
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–8

"Smart Codefun"
A tool supporting programming skills for students

Toan Tran Duc, Pham Ngoc Hung

Faculty of Information Technology, VNU University of Engineering and Technology,
No. 144 Xuan Thuy Street, Dich Vong Ward, Cau Giay District, Hanoi, Vietnam

Abstract
This paper demonstrates how to apply automated test data generation techniques and base knowledge to support

students’ programming skills. From the limitations of CodePower, this paper proposes a tool for supporting the
process of learning programming for students and lecturers named "Smart CodeFun". Specifically, "Smart CodeFun"
would support lecturers to create test cases automatically from the given source code rather than writing test cases
manually as in CodePower. This tool helps lecturer to save time designing test cases and avoid missing some special
test cases. With students, "Smart CodeFun" will calculate the student’s score based on the number of correct test
cases. If the point is not maximized, the tool will automatically highlight source code that can lead to an error.
Based on these suggestions, students are more likely to find fault in source code. Finally, "Smart CodeFun" supports
graphical flow control charts corresponding to the source code. That graph is a visual view of the logic of the source
code.

Received May 2018, Revised May 2018, Accepted May 2018

Keywords: Smart codefun, Detect error source C/C++, improve skill programming.

1. Introduction

At present, the application of information
technology in teaching is an inevitable trend
and is being implemented in many training
units. In this trend, deploying applications
to help improve students’programming skills
proved to be very useful. The method
increases the excitement of student with
the lesson, so the student more and more
understand lessons. In addition, this solution
helps the training units reduce the volume
of teaching practice. At University of
Engineering and Technology, VNU-UET,

Codepower1 has been applied in the teaching
of lecturers. Codepower is a tool for students
to improve their programming skills with
a variety of different levels of problem.
Since the implementation of Codepower,
the application has greatly helped improve
student’s programming skills and reduce
the workload of lecturers. When using
Codepower, lecturers give the issue in each
level or the lessons to the application.
Corresponding to these issues is test cases

1https://codepower.vn/login/index.php

1



2 T.D. Toan et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–8

designed by lecturers which use to evaluate the
student. These test cases must cover all cases
of the issue. In case the user is a students, they
go to read the issue then solve it. Solutions to
these exercises must run through all test cases
of lecturer to get results. The issue is solved
when the answer is correct for all test cases.

In fact, Codepower still has some problems,
the test cases, which the lecturer provided,
may not cover all the cases of the issue.
These test cases are used to evaluate the
student’s ability, directly affect the student’s
score and perceptions. Therefore, test cases
need to have some criteria to build. At the
same time, students send the source code
to the codepower, students only get pass
or fail results with the test cases. The
notification of pass and fail sometimes will
cause difficulties for the new student in
programming. Sometimes, students met too
many wrongs without knowing troubles in
the source code, it will cause psychological
depression. If we have an error displaying
mechanism, and provide a visual view of the
source code for students, it will help students
greatly in learning, improving their education.

This paper solves two issues by applying
method generating test case in the CFT4Cpp2

tool. The CFT4Cpp tool is an automated
test generation tool for a source code project
written in C/C ++. This tool was developed
by the team of University of Engineering and
Technology, VNU in cooperation with TSDV.
CFT4Cpp, when compared to other tools, has
more advantages than CREST[1], KLEE[2],
DART[3], CAUT[4], etc. This paper builds
"Smart Codefun" to support students in C/C

2https://uet.vnu.edu.vn/ hungpn/CFT4Cpp

++ programming language. This tool solves
two main problems that correspond to two user
using the Codepower tool:

• The generate test case for the issue
from source code (with the lecturers):
Build a tool with the same functionality
as Codepower, but instead of having a
lecturer submits test cases, lecturer only
need to send the standard source code
on the tool. "Smart Codefun" will be
based on that standard source code to
generate the standard test case for the
problem. The technique of applying
test coursework in tool is inherited from
CFT4Cpp.

• Warnings trouble in the source code
(with the student): The tool uses test
cases generated from the source code of
lecturer to conduct the assessment and
display of warnings trouble in student’s
source code. This may be the cause
of the problem. At the same time,
"Smart Codefun" creates a flow chart
from the students’ source code to help
students have a visual view. Students
using the tool will reduce the time spent
solving errors, increasing excitement
when learning the program. Addressing
this issue will be a big step forward in
promoting thinking, training many good
programmers.

The rest of this paper is organized as
follows. At first, Section 2 shows method
generating test cases from standart source
code. Next, Section 3 introduces how to
evaluate and waring for student. The details
of building cfg are presented in Section
4. Section 5 describes a tool that was



T.D. Toan et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–8 3

implemented from the proposed method and
experimental results. Finally, the conclusion
of the paper is presented in Section 6.

2. The method of generating auto test
cases from standard source code

In this section, method of automatically
generate test cases from the standard source
code of lecturer is presented. After that,
this paper suggests some constraints for input
source code.

2.1. Generating test cases
Generating test cases is an important step,

and there are many ways to generate test
cases. Experience showed that CFT4Cpp
has many advantages. At the same time,
author of this paper also a member of the tool
development team. So, the paper decided to
use the CFT4Cpp API to generate test cases.
CFT4Cpp only generates input(test datas), and
according to the definition of the test, we lack
the corresponding output. "Smart Codefun"
finds output that is automatically generated
based on the input. The results of the above
process will be saved to the database for using
later.

Algorithm 1 describes the "Smart Codefun"
tool automatically generates test cases. The
input to this algorithm is the source code
of the test function. Then, function will be
integrated into the template project (line 2).
In this, we call the API CFT4Cpp with two
parameters passed is the path of the sample
project pro jectPath and name of function
need generate test cases nameFunction, and
the returned result is set of inputs inputs of
the function (line 4). For each input of the
function, the function will execute to get the

corresponding output, and the tool has already
obtained a set of test cases (lines 6, 7, and
8). Algorithm 1 ends when the entire input
of the function run over. These test cases
were produced according to branch coverage.
Branch coverage well enough in testing, not
wasting time.

Algorithm 1 Generate test case
Input: Function need generate test cases
Output: Test cases

1: Initilize testcases← [],
2: add f unction into template project
3: pro jectPath← path to template project
4: inputs ←APICFT4Cpp(pro jectPath,

nameFunction)
5: for each input ∈ inputs do
6: ouput ← f unction(input)
7: testcase← (input, output)
8: testcases.add(testcase)
9: return testcases

2.2. Constraints on input source code
Programming languages have a certain

complexity, many different expressions. The
C and C ++ languages are almost the same, so
the source code has a lot of different writing.
For the convenience of generating test cases
from source code, the source code should
follow some constraints. List of source code
constraints:

• The source code must be only a single
function (due to the small issue, we only
need to write source code in a single
function). The function will be written
according to the standard Dev-C3 can
compile.

3https://sourceforge.net/projects/orwelldevcpp/



4 T.D. Toan et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–8

• The function must not contains keywords
such as auto, template.

• Accepted libraries are: stdio.h, conio.h,
string.h, math.h, iostream, fstream,
string.

3. Evaluating, warning the problem in the
source code

In this section, how to evaluating student’s
source code is present. Then, algorithm
warning problem in that source code.

3.1. Evaluating source code

Figure 1 describes the algorithm for
evaluating student’s source code. First,
students’ source code attached to the template
project to execute. Test datas generated from
lecturer’s source code will be used as inputs
of the function. For each input, the student’s
source code will return an actual output. We
compare this actual output with the expected
output. If the result is similar, the student will
be earn points. The loop will be continued
until the last test case executed. Point will be
reported to students.

Figure 1. Evaluating source code

3.2. Warning problem in the source code

The student’s score isn’t highest, it means
that the source code still needs to be fixed.
Finding their problems is quite fast, but
sometimes it takes a lot of time and annoys
students. Figure 2 presented the algorithm.
First, source code is instrumented, Then,it is
added to a template project. Each test case
is fail, the function will be compiled and
execute again. With instrument technique,
we know statements run over when source
code execute. All failed test cases run, we
get all statements. After that, the tool will
remove the duplicate statements to obtain a
set of statements. They are the statements that
may cause the fail. The tool looks for seasons
of problems in the source code and warn the
students by highlighting these statements and
showing control flow graph.

Figure 2. Warning the problem in the source code

3.3. Function Instrumentation

To get the path’s information when you
running with an input, it is necessary to
implement a technique to insert a tick
statement into the function. Tha techique is
function instrumentation. Once the structure
tree is complete, some tick statements have
to be inserted into the function. When the
function is executed, they will write a list
of statements, that have been run through,



T.D. Toan et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–8 5

into an external file. Table 1 presents rules
for inserting tick statements into functions.
Function mark is instrumental function and
inserted in each executed statement. The
< A > represents the content of A. In essence,
mark(” < A > ”) will write content A to a
predefined file.

4. Build Control flow graph (CFG)

CFG graphing is a function developed for
both the lecturer and student user. The CFG
graph is drawn from the source code analysis
of the tool then using the go.js library:

• The server of the tool analyses student’s
source code by using analysis techniques
of CDT. Then it calculate position of each
vertex in graph. Finally, server generate
json send to clients.

• On the browser side (client), the received
json data will be displayed by the go.js
library, which is the CFG of the function
we need draw.

• Lecturer: For each test case, the CFG
graph illustrates the execution path that
the test case runs over.

• Student: When the source code has an
error, the CFG graph will highlight the
source code that can lead to errors.

This CFG can be drag and drop, zoom
arbitrarily to fit the view of the user. A
json fragment consists of two main sections,
the linkDataArray and the nodeDataArray.
nodeDataArray is the array that contains the
vertices of CFG graph. Each element is an
object that includes:

• key: represents the vertex and unique.

• text: content of the statement.

• highlight: Color of vertex.

• f igure: This attribute appears if the
vertex is a conditional statement

• locWidth, locHeight: Coordinate
position of drawing vertex

linkDataArray is an array cointains
information linking between vertices
(edge). Each element is an object that
contains:

• f rom: key of the start vertex

• to: key of the end vertex

• text: content of edge.

• f romPort: The position of the start
vertex.

• toPort: The position of the end vertex.

5. Tool and Experiment

5.1. The architecture of tool
The tool has been developed using Java,

JSF framework, hibernate framwork, Jquery
library, Boostrap and Go.js to realize the idea.
Besides, "Smart Codefun" reuses source code
of the CFT4Cpp tool to generate test datas and
exports data for the user. The tool serves two
main kinds of user: lecture and students.

Figure 3 describes the architecture of the
tool in actual deploymention. Tools has
two layer is client side (browser) and server
side. The client side (browser) consists of
two main components: CFG Visualizer and



6 T.D. Toan et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–8

Type of block (A) Insert tick statement
Assign, declare, throw/

break/continue/return, {, }. mark(“<A>”); A;

while(<condition>) {. . . } while (mark(“<condition>”) &&<condition>) {. . . }
do {. . . }
while (<condition>)

do {. . . }
while (mark(“<condition>”)&& <condition>)

if (<condition 1>){. . . }
else if (<condition 2>){. . . }
else {. . . }

If (mark(“<condition 1>”) &&<condition 1>){. . . }
else if (mark(“<condition 2>”) && <condition 2>){. . . }
else {. . . }

for(init, condition, increment){. . . }
For (mark(“<init>”) && init,
mark(“<condition>”) && condition,
mark(“<increment>”) && increment){. . . }

try {. . . }
catch (<exception 1>){. . . }
catch (<exception 2>){. . . }

mark(“try”); try {. . . }
catch(<exception 1>){ mark(“<exception1>”); . . . }
catch(<exception 2>){ mark(“<exception 2>”);. . . }

Table 1. List of instrumentation rules

support libraries. CFG Visualizer uses the
Go.js library to display CFG for the source
code. We will understand the source code that
we are writing. On the server side, the tool
includes modules: User authentication, Json
generator, Test cases generator, Error detector
and output collector. User authentication
module uses the Hibernate framework to
interact with the database. The server uses
the API of the CFT4Cpp tool to generate
test data then Output collector get them
for Test case generator module. The Json
generator analyzes the source code into a
corresponding json structure, from which is
passed to the user to plot the flow graph.
In addition, highlighting the path of CFG,
the Json generator find matchest statement to
highlight. Finally, the error detector, which
evaluate source code and detects input errors,
executes source code in template project to
show student point and if it warning path

execution, it has error.

Figure 3. Architecture of tool

5.2. A case study

In order to show the correctness and
usefulness of the tool, "Smart Codefun" was
tested with simple source code. In this
sections, a case study with issue: "Identify



T.D. Toan et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–8 7

the type of a triangle when lecture provide
length of three edges". This issue is simple
but it has a lot of cases. So, student can miss
some cases when solving.

Figure 4 show all test cases and CFG
when lecturer submit issue with source code.
Lecturer can choose a test case then CFG will
highlight path execution. With two views,
lecturer can control his/her test cases. A CFG
will be built with highlighted statements which
may cause the problem.

Figure 4. Teacher use tool generate test cases

Figure 5 shows how student use the tool
to study. Student solve the issue and submit
it into tool. "Smart CodeFun" auto analyze
source code then show the set of test cases to
students. If source code not correct, error test
cases will be highlight.

6. Conclusion

The application of automated tools to
lecturing and learning, especially in difficult
subjects such as programming is becoming
more and more popular. The more difficult
issue and the longer source code the more
time will be taken for lecturers evaluating or
students correcting source code. Codepower

Figure 5. Student use tool to check source code

has provided a very good solution to reduce
the time and effort, but it can not help
students to find their mistakes. This paper
proposes a solution using CFT4Cpp to
improve Codepower, creating a new tool that
supports not only lecturer but it also helps
students in learning programming. "Smart
CodeFun" is used to generate test cases for the
issue, specifically it automatically generates
input based on the lecturer’s source code, then
it runs this input to obtain the corresponding
output. The set of inputs, outputs are stored
as the basis for scoring the source code of
students. Incorrect executed commands will
be flagged by the markup engine during
rerunning the source code with incorrect input.
Finally, a CFG graph will be generated to
give students a more systematic view of their
source code and to know which commands are
likely to be wrong, reduce the time and effort
needed to fix the problem.

However, the newly built tool is not
well-tested for performance as well as load
tolerance of the application. Furthermore,
"Smart CodeFun " use CFT4Cpp’s API, so the
types which are not supported in CFT4Cpp
are not available in this tool.



8 T.D. Toan et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2018) 1–8

Now, the tool has completed for basic
functions. In time to come, this tool will be
upgraded to support more complicated cases.
The tool may also apply black-box testing in
conjunction with white-box to test the issue:
boundary tests, special test cases, etc. In
addition, the tool can detect error details in
statement (currently it only warn for each path
execution). The interface of the tool will
also be improved friendly, easier to use for
everyone. We hope the tool will become more
popular in learning and lecturing information
technology, and find more ways to improve
the tool more convenient.

Acknowledgments

We thank Dr. Vo Dinh Hieu, VNU
University of Engineering and Technologies
for his reviews.

References

[1] J. Burnim, K. Sen, Heuristics for scalable dynamic
test generation, in: Proceedings of the 2008
23rd IEEE/ACM International Conference on
Automated Software Engineering, ASE ’08, 2008,
pp. 443–446.

[2] C. Cadar, D. Dunbar, D. Engler, Klee: Unassisted
and automatic generation of high-coverage tests
for complex systems programs, in: Proceedings
of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08,
USENIX Association, Berkeley, CA, USA, 2008,
pp. 209–224.

[3] P. Godefroid, N. Klarlund, K. Sen, Dart: Directed
automated random testing, SIGPLAN Not. 40 (6)
(2005) 213–223.

[4] Z. Wang, X. Yu, T. Sun, G. Pu, Z. Ding, J. Hu, Test
data generation for derived types in c program,
in: 2009 Third IEEE International Symposium
on Theoretical Aspects of Software Engineering,
2009, pp. 155–162.


	Introduction
	The method of generating auto test cases from standard source code
	Generating test cases
	Constraints on input source code

	Evaluating, warning the problem in the source code
	Evaluating source code
	Warning problem in the source code
	Function Instrumentation

	Build Control flow graph (CFG)
	Tool and Experiment
	The architecture of tool
	A case study

	Conclusion

