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Abstract—Semantic image segmentation plays a key role in
obtaining pixel-level understanding of images. In recent years,
researchers have tackled this problem by using deep learning
methods instead of traditional computer vision methods (eg [25]).
Because of the development of technologies like autonomous
vehicles and indoor robots, segmentation techniques, that have
not only high accuracy but also the capability of running in
real-time on embedded platform and mobile devices, are in high
demand. In this work, we have proposed a new convolutional
module, named Residual depth-wise separable, and a fast and
efficient convolutional neural network for segmentation. The
proposed method is compared against other state of the art
real-time models. The experiment results illustrate that our
method is efficient in computation while achieves state of the
art performance in term of accuracy.

Index Terms—Image Semantic Segmentation, Residual Learn-
ing, Depth-wise Separable Convolution

I. INTRODUCTION

In recent years, there has been a huge development of appli-
cations that nourish from information extracted from images
such as indoor navigation, augmented reality and autonomous
driving. Indoor robots, autonomous cars are machines that are
able to automatically navigate and get aware of environment
without human instructions. These type of technologies in-
volve in complex computer vision algorithms and variety of
sensors and actuators to solve three fundamental problems:
navigation and guidance, driving and safety, and performance.
The objective of navigation and guidance is to see what is in
front, interpret signage and then identify available path, avoid
collision with obstacles. To achieve the vision tasks, a camera
is used to captured the road scene for autonomous cars and
indoor scene for robots. Semantic image segmentation then
plays a key role for gaining advanced semantic understanding
of these videos input. It provides essential data for followed
computer vision algorithm by partition the vehicles, pave-
ments, building and humans into different areas in a frame.
Decisions during driving time are made based on the results
of image segmentation.

Semantic image segmentation is the process of assigning
each pixel a predefined label to simplify the input for analyza-
tion tasks. Deep Convolutional Neural Networks (DCNNs) has
significantly boosted the accuracy of semantic segmentation
and many others computer vision problems. However, the
main problem of this technique is that its model requires
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large number of parameters and mathematical operations. As
new technology devices like autonomous cars and augmented
reality glasses are being got interested in by the community,
it increases the demand of real-time image semantic segmen-
tation on mobile devices.

In this paper, we develop a CNNs that can operate in
real-time on Nvidia Jetson Tx2 (embedded GPU). Our main
contribution and statistics are the following:

• We propose a new convolution block that demands
twice less computational cost than traditional convolution
blocks at the expense of small reduction in accuracy;

• We also proposed a CNNs architecture based on the new
block that achieves high quality segmentation with real-
time inference time even on low-power mobile devices
and embedded system;

• Our approach be able to run at over 21 FPS in a Jetson
Tx2 (embedded GPU) with mean intersection over union
(mIoU) about 60.2% on public Cityscapes dataset.In
other words, the new network provides a good trade-off
between inference time and segmentation quality.

II. RELATED WORKS

DCNNs was initially introduced for image classification
challenges [12]. FCN [14] is the first model that reinforced
the use of end-to-end CNNs networks for image semantic
segmentation. FCN convolutionalize pretrained network on
Imagenet [6] to output feature maps and upsampling the
output feature maps. The authors of FCN also proposed skip
connections that combine the layers from three pool operations
to capture more information because information is lost during
multiple pooling time. Other works like Deeplab [4] proposed
atrous spatial pyramid pooling to capture multiple scale con-
text or PSPNet [24] introduced pyramid pooling module to
inferring different sub-region representations. The work in
ICNet [23] based on PSP Net architecture. Instead of feeding
high resolution images through network, ICNet re-sizes images
with multiple scaling factor then feeding these images through
cascade architecture. However, utilizing these technique highly
increase computation cost of the network. All these network
achieve top accuracy but require high performance GPU and
non of them can inference in real-time on embedded devices.

Some other approaches sacrifice accuracy to reduce com-
putational resources such as [3] [16] [10] [1] . Enet [16] in-
troduced a new light weight deep neural network architecture.
Encoder and decoder blocks of Enet is bottleneck module it
combines building block of resnet and convolution layer 1
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x 1 to reduce channels dimension. SQ Net [10] introduced
bypass refinement module which memorizes feature maps
from encoder layer to improve upsampling. SegNet [1] use
unpooling instead of transpose convolution. Unpooling oper-
ations require fewer floating point operation when compare
to transpose convolution. The work of Linknet [3] make use
of convolutional block 1 x 1 to reduce channel dimensions
before feeding through transposed convolution, then it uses
convolutional block 1 x 1 to regain desired channel dimen-
sions. These method can do real-time semantic segmentation
on embedded devices but the accuracy of output semantic map
is not sufficient enough for practical applications.

III. PROPOSED ARCHITECTURE

We start this section by explaining residual learning [7] and
depth-wise separable convolution [9] in details because these
two concepts have significant impacts on the principles and
basics theories of our proposed method. We actually combined
them to form a new type of convolution block. Final part of
this section is devoted to the architecture of our model.

A. Residual Leaning

VGG [20] has proved that the network depth is a crucial
factor lead to the efficiency of a CNN model. Feature maps
are enhanced by stacking more layers. But in practice, when
increasing the depth of a suitable network, accuracy gets worse
and quickly degrades, this phenomenon is called degradation
problem. In idealistic scenario, if we add more layers in a
network, the error will be reduced or at least remain the
same. This hypothesis can be explained as following: layers
that belong to the original network persisted and the added
layers just act as an identity mapping. In practice, finding the
identity mapping in a form of a stack of nonlinear layers is
extremely hard. As Resnet [7] came out in 2015, it solved the
degradation problem by introducing residual learning method.
Fig. 1 and Fig. 2(b) illustrate residual leaning blocks. The
residual function can be defined as:

y = M(x) + x (1)

where x is the input feature maps and M is the mapping func-
tion using stacked non-linear layers. The standard convolution
function is y = M(x). In order to satisfy the identity mapping
y = x, we need to solve the equation M(x) = 0 for residual
function and M(x) = x for standard one. The first mentioned
one is easier when we consider that M stand for some stacked
non-linear layers. Paper about semantic segmentation recently
used widely residual learning as default block for encoder and
decoder because this method strongly decreases the effect of
degradation while do not involve extra parameters.

B. Depth-wise separable convolution

Depth-wise separable convolution is introduced in Mo-
bileNet [9] as a type of factorized convolution. It consists
of two layers: depth-wise convolution and point-wise con-
volution. For example, we have a convolution layer of size

Fig. 1. Residual block

DR ×DR ×NI ×NO , feature map of size DF ×DF ×NI

as input and a DH ×DH ×NO output feature map where:
• DR : the receptive filed (or filter) size;
• DF : the spatial size of input feature maps;
• DH : the spatial size of output feature maps;
• NI : number of input feature maps depth dimension;
• NO : number of output feature maps depth dimension.
The complexity of standard convolution is:

DR ×DR ×NI ×NO ×DF ×DF (2)

In depth-wise convolution, each filter is processed on a sin-
gle input channel. In other words, it only extract information
from each channel of feature maps and does not combine them
like standard convolution. Therefore, depth-wise convolutions
computation cost gets rid of NO and is defined as:

DR ×DR ×NI ×DF ×DF (3)

Point-wise convolution is similar to standard convolution
except that the filter size is 1 x 1. The complexity of point-
wise convolution is:

NI ×NO ×DF ×DF (4)

Depth-wise separable convolution block is a depth-wise
convolution layer followed by a point-wise convolution one.
As depth-wise convolution is lack of combining factor, point-
wise layers take feature maps from depth-wise as input and
combine the information in multi-channels. Depth-wise sepa-
rable convolution represent convolution operation as two-step
process of extracting and compressing to have a complexity
of:

DR ×DR ×NI ×DF ×DF +NI ×NO ×DF ×DF (5)

Compare to standard convolution, the new technique gets a
reduction of:

DR ×DR ×NI ×DF ×DF +NI ×NO ×DF ×DF

DR ×DR ×NI ×NO ×DF ×DF

=
1

NO
+

1

D2
K

(6)

The architecture of depth-wise separable convolution is
shown in Fig.2 (b).
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C. Residual depth-wise separable blocks

We propose a new block which is combined of depth-
wise separable convolution and residual learning. It inherits
the advantage of these two technique: overcome degradation
problem and greatly reduce computational cost. We call it
residual depth-wise separable (RDS) blocks, it is illustrated
in Fig 2 (c). Similar to depth-wise separable block, each
layer is followed by batch normalizations as it reduces the
convergence time. We replace point-wise convolution with a
3x3 convolution in order to gather more context representation
and expand the field of view. One drawback of depth-wise
separable convolution is that each channel is only related to
a certain channels and lack of cross talk to other ones like
standard convolution. Therefore, we adopt the idea of channel
shuffle operation [22] to boost the accuracy. Shuffle channels
with the group numbers (a hyper-parameter of channel shuffle
operation) of 4 are added after 3x3 convolution.

RDS block have the computational cost of:

3× 3×NI ×DF ×DF +3× 3×NI ×NI ×DF ×DF (7)

Residual block has the computational cost of:

2× 3× 3×NI ×NI ×DF ×DF (8)

Compare to residual block, RDS get a reduction in com-
plexity of:

3× 3×NI ×DF ×DF + 3× 3×NI ×NI ×DF ×DF

2× 3× 3×NI ×NI ×DF ×DF

=
1

2×NI
+

1

2
(9)

Because NI is greater than 26 in our model, the left part can
be ignored. Express in other words, RDS block is two times
faster than residual block. The efficiency of the new block will
be demonstrated in the experiments and results section.

D. Architecture design

The architecture design uses our proposed RDS block in
many layers. To get an acceptable trade-off between the
performance and inference time, the model follows some
strategies:

• Early down-sample: We adopt the view of [16] that
using the first two layer to downsize the image by 4.
It has two benefits : significantly reduce the process time
and infer features from early stage to let the following
layers gain more context and enlarge view size;

• Asymmetric encoder-decoder architecture: Decoder is
just bi-linear interpolation layer and all of parameterized
layers concentrates in encoder portion. Because the en-
coder is the most crucial part as it detects feature, extracts
valuable information whereas the main target of decoder
is only up-sampling feature maps from encoder. Besides,
using only a bi-linear layer as decoder also speeds up the
inference time of our model.

• Large feature maps resolution: Unlike SegNet and FCN
that downsize the image 5 times, we only down-sample

by 3 times. Heavily down-sampling involve heavily up-
sampling, it leads to increasing the inference time. Be-
sides, low resolution maps lose details and edge infor-
mation that are captured by low-level filters. Apply this
strategy, our model even effectively predicts small objects
such as poles and sign symbols.

The proposed architecture is illustrated in Table I. For down-
sample block, we use max-pooling and convolution 3x3 with
stride 2 in parallel and then do concatenation like the one
that is described in [16]. We add dropouts [8] in all encoder
RDS blocks as it avoids over-fitting and improve the accuracy.
We also use dilated convolution [4] to capture more context
representation while remain the same computation cost and
memory space. A 3x3 convolution with stride 1 is attached to
encoder, the main task of it is turning the feature map into a
low-resolution segmentation images. Then decoder do the task
of up-sampling these images into the original size.

IV. EXPERIMENTS

A. Datasets

Cityscapes [5] is a high quality dataset with varying
weather condition, daytimes and road scenarios. The original
data resolution is 2048 x 1024 which were captured in 50 cities
and focused on urban street scenes. It consists of 5000 fine-
annotated images: 2975 for training, 500 for validation and
1525 images are used for testing. The dataset also delivers
dense pixel annotations for 30 classes grouped into 8 cate-
gories including sky,nature, objects, construction, humans, flat
surfaces, vehicles, and void. It has the large number of scene
layouts, highly varying background and dynamic objects

Camvid [2] is a road scene understanding database which
consist of 700 fine-annotated images: 367 images are used for
training, 100 for validation and 233 for testing. It provides 12
label class including sky, building, pole, road, pavement, tree,
sign symbol, fence, car, pedestrian, bicyclist and unlabeled
object. It was original captured as video and the frames are
then sampled at 1 fps and 15 fps.

SUNCG [21] is a synthetic indoor image dataset consists
of more than 45,000 scenes, each has different rooms such as
living room, bed room, kitchen, etc. Each room has different
type of 91 objects including chair, sofa, computer, freezer ...
Those environments are for those who want to test simulated
robot perception/navigation algorithms in simulation such as
MINOS [19] before applying in real. For the experiment,
we collect data from 51 scenes consist of 14,000 pairs of
RGB/segment images in the semantic segmentation task.

B. Experiment setting

We used PyTorch framework [17] to implement CNN net-
work as well as train, test and evaluate the model. It took one
day to train the proposed model on Nvidia Tesla K40m GPU.

Most of the state the art methods use a pretrained CNN
model on ImageNet or COCO [13] as encoder and then fine
tune the new network on target datasets. In other words, these
models were trained on 2 different datasets and the accuracy
is significantly boosted by over 3 million images on ImageNet

sagara
Highlight
Why?



Fig. 2. a) Rediual block. b) Depth-wise separable block. c) RDS block .

TABLE I
OUR PROPOSED ARCHITECTURE DESIGN.

Type Output size Dilation rate Dropout

Encoder Downsample Block 32 x 512 x 256 None None

Downsample Block 64 x 256 x 128 None None

RDS block 64 x 256 x 128 None 0.5

RDS block 64 x 256 x 128 None 0.5

RDS block 64 x 256 x 128 None 0.5

Downsample Block 128 x 128 x 64 None None

RDS block 128 x 128 x 64 None 0.3

RDS block 128 x 128 x 64 2 0.3

RDS block 128 x 128 x 64 4 0.3

RDS block 128 x 128 x 64 8 0.3

RDS block 128 x 128 x 64 16 0.3

3 x 3 Convolution C x 128 x 64 None None

Decoder Bilinear interpolation C x 1024 x 512 None None

dataset. Because of the limitation of computational hardware,
training our encoder network on ImageNet is unreachable.
Therefore, we decided to just train the whole network on the
target datasets.

For training, we use Adam [11] optimization as it is the
most effective algorithm and currently recommended as the
default algorithm to use. We train the network with learning
rate of 5e-4 and weight decay of 2e-4, and divide the learning
rate by 2 when the loss is stagnant. The data is augmented by
random translation of 0-2 pixels on both axes and horizontal
flips.

We use cross entropy 2D as loss function. It can be
described as:

loss(p, cl) = w[cl](−p[cl] + log(
∑
j

ep[j]) (10)

Where p is scores for each class of pixel, cl is the number
of classes and w is the vector assigning weight to each of the

classes. It is essential to add weight argument as the training
dataset is unbalanced. For example, in road scene image, the
majority of pixels belongs to road and building while the
number of poles pixels is extremely small. The model then
tends to predict a pixel belongs to a common class. The weight
is taken from [16] and described as:

w[i] =
1

log(c+ ni)
(11)

Where c is a hyper parameter that is used to limit the weight
values between a predefined interval, ni is the appearance
frequency of pixels belong to class i.

C. Results

Table II , Table III show the accuracy results for Cityscapes
and Camvid dataset, respectively. The reader might find some
comparison on predicted images at Fig. 4 in appendix section.
All reported accuracy results are obtained from associated pa-
pers. We compare our accuracy with other real-time network.
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TABLE II
CITYSCAPES TEST SET RESULTS.

Model Mean IoU

SegNet 57.0

Enet 58.3

SQNet 59.8

ESPNet 60.2

RDS-Net(Ours) 60.2

ICNet 69.5

ErfNet 69.8

TABLE III
CAMVID TEST SET RESULTS.

model Mean IoU

Enet 51.3

SegNet 55.6

ESPNet 55.6

RDS-Net(Ours) 58.3

Our model achieves the highest accuracy, at 58.3%, on Camvid
and is ranked third on Cityscapes with 60.2%. Although the
two highest one on Cityscapes, ICNet and ErfNet [18], is
considered as a real-time architectures, its time benchmark
actually is evaluated on Titan X, a powerful GPU. In practice,
it is not fast enough to be used in embedded system and low-
power devices.

We also retrain and test some networks. For ESPNet [15]
and ErfNet, we use the public code of the authors to evaluate.
For Enet, we ourselves implement this model on pytorch. For
SUNCG dataset Fig. 3 notices that our model converges at a
better place to compare with the rest. Table IV also shows that
our network stand on the top accuracy measurements except
for one that is slightly less than ERF-Net. Fig 5 in appendix
section is for further reference on prediction results.

Table V compare inference time of varying resolution
images on embedded GPU NVIDIA Jetson TX2 and a laptop
GPU GTX 1050. Our model is as fast as the fastest one,
ESPNet, while is 2.7% more accurate on camvid and has the
same accuracy in Cityscapes. Our model can do inference 20
fps for image of resolution 640 x 360 which is suitable for
real-time applications.

V. CONCLUSION

In this paper, we have proposed a real time semantic seg-
mentation network with Residual Depth-wise Separable blocks
which could be mounted to mobile devices and embedded
systems. The new network design is motivated by effective
convolutional blocks that overcome degradation problem and
speed up the inference time. We also consider some of the
important design strategies to improve the performance. Our
experiments prove that the proposed network delivers a good
trade-off between reliability and speed.

Because of the constraints of computational system, we did
not use all external dataset in our experiment even though it
can significantly increase the accuracy. But it turns out that
our model is robust enough to be trained from scratch in the
target dataset thereby simplify experiment and reduce training
time. Future related researches need to focus on creating new
type of factorized blocks that replace the old standard ones
for real-time segmentation problems, and build the new light-
weight CNNs architecture from scratch instead of depending
on transfer learning methods that is too slow.
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Fig. 4. Comparing on Cityscapes validation dataset (a) results from [15] (b) RDS-Net(Ours)



Fig. 5. Comparing on SUNCG Dataset (left to right): RGB, Ground truth, Erf-Net, RDS-Net(Ours)




