expressions.The resolution
of RGB images in BU–4DFE dataset is 1040 × 1329
pixels per frame. Besides, we also test our approach
on YouTube videos with image resolution 1280× 720.
Each video is cut into small clips with 100-second
length.

In all experiments, we exploit the Surrey Morphable
Face Model containing 3448 vertices [15] and its light-
weight fitting library2. All codes are run on our laptop
with 8GB RAM, Core i5-2450M CPU.

B. Results

ROI detection

The detection of ROI contributes to saving time
for deformation transfer stage since only those areas
that have the most displacement in a period of time
are taken into account. The result is shown in Fig.
2. The upper image sequence demonstrates the facial
expression of a happy man. Those eight images are
a part of the sequence of 100 images. In the lower
images, there are 10 ROIs corresponding to 10 blue
areas with two in the mouth, one in the left chin, and
so on. In our experiment, the number of region K is
user-defined, and the radius (r) of a region equals to the
maximum geodesic distance for support map (r = 0.7).

Deformation Transfer

As demonstrated in Fig. 4, the first row is the source
expressing Surprise mood whereas the target in the
second row shows his Disgust expression. Our goal
is to transfer Surprise expression to the target. In the
two last rows, the transferred faces keep the target’s
shape, but with the source’s expression regardless of
deformation transfer conducted on all or haft vertices
of a mesh (K = 30). In other words, even though
haft of vertices used, the deformed target looks so
good as all vertices engaged in. The similar result can
be seen in Fig. 3 where the transferred faces are the
same identity as the target while the facial expression

2https://github.com/patrikhuber/eos
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Figure 3: Facial expression transfer from Surprise
mood (source) to Disgust mood (target). We only show
5 images in a sequence of 90 ones.
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Figure 4: Facial expression transfer from Disgust mood
(source) to Happy mood (target). We only show 5
images in a sequence of 90 ones.

Disgust like the source even though only triangles in
30 regions are utilized.

Since our expectation is to transfer the deformation
of the source to the target towards minimizing (10),
Table I illustrates the average error of the deformed
target for each configuration. Given a sequence of F

images, and the number triangles used for deformation
transfer step L, the average deformed error and the
Mean Percentage Error are:

DE =
1

F ∗ L

|L|∑
i=1

||QiV− Ṽ||2F (12)

MPE =
DEFull −DEK

DEFull
∗ 100% (13)

In a case of using all triangles in the face model,
the MSE is around 0.0894, compared to 0.0896 if
60% triangles are employed (K = 40). In addition,
the relative error is absolutely small, 0.3% in this
circumstance. The time for deformation transfer step
decreases by 42.64 (s) although it takes around 49 (s)
to find regions of interest. If only around 20% of the
number triangles utilized, equivalent to 10 regions of
interest (K = 10), the relative error would increase to
5.7% and the period of time for deformation transfer
is approximate one-third. We argue that our work is
beneficial in terms of running time when we would
like to transfer one emotion to multiple targets as we
only find the region of interest one time for the source,
or when we only take into account several important
regions, for instance, K = 10.

On YouTube videos, as shown in Fig. 5, the style
of James Comey3 is transferred successfully to Sarah
Huckabee Sanders4 in a variety of poses even we only
use 30 regions. The running (deformation) time of full
transfer is around 108(s) for every 100 frames while
in case of K = 30, the SPLOC time is about 87.1(s)
and the deformation time is only 23(s).

V. CONCLUSIONS

In this paper, we demonstrate a proposed framework
to transfer the expression changes from the source to
the target based on regions of interest. The result shows
that although we exploit only vital regions that cover
approximately 60% of a mesh, we manage to transfer
the emotion changes to the target with a small relative
error. Moreover, the time for deformation step reduces
gradually depending on the percentage of interesting
triangles.
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Table I: Average deformation error and running time.

Components (K) Vertices Triangles MSE MPE (%) SPLOC Time (s) Deformation Time (s)
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30 1630 3338 0.0903 1.100 40.21 50.08
40 1986 4052 0.0896 0.301 49.18 75.07

Full 3448 6736 0.0894 – – 117.71

Full 

K=30 

Source 

Target 

Figure 5: Style transfer for two youtube videos of
James Comey (source) and Sarah Huckabee Sanders
(target)
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