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Abstract—Current deep learning methods and technolo-
gies have reached the level of deployment in softwares and
hardwares for real-life applications. However, recent stud-
ies have shown deep learning architectures are highly vul-
nerable to attacks and exploitation via input perturbations.
In this works, we investigate the effects of these attacks on
the outputs of each layer of deep architectures and on theirs
performance in term of classification accuracy measures.
The results show that without defense mechanism, even
simple attacks devastated deep architectures’ outputs in
every layer and theirs classification performance. We then
propose multiple defense mechanisms in order to protect
deep architectures and to make them more robust to input
perturbation attacks.

I. INTRODUCTION

Recent advances in Deep Neural Networks (DNNs)
have inspired mass applications of these deep compu-
tational architectures on multiple fields. The applica-
ble fields include the classical ones such as Natural
Language Processing, Speech Processing, Image Pro-
cessing, and Computer Vision. Furthermore, developers
have deployed DNNs in “hybrid” fields such as finan-
cial technology and recently, Internet of Things (IoTs).
The applications of DNNs on various software and/or
information systems, especially on embedded devices,
requires us to consider them as possible targets in the
“cyber kill chain” or “intrusion kill chain” or stages of
cyber-attacks.

The danger of attacks on CNN is especially true
when many deployed DNNs often re-use pre-trained
networks with known architectures and published pre-
trained weights. This creates a security situation called
white-box attack. In a white-box attack, the attackers
know exactly the victim’s DNNs architectures, weights
and training data. With these critical information, the
attackers have very high chance of tweaking the input
provided to the DNNs to acquired a desired output. For
example, falsifying an authenticated face or other bio-
metrics in order to get into a protected area.

On the other hand, deep learning, especially when
following transfer learning approach, also leads to a
reverse situation called black-box attack. In a black-box

attack, the attackers use adversarial inputs obtained from
attacking known DNNs (i.e. known architectures and
known weights) to attack another unknown or hidden
DNN model. This is probable because different DNN
models could recognize the same input patterns and
therefore, one could confuse them with the same ad-
versarial inputs.

One could see that in both situation, defense against
white-box attacks is therefore the first line of defense
for DNNs. To this end, our contributions in this paper
are
• Investigating the effects of attacks on the outputs of

layers in a neural networks, especially the change
in ranks and orders of the probability or logit output
layer.

• Proposing a defense mechanism based on robust
loss functions and empirically evaluating the effects
of these loss functions against common attacks on
the DNNs.

The paper is organized as followings: In Section II,
we will explain several concepts in adversarial attack
on neural networks and defense mechanisms for them.
In Section III, we demonstrate the significant effects
of simple and sophisticated attacks on a convolutional
neural network and the need to defense against them.
In Section IV, we propose a defense mechanism using
established loss functions. We present experiment results
in Section V and concluding remarks in Section VI.

II. BACKGROUND

A. Adversarial examples

An adversarial example, was first discovered in [1],
is an input which has been slightly modified to confuse
a neural network to mis-classify it. Formally, a neural
network is a function F (x) = y that maps an input
image x ∈ Rn to a label y ∈ {1 . . . k}. This network
classifies a natural input image x to the target label
y = t. The same network mis-classifies an adversarial
example x′ = x+ δ to a different label F (x′) = t′ 6= t.
The small perturbation, δ, which is added to natural
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input image x, is normally bounded in lp norm in order
to make the adversarial example be imperceptible for
human to differentiate. A positive threshold ε is chosen
such that ‖δ‖p < ε.

B. Adversarial attacks

In order to attack a network, attackers often inspect
the changes in output layers with respect to the changes
in the input. Therefore, most adversarial attacks rely
on first-order (gradient) information of a loss function.
Formally, given the loss function, L(x, y;w), of the
model with respect to a pair of input x and target label y
(while w is the network weights), the adversary will use
gradient, ∂L∂x , of this loss function to find an adversarial
input that confuses the neural network. In the followings,
we explains a few widely used attacking mechanisms in
literature.

1) Adversarial examples as solutions to an optimiza-
tion problem: Given a natural input x ∈ [0, 1]n, one
could pose the problem of finding a closest adversarial
example x′ under `2 distance as the following optimiza-
tion

x′ = arg min
x′

‖x′ − x‖22

such that F (x′) = t′ 6= t = F (x) and x′ ∈ [0, 1]n.
A solution x′ to the above optimization is guaranteed
to be mis-classified by the model F while being as
close as possible to the natural input x. As a result,
the adversarial example is imperceptible for human to
differentiate.

This optimization problem can be very difficult to
solve, so the authors in [1] proposed to solve the
following relaxed problem instead:

x′ = arg min
x′

c · ‖x′ − x‖22 + L(x′, t′) (1)

such that x′ ∈ [0, 1]n. This formulation allows one to
employ available automatic gradient computation tool-
box and training algorithms to optimize the objective
function. In the relaxed formulation, the loss function
L is normally cross-entropy loss function. To yield an
adversarial example of minimum distance, one solves
optimization problem repeatedly with multiple and in-
creasing values of `2 distance penalization parameter c.

2) CW method: This method proposed in [2] aims to
compute good approximations of Eq. (1) while keeping
the computational cost of perturbing examples low. The
authors cast the formulation into a more efficient opti-
mization problem, which allows them to craft effective
adversarial samples with low distortion. They define
three similar targeted attacks, based on different distor-
tion measures: `2 , `0 and `∞ respectively. However, in
our experiments and in practice, even these attacks are
computationally expensive.

3) Fast gradient sign (FGS): The method proposed
in [3] finds an adversarial example that closes to natural
image under `∞ norm and aims to find it approximately
and quickly instead of finding the optimal solution.
It finds an adversarial example by computing a very
“crude” gradient descent step:

x′ = x− ε · sign(∇xL(x, t′)).

Intuitively, the method looks into the gradient of the
loss function to find the directions that minimize the
loss function when classifying input x as label t′. Then
it either add to or subtract from the coordinates of the
natural input a small amount, ε, along the gradient sign
direction to get x′ that will more likely be mis-classified
as t′.

4) Projected gradient descent (PGD): This method is
a refinement of FGS method where instead of taking a
single step of size ε in the direction of gradient-sign,
multiple smaller steps α are taken, and the result is
clipped by the same ε. Specifically, one initializes the
algorithm by setting

x′0 = x,

then on each iteration, compute

x′i = clipx,ε(x
′
i−1 − α · sign(∇L(x′i−1, t

′))).

Iterative Projected Gradient Sign was found to produce
superior results to Fast Gradient Sign. In [4], it is found
that instead of starting at x′0 = x, the natural input, one
could add random perturbation of size ε to the natural
input then performs iterative Projected Gradient Sign
for a few iterations. Then selecting adversarial example
that has minimum loss will lead to optimal adversarial
example.

C. Defense mechanisms

1) Adversarial training: The main idea in adversarial
training is to make the model more robust to adversarial
examples by introducing adversarial examples at train-
ing. The disadvantage of this approach is that it takes
more computations to generate adversarial examples.
FGS method can be used to quickly generate the adver-
sarial examples, but the adversarial examples it generated
are not optimal so it will fail when we use more
complicated attacks. In [4], the authors showed that,
iterative Projected Gradient Sign method with random
restart can find the optimal adversarial examples and
training on these adversarial examples makes the model
robust against wide range of first-order attack.

2) Distillation: Distillation is a method described in
[5] to transfer knowledge from a large model to a smaller
model. [6] applied this method as a defense mechanism
against adversary by hiding the gradient between the pre-
softmax layer (logits) and softmax output. However, the
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authors in [2] showed that it is easy to bypass the defense
by using more complex attacks.

III. EFFECT OF ATTACKS ON CURRENT NETWORKS

In this section, we investigate the distortions of deep
neural networks caused by adversarial examples. We use
adversarial examples generated by random start PGD
attack to be the universal adversary [4]. After that we
apply the defense method, which is kind of adversarial
training, proposed by the authors in [4] to see how it
mitigates the effect of adversarial attack.
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Fig. 1. The change in rank of predicted output on natural test set to
modified test set.

A. Attacking an MNIST model

TABLE I
MNIST NETWORK ARCHITECTURE

Layer # of units Input shape Output shape
Conv1 32 (5 x 5) 28 x 28 x 1 28 x 28 x 32
Pool1 28 x 28 x 32 14 x 14 x 32
Conv2 64 (5 x 5) 14 x 14 x 32 14 x 14 x 64
Pool2 14 x 14 x 64 7 x 7 x 64
FC1 1024 3136 1024
FC2 10 1024 10

We study the effect of adversarial attack on a con-
volutional neural network used to classify hand written
digits from MNIST dataset. This network consists of
convolutional layers, max pooling layers and fully con-
nected layers and uses ReLU as activation function. It
accepts an grayscale image of size 28× 28 and predicts
the number in the input image. The architecture of this
network is described in Table I. We train the model on
MNIST training set using cross entropy softmax loss
and Adam optimizer. This model achieves the accuracy
of 99.13% on MNIST test set. So the performance of
this model is very high when dealing with natural input
image.

Now we find the adversarial version of MNIST test set
by applying random start PGD attack. We iterates k =
100 steps with size of each step α = 0.01 to generate
adversarial examples with l∞ norm bound ε = 0.3. The
accuracy of this model on adversarial test set is 0.27%.
These adversarial examples are only slightly different

from the natural examples but causes our model almost
misclassifies all examples.

In Figure 1 we plot the change in rank of predicted
output on natural test set to adversarial test set. We
denote yi is the output of natural test sample i-th and y′i
is the output of adversarial test sample i-th. These output
are vectors in 10 dimensions, each dimension index
represents a number from 0 to 9. rank(j, y) is a function
that outputs the number of dimensions in output y has
higher value than dimension j, so if rank(j, y) = 0 then
the number that the model predicts is j. First we find j
in the output of natural test sample that rank(j, yi) = 0
then we find the rank of dimension j in the output of
adversarial test sample r = rank(j, y′i). We report r as
the change in rank of predicted output on natural test
sample to adversarial test sample. The 0-change in rank
means that the model classifies adversarial examples the
same as natural examples. The 9-change in rank means
that the model sees adversarial examples least likely to
be the same as natural examples. As plotted, the change
is almost 8. Therefore, adversarial examples do not only
fool the model, they do it in the most intensive way.

To further investigate we plot the change in output
of each layer on natural test set to adversarial test set.
Let xil is the input goes into layer l-th of the natural test
sample i-th, and yil is the output of that input. x′il and y′il
is the input and output of layer l-th of the corresponding
adversarial test sample i-th. We expect that if natural
sample and adversarial sample are slightly different then
each layer of the model will produce similar output,
thus yil and y′il will be close in some measure. We
choose l2 norm to measure the similarity. Because each
layer has different output dimension, we divide l2 norm
of the difference to l2 norm of natural input xil so
the difference between output of each layer will be
proportional to natural input to that layer. Formally, with

each layer we report
‖y′il−yil‖2
‖xil‖2

.
The result is in Figure 2. We can see that the amount

of change in each layer, which is at least half of natural
input norm, is huge. The changes are accommodated
through each layer, and make the final layer output very
different to the natural samples.

Now we consider fetching noise samples into the
model to see how each layer operates different to natural
samples. To produce the noise samples, we randomly
perturb all dimensions of the natural samples with the
amount of perturbation never passes ε = 0.3. Thus, all
noise samples are close to natural samples in term of
l∞ norm bound likes adversarial samples. The change
of each layer when fetching noise samples is almost
from 0.2 to 0.4 that is twice smaller than adversarial
samples. That means the model is more resist to small
random perturbation in input but not adversarial input.
This result is consistent with the work in [3].
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Fig. 2. The amount of change on each layer from natural test set to modified test set.

B. Effect of defense

In the previous section, we can see that adversarial
attack sabotage a neural network. Now we see how can
we defense against that attack by training the network
with adversarial examples in the framework proposed by
[4].

The idea of this framework is that it first finds the most
severe adversarial examples then using these adversarial
examples to train the network so the network will be
resistant to other adversarial attacks. To find the most
severe adversarial input, we use PGD multiple times
on natural input, each starts at a random point close
to natural input then we pick the adversarial input that
makes the network produce the highest loss. In practice,
because we usually train a neural network on mini batch
with multiple epochs, we don’t necessarily find the most
severe adversarial examples for each mini batch. Instead,
we just use random PGD adversarial examples to train
each mini batch. That saves us significant computing
and produces the same result. In this experience, to
generate PDG adversarial examples we set number of
steps k = 40 and each step has size α = 0.01, maximum
perturbation in term l∞ norm bound ε = 0.3.

To report the result we generate adversarial test set
same as the section III-A. The accuracy is acceptable
high (88.98%), so these adversarial examples cannot
totally damage the as before. In addition, the accuracy
performs on natural test set only slightly drop (97.73%).
Hence adversarial training make the network still per-
forms well on natural input but strongly resistant to
adversarial examples.

Again, in Figure 2 we plot the change in output
of each layer. We see that the amount of change in
each layer is tiny. That means the network trained on
this framework is robust against adversarial attacks. A

small change amount in the input only produces a small
change amount in output. To sum up, the adversarial
training framework provides a decent way to make
neural networks robust against adversarial attacks. In the
following section, we will propose an improvement to
this framework.

IV. CHANGE LOSS FUNCTION IN ADVERSARIAL
TRAINING FRAMEWORK

[4] said that the adversarial training framework above
works very well because it can find a nearly optimal
solution to the minimax equation. The authors also stated
that the capacity of the network to train on strong ad-
versarial examples is important. Small capacity networks
cannot learn anything meaningful from these strong
adversarial examples. This suggests that the learning
ability of neural networks take a crucial part toward a
fully robust network against adversarial examples.

The goal is to find a network that can learn underlying
concept of the object from the strong adversarial exam-
ples. At least, the network somehow learns to distinguish
these strong adversarial examples. We hypothesize that
exist a network architecture that is very robust against
adversarial examples and there is a loss function that
helps neural networks recognize adversarial examples as
good as natural examples. There is a work that attempt
to change the architecture of the network [7]. They
proposed a new activation BReLU that is a bounded
version of ReLU activation and helps the network not
change much when input is adversarial.

In this paper, we do experiments to show that loss
functions can help the networks learn better from these
strong adversarial examples provided by the framework.
And as we know, no one investigates about loss function
as a defense mechanism against adversarial attack in
literature. We will describe the experiments to study the
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Fig. 3. LMCL loss vs. cross-entropy loss: Change amount layers’ output.
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effect of some loss functions as a defense mechanism
against adversarial attack in the following.

TABLE II
DEFENSE CAPABILITY OF DIFFERENT LOSS FUNCTIONS

Loss Function Adv. Acc. (%) Nat. Acc. (%)
Hinge Loss 64.97 91.04
Cross Entropy Softmax Loss 88.98 97.73
LMCL (s = 10, m = 0.1) 89.93 98.28
LMCL (s = 10, m = 0.3) 91.95 98.04
LMCL (s = 10, m = 0.5) 90.53 97.28
LMCL (s = 10, m = 1.11) 90.25 97.66

A. Loss functions

Normally, we use cross entropy softmax loss to train
multi class model. The cross entropy softmax loss for
i-th data sample is written as following:

Li = − log
efyi∑
j e
fj

where yi is the correct class of i-th sample, xi is the input
to the last layer, fj is the logit of class j, fj = WT

j xij .
This loss wants the predicted distribution to have all of
its mass on the correct class or probability of the correct
class is as close to 1 as possible.

Another commonly used loss is hinge loss. It’s usually
used in multi-class support vector machine (SVM). The
hinge loss is set up so that the SVM wants the correct
class for each image to have a higher score than the
incorrect classes by some fixed margin ∆. In practice,
we can safely set ∆ = 1 because the weights of model
can shrink or stretch arbitrarily. The formula of the hinge
loss is written as following:

Li =
∑
j 6=yi

max(0, fj − fyi + 1)

Adversarial examples are close to natural examples, but
still have different predicted class. We think that if the
model can distinguish each class very well then we
can ease the adversarial problem. In other words, the
decision boundary has a large margin to distinguish
between classes.

There is another loss that focuses on large margin
decision boundary. It’s called large margin cosine loss
(LMCL) proposed by [8]. The authors view cross en-
tropy softmax loss from cosine perspective. They write
fj in formula of the cross entropy loss as following:

fj = WT
j xi = ‖Wj‖ ‖xi‖ cos θj

Look at this formula, we can see that both norm and
angle of vectors are contributed to predicted probability.
If we fix both norm of vectors then our models will
focus on learning the difference in the angle of them.
The authors add a margin m to make the model learning
more robust:

Li = − log
es(cos θyi−m)

es(cos θyi−m) +
∑
j 6=yi e

s cos θj

subject to

W =
W ∗

‖W ∗‖
, x =

x∗

‖x∗‖
, cos θj = WT

j xi
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TABLE III
THE TRANSFERABILITY OF ADVERSARIAL EXAMPLES GENERATED BY MULTIPLE MODELS

Attack/Defense Hinge loss Softmax loss LMCL (s = 10, m = 0.3) Attack Average
Hinge loss 64.97 96.26 95.9 85.71
Softmax loss 85.53 88.98 94.74 89.75
LMCL (s = 10, m = 0.3) 85.45 95.53 91.95 90.98
Defense Average 78.65 93.59 94.20

We train multiple models using the same architecture
as in Table I but using different loss functions: cross
entropy softmax loss, hinge loss and large margin cosine
loss. We train the model using the adversarial training
framework with hyper parameter: k = 40, α = 0.01, ε =
0.3. We fix random seed, iteration steps (100000 steps)
and use Adam optimizer. After training all models, we
attack the models using random start PGD attack with
hyper parameters: k = 100, α = 0.01, ε = 0.3. Then
we report the accuracy of each model on corresponding
adversarial test set and natural test set.

V. EXPERIMENT RESULTS

To see that using different loss functions whether helps
or not, we train multiple models with same architec-
ture using different loss functions as listed in previous
section. With large margin cosine loss, there are two
hyperparameters s and m need to be set. Where s is the
fixed norm of input vectors going to loss layer and m
is the margin between each class in cosine space. We
arbitrarily choose s = 10 and vary m from 0.1 to 1.11
(theoretical upper bound that calculated by the formula
in [8]). The results are reported in Table II.

The hinge loss has the worst accuracy on both ad-
versarial test set and natural test set. Perhaps the hinge
loss is useful to punish misclassifications (thus determine
margin) but it does not help at probability estimation.
In practice, people also rarely use hinge loss in deep
learning.

All models trained with LMCL have better accuracy.
That means LMCL really makes models better at dis-
tinguishing between classes and reduces the effect of
adversarial attacks. To look closer, in Figure 3 we plot
the change in amount of each layer of model trained
with LMCL compare with original cross entropy softmax
in Section III. As we can see the amounts of change
are smaller in all layers, that confirms the efficiency of
LMCL. We also plot the change in rank of predicted
output in Figure 4.

Now we examine the transferability of adversarial ex-
amples generated from these models. We use adversarial
examples generated from one model to attack another
model then report the classification accuracy. The pur-
pose of this experiment is showing that if the model is
robust against adversarial examples then PGD attack will
be struggle to find strong adversarial examples. Thus it

will not effective to use these adversarial examples to
attack other models. In addition, the robust model will
show high resistance to adversarial examples generated
by other models. The results are reported in Table III.
The model trained with LMCL has the highest average
accuracy when using as attacker that means adversarial
examples generated by this model are easy to other
models. When using this model as defender, it also has
the highest average accuracy, that means it is difficult to
other models to generate severe adversarial examples to
attack this model.

VI. CONCLUSION

DNNs have been demonstrated their superior per-
formance on many tasks, but they are vulnerable to
adversarial examples. In this paper, we invest the effect
of adversarial attack on DNNs and review the state-of-
the-art framework that makes DNNs robust. We propose
to use large margin cosine loss instead of cross entropy
softmax loss in the framework. The experiment results
show that our proposal really improve the current frame-
work.
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