
VNU Journal of Science: Comp. Science & Com. Eng., Vol. xx, No. x (2018) 1–10

A method of Automated User Interface Testing
for Windows-based Applications

Duong Dinh Tran∗, Hung Manh Nguyen, Pham Ngoc Hung

Faculty of Information Technology,
VNU University of Engineering and Technology,

E3 Building, 144 Xuan Thuy Street, Cau Giay, Hanoi, Vietnam

Abstract
This paper proposes a method of automated user interface testing for Windows-based applications. Given an

application under test, the key idea is to generate new test scenarios from its widgets and its specification. These
widgets are extracted during the execution of the applications, and the specification is generated by combining the
interactions of widgets. Besides, the paper contributes a technique to detect hidden widgets which is considered as
one of the most challenging problems in user interface testing. Currently, a tool named GTA has been implemented
to demonstrate the effectiveness of the proposal in practice and it has been tested with several industrial projects.
The experiment has illustrated that this proposed method could detect more hidden widgets in comparison with that
of Ranorex Spy and UI Spy.

Received May 2018, Revised , Accepted

Keywords: Automated testing, graphical user interface testing, Windows application

1. Introduction

User interface (UI) provides the ability
to allow interactions between humans and
underlying systems. Thus, checking the
correctness of UI is considered as an
important phase in the software quality
assurance. However, UI is becoming more and
more complicated, hence manual testing has
difficulties in both design and execution steps.
Furthermore, it must be performed not only
one time but also every time when developers

∗ Corresponding author. Email: 14020084@vnu.edu.vn

modify the source code of applications [1].
Therefore, UI testing should be performed
automatically instead of manual testing to
reduce the efforts of testers and increase
productivity. Because Windows operating
system accounts for a larger market share
than others such as Linux or Mac OS, hence
this paper focuses on presenting a method
of automated UI testing for Windows-based
applications.

There are two main approaches to
automatically check the correctness of
UI including Model-based testing and
Record & Replay [2]. The former uses

1



2 T.D. Duong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. xx, No. x (2018) 1–10

models to represent system behaviors and
user interactions. The graph model is the
popular one which each node represents an
interaction of a widget. The test scenarios
are created by traversing all possible paths in
the graph. Some well-known tools applying
this approach can be mentioned UFT [3],
PETTool [4], PATH [5]. The later is another
technique used to check the correctness of
UI interactions. This method consists of
two major phases. In the first phase, all
events that testers performed are recorded.
After that, these interactions can be replayed
multiple times automatically. Currently, there
are many automated UI testing tools which
are developed based on Record & Replay
technique. The most famous free tools can be
referred to as Mouse Recorder1, Reran2, etc.
There are also several commercial tools such
as TestComplete [6], Ranorex3.

However, both two mentioned approaches
still contain some problems. Firstly, in
Model-based testing, testers need to represent
user scenarios using the formal specification
method. It means that testers should have the
mathematical knowledge, hence they find it
hard to use when applying this approach in
automated UI testing. Secondly, in Record &
Replay technique, although testers do not need
to have mathematical knowledge, they must
record all test scenarios manually to create test
scripts. However, in practice, the number of
test scenarios is usually large, hence recording
all scenarios is a task which is waste of time,
cost, and efforts.

1http://www.mouserecorder.com/
2http://www.androidreran.com/
3https://www.ranorex.com/

This paper introduces a method of
automated UI testing for Windows-based
applications to mitigate the mentioned
problems. There are three main phases of
the proposed approach including widgets
inspection, test scenarios specification
analyzer and test scripts generation, test
execution. The goal of the first phase is to
extract all widgets and their properties from
the Application Under Test (AUT). From
these widgets, testers would specify the
desired test scenarios. After that, the test
scenarios specification is analyzed to generate
test scripts to produce a test project. Finally,
this test project is executed on a specific
compiler to obtain the results of test scripts
(e.g., pass/fail).

The rest of this paper is organized as
follows. At first, Section 2 introduces some of
the basic concepts used in this research. Next,
Section 3 presents the widgets inspection
phase. After that, Section 4 describes
test scenarios specification and test scripts
generation. The details of test execution are
presented in Sect. 5. Section 6 describes a
tool that was implemented from the proposed
method and experimental results. Finally, the
conclusion of the paper is shown in Sect. 7.

2. Related work

Many works have been proposed for the
test scenario generation by several authors.
Focusing on the most recent and the closest
ones, we can refer to [2] [7] [8] [9] [10].

Record and replay [2] is a technique
used to check the correctness of interactive
applications with graphical user interfaces. In
the UI testing, this technique is used more
widely than Model-based UI testing because

http://www.mouserecorder.com/
http://www.androidreran.com/
https://www.ranorex.com/


T.D. Duong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. xx, No. x (2018) 1–10 3

it does not require mathematical knowledge.
Record and replay consists of two phases
corresponding to its name. Firstly, all the
events that be performed by users are recorded
(e.g., keys pressed, mouse movements, etc.).
After that, these events can be exactly replayed
multiple times automatically. This is a great
advantage of this technique because it assists
to save much testers’ efforts in executing
test. Testers find it easy to use record and
replay tools for UI testing. Record and
replay technique is effective in practice for UI
testing in comparison with traditional manual
methods. Thus, there was much attention in
developing automated UI testing tools based
on record and replay approach for applications
on various platforms [7] [8] [9] [10].

Microsoft provides a library named UI
Automation on .NET framework allows for
programmatic access to most widgets on
the Windows-based applications. It enables
assistive technology products, such as screen
readers, to provide information about the
UI to end users and to manipulate the
UI by means other than standard input.
By using UI Automation and following
accessible design practices, developers can
make applications running on Windows
more accessible to many people with vision,
hearing, or motion disabilities. Also, UI
Automation is specifically designed to provide
robust functionality for automated testing
scenarios. This library exposes every piece of
the UI to client applications as an “Element”.
Elements are contained in a tree structure, with
the desktop as the root element. Clients can
filter the raw view of the tree as a control view
or a content view.

3. Widgets inspection

Figure 1. The overview of the proposed method

The proposed method can be divided into
three main phases (Fig. 1). Firstly, all widgets
are extracted from AUT during the execution
of it. One of the challenges in this phase is
that some hidden widgets cannot be detected,
hence a technique is introduces to overcome
this problem. Then, a collection of UI
test scenarios are generated by combining
the interactions of each widget from the
specification. After that, the specification
of test scenarios is analyzed to generate test
scripts and export a test project. Finally, the
test project is built and run to export UI test
reports.

3.1. Widgets objects extraction

After AUT was launched, the process
identifier (PID) of the application is
retrieved. By using this PID, widgets are
found recursively from the root elements
corresponding the windows of the application.
For each widget, the following properties
need to be retrieved.



4 T.D. Duong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. xx, No. x (2018) 1–10

• type: there are several kinds of widgets
such as window, button, text box, radio
button, tree view, etc.

• id: this is an attribute which was assigned
value by the programmer in software
developing process

• name: a string, it is usually the same as
the content of this widget.

• parent and children

• size: height, width of widget

• location: relative location of widget

• screen capture of widget

• other properties: e.g., state (enable or
disable), visibility, etc.

3.2. Hidden widgets in opened windows
analyzer

When a window of AUT is opened, all
widgets in this window need to be extracted.
However, this objective may not be achieved
because it contains some hidden widgets.
For example, in a combo box at the normal
state, except the current selection which is
being selected, the remain selections are
invisible. In order to deal with this problem,
several appropriate actions are performed
automatically whenever encountering a certain
widget type to visible widgets which were
hidden before. The details of the solution
are shown in Table 1. In the mentioned
example, the applicable action is to click on
the drop-down button on the right of this
combo box.

Table 1. Handling hidden widgets in opened windows

Widget
type

Widgets are
maybe hidden Actions

tree
view

children nodes
when parent is
not expand

expand all nodes
that contain children

tab
widgets in
unselected
tab items

in turn select each tab
item, extract all ele-
ments in this tab item

combo
box

selections that
are not being
selected

click drop-down
button on the right

3.3. Hidden widgets in unopened windows
analyzer

In fact, a Windows desktop application
contains more than one window, but not all
of them are opened immediately after the
application is launched. However, there is no
way to find widgets in the windows that have
not be opened yet. Thus, all windows of AUT
should be opened before extracting process
in order to avoid ignoring widgets in these
windows. This research proposes modification
of AUT from source code of the project as
a solution to display all windows in it. The
approach can be divided into three phase as
the Fig. 2.

Figure 2. Solution to display all windows in AUT

In the first phase, all windows of the
application are found by analyzing the
project’s source code. For example, if the



T.D. Duong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. xx, No. x (2018) 1–10 5

source code is written in C#, this mission
will be done by fetching all classes, a class
inherited from one of the two following
classes will be a corresponding window:
- System.Windows.Window
- System.Windows.Forms.Form
After that, several statements which

open windows are inserted into appropriate
locations. There are some conditions need
to be satisfied in the insertion process: all
windows of AUT need to be opened, each
window is called open one time, so if a
window is displayed, it does not need to
insert new scripts to open again. Algorithm 1
describes the proposed method to overcome
these problems. The main idea of this method
is to store the opened windows by using
a temporary text file temp_ f ile.txt. Each
class is corresponding to a window, in its
constructor function, a statement writing its
name is inserted at the first, and another
statement calling to Open_All_Windows
function is added at the end. The content of the
Open_All_Windows function contains scripts
that open all windows of AUT except itself.
However, before opening a window, it must be
sure that it has not opened yet by checking the
existence of its name in the temporary text file.
Finally, the modified source code is rebuilt to
create a new application.

4. Test scenarios specification and test
scripts generation

From the widgets retrieved before, testers
add a list of interactions for each one. Then,
these actions are combined to generate a
collection of test scenarios. After that, test
scripts are created corresponding to each test
scenario.

Algorithm 1: Modify source code of project
Input :Project’s source code
Output :Modified application

1 begin
2 create empty list
3 foreach class in project do
4 if class inherits Window or Form

then
5 add class to list

6 foreach class in list do
7 name = name of class
8 tempFile = “tem_file.txt”
9 insert statement

“AppendText2File(tempFile,name);”
into the first of constructor function

10 insert statement
“Open_All_Windows();”
into the end of constructor function

11 function Open_All_Windows(temp_ f ile):
12 if temp_ f ile not contains S econdWindow

then
13 open S econdWindow
14 if temp_ f ile not contains ThirdWindow

then
15 open ThirdWindow

/* so on with remains windows */

4.1. Test scenarios specification

The method for specifying test scenarios is
very important, it is the basis for testers design
desired scenarios. This specification method
should ensure that it is cost-effective to create
new test scenarios. This paper proposes an
approach to generate new test scenarios by
combining the interactions of each widget. By
using this method, testers only need to define
a set of desired actions, validations for each
widget. Then, these interactions are combined
to generate test scenarios. Hence, testers
spend fewer efforts than manual recording in
Record and Replay technique.



6 T.D. Duong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. xx, No. x (2018) 1–10

Figure 3 shows several test scenarios
generated from combination. The first row
contains a list of widgets, widgets’ attributes
or values in column Ob ject of Table 2
(hereinafter referred to as “Object”). Each
remaining row is corresponding to a test
scenario which consists of a collection of
interactions, each of them is expressed by a
cell.

Figure 3. Several generated test scenarios for login
action

Table 2. Other Objects in addition to widgets

Object Describe Example

Keyboard
Contains some
interactions with
keyboard

Press Ctrl+C

Wait
Action waiting until
some conditions are
satisfied

Wait until
MainWindow
displays

Delay
Action delay for an
amount of time Wait for 3 seconds

Capture
Action capture
screen

Capture the
current screen

Table 3 shows several rules of the
specification method. There are three
parameters in order to determine the correct
interactions (corresponding to a cell in
Excel file): Ob ject - a cell in the first
row, Expression - the value of the current
cell, Color - the color of this cell (i.g.,

Environment, Pre-condition,
Procedure, Validation).

4.2. Test scripts generation
The Excel specification file of test scenarios

is analyzed to generate test scripts. These
scripts and files store widgets’ information
are packaged into a test project. With this
test project, users can run many times later
independently. Test scripts are essentially
a collection of statements interact with
widgets of each test scenario. The statement
elements.LoginWindow.LoginButton.Click();
is an example of expression of click action
to LoginButton element in LoginWindow.
Declaring the parent element LoginWindow
in this statement is necessary because of
the existence of two or more elements
with the same name but they locate in
different windows. For example, another
window named S econdWindow also
contains a LoginButton, so if only using
LoginButton.Click(), this action will be not
clear when not know the target element (in
LoginWindow or in S econdWindow). If the
action belongs to the Pre-condition type, a
validation script must be added at the end of
the scripts in order to check whether actions
are performed successfully.

5. Test execution

Executing test project is essentially the
execution of a sequence of actions, validations
with widgets. There are multiple types of
widgets, each one has various interactions
type. Basically, they can be divided into three
groups as follows.

• Direct actions (hereinafter referred to as
“Action”): e.g., click a button, input text
into a text-box, set value for widget’s
width, etc.



T.D. Duong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. xx, No. x (2018) 1–10 7

Table 3. Several specification rules to define interactions

Object Expression Color Meaning
MainWindow Open Environment Open MainWindow

MainWindow Exist
Environment/
Validation Check if MainWindow exists

MainWindow Not Exist
Environment/
Validation Check if MainWindow does not exists

Button1 Click Procedure Click Button1
Button1 DoubleClick Procedure Double click Button1
Button1 RightClick Procedure Right click Button1
Button1 Click (x,y) Procedure Click Button1 at position (x,y)
Textbox1 ‘abc’ Procedure Input ‘abc’ into Textbox1
Textbox1 ‘abc’ Validation Validate value of Textbox1’s text attribute with ‘abc’

Textbox1 ‘abc’ Pre-condition
Input ‘abc’ into Textbox1, then
validate value of Textbox1’s text attribute with ‘abc’

Textbox1.
Text

Contain
‘abc’ Validation Validate value of Textbox1’s text attribute contains ‘abc’

Textbox1.
Text Not contain ‘abc’ Validation Validate value of Textbox1’s text attribute does not contain ‘abc’

MainWindow.
Width 500 Procedure Set MainWindow width is 500

MainWindow.
Width 500 Validation Validate value of Textbox1’s width attribute with 500

Keyboard {K_Control; C} Procedure Press Ctrl and C
MainWindow Capture Procedure Capture MainWindow screenshot
Delay 2 Procedure Delay 2 times default duration time

• Validation interactions (hereinafter
referred to as “Validation”): e.g., check
the existence of a widget, validate the
value of text attribute of a widget with
some texts, etc.

• Other interactions: e.g., capture the
current screen, delay an amount of time,
wait until a window is displayed, etc.

If an interaction belongs to the Action or
Validation type, there will be two phases to
execute it including target widget detection,
interaction execution. The target widget
is found from the root-widgets using its
attributes’ value achieved in the previous

phase. After test project was finished running,
a test report is exported. This test report needs
to show the state of the execution (success
or failure) of each test scenario. There are
three states of the result after performing an
interaction as follows.

• Success: this interaction was executed
successfully.

• Failure: this interaction was executed
completely, but it returned false. For
example, validating the value of text
attribute of a widget with some texts
returns false.

• Error: this interaction was not executed



8 T.D. Duong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. xx, No. x (2018) 1–10

completely. It means that in the execution
process, there was something interrupted
this interaction, and it could not continue.
For example, the target widget cannot be
found.

Whenever the result of executing an
interaction is different from success state,
the hold current screen will be captured and
written into the test report as an additional
information.

6. Tool and Experiments

6.1. GTA tool and a case study

Figure 4. The architecture of GTA

Based on the proposed approach, a
Windows Desktop tool named GTA has been
developed. It contains four main modules
as in Fig. 4. In widgets inspection module,
the widgets and their properties are extracted
by using Microsoft UI Automation library.
The proposed combination method to generate

test scenarios uses a free and lightweight
tool named PictMaster. It is essentially an
MS Excel file, contains some Macros to
combine the values of each input parameter.
Each Ob ject (e.g., Button1, Delay, etc.) is
considered as a parameter in PictMaster.

Figure 5. An example of specification using PictMaster

In order to show the effectiveness of GTA,
it was tested with UI of several applications.
In this section, a case study with ToDo
application is illustrated. ToDo is a simple task
management desktop application developed
by Toshiba Software Development Vietnam
(TSDV). From a set of widgets, GTA exports
a template PictMaster file containing several
pre-defined parameters (e.g., button, text
box, etc.). Next, PictMaster generates a
set of scenarios by combining the values
of each parameter which were defined by
testers before. Finally, GTA analyzes these
scenarios to export a test project which can be
opened, built, and run within Visual Studio.
Figure 6 shows an example of test report
which was generated whenever running test
project completely. It can be seen that the
scenario Feature_1 is failed because the action
checking the existence of TaskManagetView
returns failure.



T.D. Duong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. xx, No. x (2018) 1–10 9

Table 4. Comparison in terms of the number of widgets extracted

Application Widget type GTA Ranorex Spy UI Spy
Calculator Combo box Fully Miss not selected options Miss not selected options

Testing
Application

Tree view Fully Fully
Miss children nodes which
parent are not expanded

Tab Fully
Miss widgets in not
selected tab-pages

Miss widgets in not
selected tab-pages

Combo box Fully Miss all options Fully

ToDo Tab Fully
Miss widgets’ screenshots
in not selected tab-pages

Miss widgets in not
selected tab-pages

Combo box Fully Miss all options Fully

Figure 6. A test report of GTA

6.2. Experiments

This section makes a comparison in term
of the number of widgets extracted between
GTA, Ranorex Spy and Ui Spy. Ranorex
Spy is a tool in commercial Ranorex tools
and UI Spy is another provided by Microsoft.
Three applications are used as the inputs
including ToDo, TestingApplication (both
were provided by TSDV) and Calculator
(default on Windows 10). The details of
comparison are shown in Table 4.

It can be seen that both Ranorex Spy
and UI Spy ignore some widgets in the
extraction process. Ranorex Spy always
ignores some selections in a combo box
widget with both three applications. Similar

to the combo box, with a tab widget, Ranorex
Spy also omits widgets in the unselected
tab-pages. UI Spy detects fully selections
of a combo box widget in two TSDV’s
application, but with Calculator application,
it ignores un-selected selections. Besides, UI
Spy cannot detect some nodes in a tree view
whose parents have not expanded yet. In
contrast, GTA overcomes these limitations
because it applied several techniques to
deal with hidden widgets. For example,
whenever the extraction process encounters
a combo-box widget, GTA will automatically
execute clicking on the drop-down button on
the right of it to visible all selections.

7. Conclusion

This paper presented a method of
automated UI testing for Windows-based
applications. The proposed method includes
three phases including widgets inspection;
test scenarios specification analyzer and test
scripts generation; test execution. The key
idea of the proposed method is to generate
new test scenarios from the specification and
widgets extracted from the application.

The proposed method can generate a large



10 T.D. Duong et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. xx, No. x (2018) 1–10

number of test scenarios by combining a
collection of interactions of each widget.
Testers only need to define interactions of
each widget, hence this method saves testers’
efforts in creating UI interaction scenarios.
The exported test project can be run multiple
times automatically so it reduces the cost of
test execution. Furthermore, some techniques
are applied in order to extract hidden widgets
which are ignored by other tools. A tool
named GTA was implemented to demonstrate
the effectiveness of the proposed method.

Currently, GTA has been used in TSDV
and received positive feedback. Based on
their assessments, GTA would be continually
improving so as to apply more effectively
on various kind of projects written different
platforms in practice. Specifically, the next
research would focus on solving the problem
of hidden widgets detection in dynamic
applications (e.g., widgets are loaded from the
database). In addition, GTA will be extended
the current idea of the proposal on other
platforms such as Linux, and MacOS.

Acknowledgments

We thank Dr. Vo Dinh Hieu, VNU
University of Engineering and Technologies
for his reviews.

References
[1] F. Zaraket, W. Masri, M. Adam, D. Hammoud,

R. Hamzeh, R. Farhat, E. Khamissi, J. Noujaim,
Guicop: Specification-based gui testing,
in: Software Testing, Verification and
Validation (ICST), 2012 IEEE Fifth International
Conference on, IEEE, 2012, pp. 747–751.

[2] L. J. White, Regression testing of gui event
interactions., in: icsm, Vol. 96, 1996, pp.
350–358.

[3] R. Narkhede, S. Korde, A. Darda, S. Sharma, An
industrial research on gui testing techniques for
windows based application using uft, in: Smart
Technologies and Management for Computing,
Communication, Controls, Energy and Materials
(ICSTM), 2015 International Conference on,
IEEE, 2015, pp. 466–471.

[4] M. Cunha, A. C. Paiva, H. S. Ferreira, R. Abreu,
Pettool: a pattern-based gui testing tool, in:
Software Technology and Engineering (ICSTE),
2010 2nd International Conference on, Vol. 1,
IEEE, 2010, pp. V1–202.

[5] S. Al-Zain, D. Eleyan, J. Garfield, Automated
user interface testing for web applications
and testcomplete, in: Proceedings of the
CUBE International Information Technology
Conference, ACM, 2012, pp. 350–354.

[6] A. M. Memon, M. E. Pollack, M. L. Soffa,
Hierarchical gui test case generation using
automated planning, IEEE transactions on
software engineering 27 (2) (2001) 144–155.

[7] L. Gomez, I. Neamtiu, T. Azim, T. Millstein,
Reran: Timing-and touch-sensitive record and
replay for android, in: Software Engineering
(ICSE), 2013 35th International Conference on,
IEEE, 2013, pp. 72–81.

[8] Z. Qin, Y. Tang, E. Novak, Q. Li, Mobiplay: A
remote execution based record-and-replay tool
for mobile applications, in: Proceedings of
the 38th International Conference on Software
Engineering, ACM, 2016, pp. 571–582.

[9] Y. Hu, I. Neamtiu, Valera: an effective and
efficient record-and-replay tool for android, in:
Proceedings of the International Conference on
Mobile Software Engineering and Systems, ACM,
2016, pp. 285–286.

[10] S. Andrica, G. Candea, Warr: A tool for
high-fidelity web application record and replay,
in: Dependable Systems & Networks (DSN),
2011 IEEE/IFIP 41st International Conference
on, IEEE, 2011, pp. 403–410.


	Introduction
	Related work
	Widgets inspection
	Widgets objects extraction
	Hidden widgets in opened windows analyzer
	Hidden widgets in unopened windows analyzer

	Test scenarios specification and test scripts generation
	Test scenarios specification
	Test scripts generation

	Test execution
	Tool and Experiments
	GTA tool and a case study
	Experiments

	Conclusion

