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Abstract— Understanding Protein secondary structure (PSS)
plays a pivotal role for studying proteins’ structures and
functions. As experimenting for annotating protein structures
is both time and money consuming, narrowing the amount
of experiments for validating the structures is significantly
important. Hence, many efficient Machine Learning methods
for predicting PSS have been developed so far, contributed
remarkably to the field of biology. In this report, we propose
a model based on RNN architecture, which achieved roughly
55% Q8 accuracy and 75% Q3 accuracy

I. INTRODUCTION

The 3D structure of a protein is determined largely by its
amino acid sequence [1]. Unfortunately, predicting the 3D
structure from sequences is a complicated and challenging
problems for scientists [2]. Understanding protein structure
is critically essential, causing the urge to study complex
sequence-structure relationships as a topic of broad interests.
Protein secondary structure (PSS) is important information
for understanding its 3D structure, hence providing signifi-
cant insights into its functions [3]

Machine learning, especially deep learning with its mag-
nificent performance reported recently, has been applied for
tackling many classification problems within a wide range
of fields, including Computer Vision, Business analysis,
Bioinformatics. Recurrent Neural Networks (RNNs)- based
methods have archived outstanding results for sequence
labeling problems, generally in other tasks but not protein
structure prediction one.

In this report, we present a protein secondary structure
prediction model based on a Recurrent Neural Network and
Conditional Random Fields. Initial experimental results of
our model on benchmark datasets are presented, in compari-
son with other state-of-the-art related models, demonstrating
the potential of our model for prediction protein structures.

Example for input and output (3-state prediction). The for-
mer line is protein sequence, the latter is the corresponding
conformation class:

• ABABABABCCQQFFFAAAQQAQQ
• HHHHCCCCCEEEECCCHHHHHHC

With H means the alpha helix, E means the beta strand, and
C are the Coiled region of the protein secondary structure.
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II. RELATED WORK

As stated above, understanding protein secondary struc-
tures is significantly important. Many researchers all over
the world have developed plenty of algorithms for predicting
PSS. Though, over last 20 years, there have been almost no
algorithm can beat the state-of-the-art approach with 80%
Q3 accuracy record, firmly held by PSIPRED [4] since 1999.
Before that day, most of the predictors implemented was
statistic-based, not until 90s of 20th century, when neural
networks started to draw computer scientists attention with
the predictor developed by Qian Sjnowskiseemed that coudl
achieve 62.7% of prediction accuracy [5].

A template-based method for PSS prediction has been
proposed by Baldi et al. in 2014 [6], which makes uses
solved structures, yielding an amazing accuracy of roughly
93% on the pdb full dataset. Baldi’s method, however, is
outperformed by PSIPRED when close templates are not
avaiable. Cheng et al. [7] proposed a deep learning approach
to 3state PSS prediction using a typical deep belief network
model, in which each layer is a restricted Boltzmann ma-
chine (RBM) and is trained by contrastive divergence in
an unsupervised manner. Zhou & Troyanskaya [8] reported
another deep learning approach to 8state PSS prediction
using a supervised generative stochastic network, which, to
the best of our knowledge, may be the best 8state predictor.
However, neither Cheng nor Zhou reported a better than 80%
of accuracy for 3state PSS prediction.

Recently, in 2016, DeepCNF [9], which is a model based
on a Convolutional Neural Network and Conditional Random
Fields, has broken the long-hold record of PSIPRED. It can
obtain results of 84% Q3 accuracy, and 72% Q8 accuracy.

III. BACKGROUND

A. Artificial Neural Network

Artificial neural Networks (ANNs) are inspired by the
biological neural networks that constitute animal brains.
Such systems ”learn” (i.e. progressively improve perfor-
mance on) tasks by considering examples, generally without
task-specific programming. A sound example for ANNs
application is, in voice recognition, it might learn to identify
phonemes represented by those waveform signal, by analyz-
ing sample audio file which are manually labeled. The NNs
themself know nothing about Fourier transform, handling
Signal and System as well as Digital signal processing.



Fig. 1. A simple demonstration of ANN. Each circle is often called unit
or neuron. Each directed arrow, which corresponds to synapse in human
neuron, represents connection between neurons. Source: wikipedia

Fig. 2. Left: A is an arbitrary type of NN, which was fed with input x, then
either pass the information to itself for looping or throw out an output for
further processing. Right: A is unrolled to a chunk of sub-network. Source:
colah

Instead, they evolve their own set of relevant, abstract and
useful patterns, features and properties from the learning
materials.

B. Recurrent Neural Network

Naturally, human nervous system keep on learning and
preserve information consciously and unconsciously. Knowl-
edge obtain from the past decide how we understand current
context. We never throw everything away and start thinking
from scratch for again. ”Your thought have persistance” [10]

RNN was developed to address this issue. Basically, RNN
is a network with loops inside, which help it memorize useful
information for better understanding in future context.

C. Long Short-Term Memory network

Theoretically, many problems which are related to time-
dependence (voice recognition, voice synthesis, sequence
labeling, name entity recognition, ) can be solved efficiently

Fig. 3. An example of LSTM cell: it takes input from other units, then
procession the forget and memorize procedure. Source: colah

with RNN. We just need to implement a very bulky net-
work with large-enough RNN-cell units. In reality, though
sometimes we need to persist long-time information, in most
cases, we only consider some recent information, and discard
many other useless one. This problem make traditional RNN
become a waste of not only space for storing parameters, but
also time for training the networks.

Long-short-term memory (LSTM) [11] was developed to
address this issue of RNN. The basic idea of LSTM is instead
of storing all information from the past like traditional RNN,
it learns to sometimes forget some useless information, and
decide which is important to memorize.

D. Bidirectional Recurrent Neural network

Though LSTM unit is effective for learning useful infor-
mation in the past, in reality, there are many cases where
future information make a huge contribution for understand-
ing the present context.

For example: Given a problem: predict which possessive
pronoun is suitable to fill in the blank: “We are talking about
a national hero of Vietnam. And name is Ho Chi Minh”.
There is no information about gender in the past, but after the
blank, we can see the word “Ho Chi Minh”. Since Mr. Minh
is a well-known person in Vietnam and everyone knows Mr.
Minh is a gentleman, we can easily fill his into the blank.

The basic idea of Bi-LSTM [12] is to present each training
sequence to two separate recurrent networks: forwards and
backwards, both of which are connected to the same output
layer. This means that for every point in a given sequence,
the Bi-LSTM has complete, sequential information about all
points before and after it. [3]

E. Conditional Random Fields

CRF [13] is a method for labeling and segmenting struc-
tured data, such as sequences, trees,... “The underlying idea
is defining a conditional probability distribution over label
sequences given a particular observation sequence, rather
than a joint distribution over both label and observation
sequences. [14]” To put it another way, let say we have
a sequence that need to be tagged, CRF will utilize labels
from tagged part of the sequence for tagging the current
position. Defining feature functions, also known as feature
engineering, which represent relationship between states, is
the keypoint to the performance of CRF



Fig. 4. A demonstration of Bi-LSTM structure with CRF layer on top
of it. Each label was labeled based on information from forward-backward
procedure from the Bi-LSTM, by the CRF layer with the information from
previous tagged label(s). Source: [5]

1) Feature functions: To model those types of relation-
ship, feature functions are used (For simplicity, We will
consider linear-chain CRF, which mean current features
depend on only its one previous label). In a CRF, each feature
function “f(s, i, li, li-1)” is a function with respect to:

• A sentence s
• Position i of a word in the sentence
• Label li of the current word
• Label li-1 of the previous word

An example of feature function: if a word W is followed
by the word very, there will be high probability that W is an
adjective. Therefore we can easily tag W with ADJ tag.

There might be many feature functions for modeling
relationship. Each of them might correspond to a specific
weight to determine how significant this relationship is.

2) Label scoring: Given a sentence s, we define a score
function demonstrating the score of label sequence l of s:

score(l | s) =
m∑
j=1

n∑
i=1

λj ∗ f j(s, i, li, li-1)

which will iterate through each feature function j and sum
over the score of each position i given label li . λ is the
trainable parameter weight mentioned above. We will learn
the best λ from data.

The scores then are converted into probabilities by expo-
nentiating and normalizing:

P (l | s) = exp[score(l | s)]∑
k exp[score(lk | s)]

IV. MATERIALS AND METHODS

A. Datasets

Here we used the CullPDB [18] (8832 sequences in total,
6300 for training, 700 for validating and 1832 for testing)
and CB51317 (513 sequences) was used for testing.

Information about primary structure and its corresponding
secondary structure was extracted from Protein Data Bank
file by using Dictionary of Secondary Structure Protein [15].

B. Labels and features

For Q8 accuracy, there are 8 labels, represent 8 type of
states of secondary structure, which are: G (3-turn helix, with
3 residues minimum length), H (4-turn helix, also known as
α helix, with 3 residues minimum length), I (5-turn helix,
also known as π helix, with 5 residues minimum length), T
(hydrogen bonded turn), E (extended strand in parallel and
anti-parallel β-sheet conformation, with 2 residues minimum
length), B (residue in isolated β-bridge), S (bend), C (coil)
Source: Kabsch W, Sander C 15 More information of protein
secondary structure can also be found at 15

For Q3, there are only 3 labels, which were reduce by
grouping these above labels into groups. There are many
ways for reduction, here was one of them 16:

• E and B to E
• G and H to H
• Rest to C

C. Amino acid embeddings (AAE)

In natural language processing, a word embedding is an
algorithm to learn a high-dimensional dense vector repre-
sentation for words from a very large textual corpus (i.e.
training corpus) with billions of words. It works based on the
basic idea that the meaning of a word, respect to a particular
context, is affected by surrounding words and some its own
features.

In this work, each amino acid is embedded by concate-
nating some real-values vector, based on its physical and
chemical properties, which are:

• The pre-trained AAindex - Amino Acid Index Database
[19]

• Hydrophobicity
• Solvent Accessible Surface (predicted from raw se-

quence by RVP-net [20]
And some other properties which shown ineffectiveness
in improving performance of the model.

D. Network architecture

The network architecture of our PSS prediction model
comprises a Conditional Random Fields on top of a Bidirec-
tional LSTM network (Fig 4). In addition to the past input
features and protein sequence level tag information used in
a LSTM-CRF model, a BILSTM-CRF model can use the
future input features, therefore helping the model to capture
as much information from primary sequence as possible.

E. Evaluation

Here, only the Q3 and Q8 accuracy are considered.
Since the accuracy is currently still outperformed by some
other methods, We will not extend the evaluating metric to
other score for time saving. In the future, Recall, Precision,
F1 score for each class (state of residue in this problem) will
be presented.

The Q3 (Q8) accuracy is defined as the percentage of
residues for which the predicted secondary structures are
correct over the sequence.



TABLE I
Q8 ACCURACY OF OUR MODEL IN COMPARISON WITH OTHER STATE-OF-THE-ART

Methods SSpro ICML2014 RaptorX-
SS8

Deep-
CNF

My method

CullPDB 66.6 72.1 69.7 75.2 55.3

CB513 63.5 64.4 64.9 68.3 53.9

CASP10 64.9 64.8 71.8

CASP11 65.6 65.1 72.3

CAMEO 63.5 66.2 72.1

TABLE II
Q3 ACCURACY OF OUR MODEL IN COMPARISON WITH OTHER STATE-OF-THE-ART

Methods SSpro SPINE-X RaptorX-SS8 Deep-CNF My method

Q3 accuracy CullPDB 79.5 81.7 81.2 85.4 73.4

CB513 78.5 78.9 78.3 82.3 71.5

CASP10 78.5 80.7 78.9 84.4

CASP11 77.6 79.3 79.1 84.7

CAMEO 77.5 80 79.4 84.5

V. TRAINING AND TESTING

Training and testing had been separated in 2 phases (The
procedure inspired by DeepCNF [9] with 50 LSTM units for
a single forward/backward phase, 0.5 dropout rate, batch size
of 32. Adam optimizer is used, with starting learning rate
0.05. The model was trained through 100 epoches. These
hyperparameters were chosen via grid search and manually
selected for best result. The grid size quite small, so further
tuning is necessary.

• Phase 1: Feed the model with 6300 training sequences
from CullPDB, then validate on 700 sequences and
perform testing with the rest of CullPDB data. The
results are report completely dependently to the phase
2

• Phase 2: Feed the whole CullPDB dataset into the
model for training and validating, then evaluate it with
CB513 dataset (no testing on CullPDB anymore). Since
in these above 2 phases, the test sets are absolutely
disjoint, no cheating in training is presented here.
Overall accuracy is mean accuracy of these 2 phases.

The training took about 3 hours, on Core i7-2780QM,
8GB of RAM, CPU only, using keras 2.1.5 with tensorflow
1.2.0 backend, numpy 1.14.1, on python 3.5.2, Ubuntu 16.04
operating system.

VI. EXPERIMENTAL RESULTS

Initial experimental performance results of our model in
comparison with other state-of-the-art related models are de-
tailed in Table I and Table II. Though DeepCNF outperforms
other methods as demonstated in such two tables, SSpro
approach (with templates) can beat it on CullPDB, CB513,
CASP10 for Q8 and CullPDB, CB513 for Q3.

VII. CONCLUSION AND DISCUSSION

A. Conclusion

Here We present a model for predicting protein structure
interaction,which based on Bidirectional Long-short-term-
memory with Conditional Random Fields layer on top of
it.

The overall performance of my method, which was out-
performed by roughly 10% compared to state-of-the-art
methods, is not quite promising, but still have many rooms
for improvement, especially for Q3 prediction.

B. Discussion

There are some possible reasons which can account for
the worse performance than expection of our model, for
example: that our data preparation is still naive, which is
significant for this type of problem. Other related methods,
vice versa, employs elaborate data [pre-]processing.

VIII. FUTURE WORK

Tackling every possible causes that make our model per-
forms worse than the best models (as mentioned above) are
the most significant and obvious perspectives. Increasing the
dataset for training and extends the feature set for each amino
acid are also worth being considered.
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