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Abstract—A novel method using a reduced multivariate polynomial model has been developed for biometric decision fusion where
simplicity and ease of use could be a concern. However, much to our surprise, the reduced model was found to have good classification
accuracy for several commonly used data sets from theWeb. In this paper, we extend the single outputmodel to amultiple outputsmodel
to handle multiple class problems. The method is particularly suitable for problems with small number of features and large number of
examples. Basic component of this polynomial model boils down to construction of new pattern features which are sums of the original
features and combination of these new and original features using power and product terms. A linear regularized least-squares predictor
is then built using these constructed features. The number of constructed feature terms varies linearly with the order of the polynomial,
instead of having a power law in the case of full multivariate polynomials. Themethod is simple as it amounts to only a few lines of Matlab
code. We perform extensive experiments on this reduced model using 42 data sets. Our results compared remarkably well with best
reported results of several commonly used algorithms from the literature. Both the classification accuracy and efficiency aspects are
reported for this reduced model.

Index Terms—Pattern classification, parameter estimation, pattern recognition, multivariate polynomials, and machine learning.
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1 INTRODUCTION

PATTERN classification is an important field of research
since it encompasses a wide range of information

processing problems of great application significance. These
applications include human identity recognition, speech
recognition, multimedia data retrieval, handwritten char-
acter recognition, bioinformatics, medical diagnosis, data
fusion, data mining, process control, and many other fields
of machine intelligence. The significance of such applica-
tions is very well paraphrased by H. Simon (see e.g., [1]):
“The more relevant patterns at your disposal, the better
your decisions will be.”

While the statistical approach (see e.g., [2]) has received
considerable attention, many estimators or approximators
(see e.g., [3], [4]) can be used for pattern classification. The
Multivariate Polynomial model (MP) provides an effective
way to describe complex nonlinear input-output relation-
ships since it is tractable for optimization, sensitivity
analysis, and prediction of confidence intervals. With
appropriate incorporation of certain decision criteria into
the model output, MP can be used for pattern classification.
However, for high-dimensional and high-order systems,
multivariate polynomial regression becomes impractical
due to its prohibitive number of product terms. This is
especially true for the case of a full interaction model.

To circumvent this dimensionality problem, two main
approaches can be identified. The first approach is by means
of a compact universal basis function (e.g., perceptron and
radial basis function) network which is usually nonlinear in

parameters. The neural networks, radial basis function
networks, Fourier series, and wavelets are good examples
accounting for much success for such an approach. Since
these formulations are usually nonlinear in parameters,
estimation of the parameters is nontrivial and usually an
iterativeprocess (e.g., backpropagationof errors andgradient
descent) is adopted to solve the problem. Although solutions
in the local sense can be obtained most of the time, they are
sensitive to initial estimates.

Another example for the first approach, which focuses
on the use of polynomials, is seen in [5] where a ridge
polynomial network was claimed to uniformly approximate
any continuous function on a compact set in multidimen-
sional input space. This network is a generalization of their
earlier pi-sigma network [6] (which is not a universal
approximator) proposed to circumvent the explosion of
weight parameters in a High-order Processing Unit (HPU)
network. Here, we note that, when using a linear activation
function and adopting a single layer network architecture,
HPU reduces to a multivariate polynomial expansion. The
core idea of pi-sigma network uses products of sums of
input component instead of sums of products as in HPU’s
processing units. Although the number of weight para-
meters is largely reduced as compared to those in HPUs,
training of the network remains a nontrivial task since the
formulation is nonlinear with respect to its parameter space.
An iterative gradient type of search is usually applied to
perform a search for some local solutions.

The second approach is by use of dimension reduction
techniques compromising some approximation capability. In
[7], the class of polynomial networks whose output is the
weighted sumof several basismonomials is considered. Two
dimension reduction methods, namely, the redundancy
removal and the random dimension reduction are combined
in the proposed polynomial networks to solve a speaker
verification problem. Apart from the above direct dimension
reduction means which sacrifice much approximation in the
high frequency band, anotherway to tackle the problem is by
piecewise fitting of data. This method splits the estimate into
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several smaller dimensional pieces and performs estimation
on the separate pieces. The results of these pieces are then
combined to produce the final overall estimate. In [8], a
nonparametric function estimate called Smoothed and Un-
smoothed Piecewise-Polynomial Regressions Trees is de-
scribed.Themethodrecursivelypartitions theregressorspace
until the data in each piece are adequately fitted by a
polynomialofafixedorder.Thefinalestimate is thenobtained
by averaging the polynomial pieces using smooth weight
functions which diminish rapidly to zero outside each
associated partition. Although the approximation capability
is maintained, the choice of polynomial orders and the
partitioningremainacritical taskinarrivingatgoodestimates.

In view of the complexity and possibly tedious effort
involved in the application of above methods, our initial
proposal of a simple parametric reduced multivariate
polynomial model is to circumvent this dimension explosion
problem while maintaining some approximation capability
mainly formultimodal biometricdecision fusionapplications
[9]. Much to our surprise, the reduced model was found to
have good performance for several classification problems
from theUCImachine learning repository (e.g., Iris-Plant and
Wisconsin-Breast-Cancer [10]). We are thus motivated to
carry out further experiments on more data sets from the
repository to understand better the empirical aspects regard-
ing the classification accuracy of the reduced model.

In this paper, we evaluate empirically the performance of
the proposed reduced multivariate polynomial model using
commonly available data sets taken from the UCI machine
learning repository [10]. Both the accuracy aspects and the
efficiency aspects will be addressed in our experiments.
Comparisons with well-used algorithms in the literature are
mainly made reference to [11] and [12] which performed
extensiveexperimentson35and16datasetsrespectivelyfrom
UCI machine learning repository. Since there are some
overlaps between these two data sets, our data sets for
experimentation total up to 42. The method is particularly
useful for problems with large number of training samples
and relatively small number of pattern features. For the
experimented data sets, the total number of samples ranges
from 47 to 20,000 and the number of pattern features ranges
from 4 to 64.

The paper is organized as follows: In the following section,
the multivariate polynomial regression is introduced since
much of the subsequent developments adopt a similar
estimation process. Several existing polynomial models are
discussed in this section before a reducedmodel is derived in
Section 3. In Section 4, the reduced model is formulated to
solve the pattern classification problem. The model is then
extended to cater for multiple pattern class labels in the same
section. With the classification algorithm in place, in
Section 5, the data sets used and the existing algorithms
compared are briefly accounted for. The performance
evaluation criteria are then spelled out in Section 6 prior to
the presentation of experimental results in Section 7. Finally,
in Section 8, some concluding remarks are drawn.

2 MULTIVARIATE POLYNOMIAL REGRESSION

In this section, we shall first recall the multivariate poly-
nomial function model before introducing a reduced model
for pattern classification. This is because the least-squares
solution form for parameter estimate in the multivariate
polynomial function model can be applied in a straight-
forward manner in subsequent development with minor
modification.

2.1 Multivariate Polynomial Model

The general multivariate polynomial model can be ex-
pressed as

gð��; xxxxÞ ¼
XK
i

�ix
n1

1 xn2

2 � � �xnl

l ; ð1Þ

where the summation is taken over all nonnegative integers
n1; n2; . . . ; nl for which n1 þ n2 þ � � � þ nl � r with r being
the order of approximation. �� ¼ ½�1; . . . ; �K �T is the para-
meter vector to be estimated and xx denotes the regressor
vector ½x1; . . . ; xl�T containing l inputs.K is the total number
of terms in gð��; xxxxÞ.

Without loss of generality, consider a second-order
bivariate polynomial model (r ¼ 2 and l ¼ 2) given by

gð��; xxÞ ¼ ��TpðxxxxÞ; ð2Þ
where

�� ¼ ½�1 �2 �3 �4 �5 �6�T ; ð3Þ
and

pðxxÞ ¼ ½1 x1 x2 x2
1 x1x2 x2

2�
T : ð4Þ

Given m data points with m > K (K ¼ 6 here) and using
the least-squares error minimization objective given by

sð��; xxÞ ¼
Xm
i¼1

yi � gð����; xxxxiÞ½ �2¼ ½y� P���T ½y� P���; ð5Þ

the parameter vector �� can be estimated from

�� ¼ ðPTP Þ�1PTy; ð6Þ

where P 2 Rm�K denotes the Jacobian matrix of pðxxxxÞ:

P ¼
1 x1;1 x2;1 x21;1 x1;1x2;1 x2

2;1

..

. ..
. ..

. ..
. ..

. ..
.

1 x1;m x2;m x21;m x1;mx2;m x2
2;m

2
64

3
75; ð7Þ

and y ¼ ½y1; . . . ; ym�T is the known inference vector from
training data. In (7), the first and second subscripts of the
matrix elements xj;k (j ¼ 1; 2, k ¼ 1; . . . ;m) indicate the
number of inputs and the number of instances, respectively.

It is noted here that (6) involves computation of the
inverse of a matrix, the problem of multicollinearity may
arise if some linear dependence among the elements of xxxx
are present. A simple approach to improve numerical
stability is to perform a weight decay regularization using
the following error objective:

sð��; xxxxÞ ¼
Xm
i¼1

yi � gð��; xxxxiÞ½ �2þbk��k22

¼ ½y� P���T ½y� P��� þ b ��T��;

ð8Þ

where k � k2 denotes the l2-norm and b is a regularization
constant.

Minimizing the new objective function (8) results in

�� ¼ ðPTP þ bIÞ�1PTy; ð9Þ

where P 2 Rm�K , y 2 Rm�1 and I is a (K �K) identity
matrix. This addition of a bias term into the least-squares
regression model is also termed as ridge regression [13].
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3 REDUCED MULTIVARIATE POLYNOMIAL MODEL

Grounded on Weierstrass’s approximation theory (see e.g.,
[14]), the above multivariate polynomial regression pro-
vides an effective way to describe complex nonlinear input-
output relationships. However, for a rth-order model with
input dimension l, the number of independent adjustable
parameters would grow like lr [4]. For medium to large
sizes of data dimensions, the MP model would need a huge
quantity of training data to ensure that the parameters are
well determined (usually overdetermined).

In view of this problem, we resort to possible reduced
models whose number of parameters do not increase
exponentiallyand,yet,preserving thenecessaryclassification
capability.

3.1 Multinomials

A special case of multivariate polynomials is called multi-
nomial which can be expressed as

ðx1 þ x2 þ � � � þ xlÞr ¼
X r!

n1!n2! � � �nl!
xn1
1 xn2

2 � � �xnl

l ; ð10Þ

where the summation is taken over all nonnegative integers
n1; n2; . . . ; nl for which n1 þ n2 þ � � � þ nl ¼ rwith r being the
order of approximation. Suppose there are a total ofK terms
in this multinomial model. A possible application using this
multinomial model for classifier combination is to estimate
the weight parameter vector �� ¼ ½�0; �1; . . . ; �K �T from

f̂fMNð��; xxxxÞ ¼ �0 þ
X
j

�jðxn1

1 xn2

2 � � �xnl

l Þ; j ¼ 1; 2; . . . ; K ;

ð11Þ

where the summation is taken over all nonnegative integers
n1; n2; . . . ; nl for which n1 þ n2 þ � � � þ nl ¼ r. Another pos-
sibility is to lump all inputs within each power term:

f̂fMNð��; xxxxÞ ¼ �0 þ
Xr
j¼1

�jðx1 þ x2 þ � � � þ xlÞj: ð12Þ

For the general multinomial problems, the number of
terms in (11) can be tabulated over the dimension l (number
of inputs) and the power order r as shown in Table 1. From
this table, we see that the total number of terms within a full
multivariate polynomial expansion including the interact-
ing terms, is actually the summation of the number of terms
within the given multinomial order and those within all
lower order multinomials, i.e., summation along the lth row
up to the given order r. For instance, given a 5th-order full
multivariate polynomial model, a two-inputs system con-
tains 20 terms (see column (for r ¼ 5) in Table 1). Here, we
see that as the number of inputs and the order increase, the

number of terms in full multivariate polynomial expansion
increases tremendously.

3.2 A Reduced Model

To significantly reduce the huge number of terms in multi-
variate polynomials, we first consider the following model:

f̂fMNð��; xxxxÞ ¼ �0 þ
Xr
j¼1

ð�j1x1 þ �j2x2 þ � � � þ �jlxlÞj: ð13Þ

It is noted that this gives rise to a nonlinear estimation
model where the weight parameters (�jk, j ¼ 1; . . . ; r,
k ¼ 1; . . . ; l) may not be estimated in a straight-forward
manner. Although an iterative search can be formulated to
obtain some solutions, there is no guarantee that these
solutions are global. To circumvent this problem, a
linearized model is considered.

Given two points �� and ��1 on the multinomial function
which is differentiable. By the Mean Value Theorem, the
multinomial function fð����Þ ¼ ð�j1x1 þ �j2x2 þ � � � þ �jlxlÞj,
j ¼ 2; . . . ; r (indicating only the regressor parameter to
simplify the expression) about the point ��1 can be written as:

fð��Þ ¼ fð��1Þ þ ð����� ��1ÞTrfð���������Þ; ð14Þ

where ��������� ¼ ð1� �Þ��1 þ ����� for 0 � � � 1. Let xx ¼
½x1; . . . ; xl�T . By omitting the reference point ��1 and
those coefficients within fð��1Þ and rfð�����Þ and includ-
ing the summation of weighted input terms, the
following multivariate model can be written:

f̂fRM 0 ð��; xxxxÞ ¼ �0 þ
Xl
j¼1

�jxj þ
Xr
j¼1

�lþjðx1 þ x2 þ � � � þ xlÞj

þ
Xr
j¼2

ð��T
j � xxxxÞðx1 þ x2 þ � � � þ xlÞj�1; l; r � 2;

ð15Þ

where the number of terms is given by K ¼ 1þ rðlþ 1Þ.
To include more individual high-order terms for (15), the

following (RM) can be written:

f̂fRMð����; xxxxÞ ¼ �0 þ
Xr
k¼1

Xl
j¼1

�kjx
k
j þ
Xr
j¼1

�rlþjðx1 þ x2 þ � � � þ xlÞj

þ
Xr
j¼2

ð����T
j � xxxxÞðx1 þ x2 þ � � � þ xlÞj�1; l; r � 2:

ð16Þ

The number of terms in this model can be expressed as:
K ¼ 1þ rþ lð2r� 1Þ. It is noted that (16) has (rl� l) number
of terms more than that of (15). The plots for the number of
terms over different model orders for each input dimension
(l ¼ 2; 3; . . . ; 8) of RM is shown in Fig. 1. For comparison
purpose, the same figure includes the number of terms
plotted over the model orders for a full multivariate
polynomial model with input dimension two (l ¼ 2). Due to
its simplicity, theMatlab function codes for (16) is included in
Appendix A for immediate use. An example function call for
(16) is also included inAppendix B to show the ease of its use.

3.3 Decision Landscapes

The classification capability of the reduced model can
perhaps be inferred from its decision landscape of biometrics
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data fusion (a 2-class problem) [9].Ahighly localized training

mayendup inpoor test results since the trainingdatamaynot

be globally representative (overfitting). Conversely, under-

fitting of training data may result. Fig. 2 shows the genuine

and imposter classes distribution with some decision

boundaries, and corresponding decision landscapes pro-

duced by a two-layer Multilayer Perceptron (MLP) with two

hidden nodes, a SVM (see e.g., [15], [16]) using RBF kernel,

and our proposed RM (6th-order). It is seen from this figure

that the localization property of RM is somewhere between

that of the selected SVM-RBF (high localization) and Neural

Network (low localization).1

4 PATTERN CLASSIFICATION USING THE REDUCED

MODEL

The reduced model was first proposed for biometric

decision fusion where the decision fusion problem was

treated as a classifier fusion problem [19] with only two

class labels (imposters and genuine-users) [9]. For classifi-

cation problems with multiple class labels (multiclass),

some modifications to the original formulation are required.

4.1 2-Class Problems

In this work on pattern classification, the regularized least-

squares error objective given by (8) will be used for data

training. For problems with two class labels, the target

outputs can be set as “0” for class-0 and “1” for class-1. The

outputs of the trained model will then be classified as ĈC ¼ 0

if f̂fRM � 0:5 and ĈC ¼ 1 otherwise. The classification error

rates are computed as the ratio of number of misclassified

test samples over the total number of test samples using the

test set which have not been used in training.

4.2 3-Class and Multiclass Problems

For problems with number of class labels larger than two,
we shall adopt the winner-takes-all technique for classifica-
tion as it has a uniform a priori class probability. A reduced
model will be constructed for each output class with value
“1” for those within the designated class and value “0”
otherwise. Training is thus required to be performed
NC times when there are NC class labels. In our implemen-
tation, the training vector can be packed into a single matrix
and computation of the weight parameters can be
performed in a single step. The decision for classifying a
test output is then based on the highest model output value
among the competing classes.

Let NC be the total number of class labels for those
multiclass problems which have more than two class labels,
we have the target training vectors packed as:

Y ¼ ½yy1; yy2; . . . ; yyyyNC
�; ð17Þ

where yyi; i ¼ 1; 2; . . . ; NC are defined according to each
class (containing m elements which is the number of
training data samples) with ones for those samples in each
ith-class, and zero otherwise. In other words, each sample
row of Y contains only a “1” for the corresponding class
and “0” otherwise.

The Jacobian matrices Pi of the reduced model for each
class i ¼ 1; 2; . . . ; NC are the same since they all take the
same inputs and, hence, no packing is necessary. Let

P ¼ P 1 ¼ P 2 ¼ � � � ¼ PNC
; ð18Þ

where

Pi ¼
@f̂fRMð����; xxxxjÞ

@��T

 !
i

;

j ¼ 1; 2; . . . ;m; i ¼ 1; 2; . . . ; NC ; Pi 2 Rm�K:

ð19Þ

Then, the regularized solution from (9) can be modified as

� ¼ ðPTP þ bIÞ�1PTY ; ð20Þ

to solve for the packed polynomial weight parameter
matrix � ¼ ½����1; ����2; . . . ; ����NC

� (����i 2 RK�1, i ¼ 1; 2; . . . ; NC)
in a single step.

Having learned �, the multiclass model outputs for test
can finally be computed as

F̂F ¼ ½f̂fRMð��1; xxxxÞ; . . . ; f̂fRMð��NC
; xxxxÞ� ¼ P � ð21Þ

using P generated from test set. For each data sample, the
largest element of F̂F will determine the output pattern class.

4.3 Model Order Selection and Regularization
Parameter Setting

The neural network has been recognized to be a universal
approximator (see e.g., [20], [21]). The generic nature comes
from its wide span of complexity wherein at least two model
structure parameters need to be determined (number of
layers and number of nodes in each layer which come with
many possible combinations). There would be more para-
meters if momentum, learning rate, and type of activation
functions are considered. It is noted that determination of
these model structure parameters is a nontrivial task where
much research is ongoing. Unlike the neural networks, the
RM has only two model structure parameters (model order
and regularization parameter) and from our experience it
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1. The localization capability depends on the size of the network and
kernel units. The good application of SVM and MLP depends much on the
choice of model structures with balanced localization property. The chosen
size and structure of MLP and SVM are due to their good performance by
combining two biometrics [9]. For fundamental model structure issues, see
[17], [18] for some interesting properties on single-layer perceptron in
relation to some statistical classifiers.

Fig. 1. Number of terms plotted over model order for different input
dimensions.



operates under reasonably narrow numerical range. The
reason being that the regularization parameter (with small
values) is found to be rather inert which does not affect
significantly the classification error ratewhilemaintaining its
role in stabilizing the solution. The main model structure
parameter is the model order which is to be chosen such that
the number of weight parameters is less than the number of
data samples to yield an overdetermined system. Empiri-
cally, we found that a good starting point would be r ¼ 6 and
b ¼ 10�4. While maintaining this value of b, the model order
can be varied within ½1; 10� using cross-validations for best
result. Upon finding the best model order, the b can be varied
within ½10�6; 1� for possible improvement.

5 DATA SETS AND CLASSIFICATION ALGORITHMS

Before moving on to the experiments, a brief account on the
data sets used and the classification algorithms compared is
presented in this section.

5.1 Data Sets

The data sets used in our experiments are all taken from the
UCIMachineLearningRepository [10] except for theStatLog-
DNA data set which was obtained from [22] maintained by
P. Brazdil and the Attitudes Towards Workplace Smoking
Restrictions which was obtained from StatLib [23].2 Our
choice of these data sets is mainly according to [11] and [12]
where several important classification algorithms and their
variants were compared. A total of 42 data sets covering a
wide range of applications are used in our experiments. It is
noted that thisdata set covers 30outof the35 listed in [11], and
all the 16 data sets listed in [12]. Those data sets not included
either have a continuous nature of output where the number
of classes used is not known, or have too many missing data

from a single class which renders the training to be
nonrepresentative.

We organize the data sets according to the number of
pattern labels into three groups, namely, 2-class problems
(16 sets), 3-class problems (12 sets), and multiclass problems
(14 sets). The purpose is to observe possible trends related
to number of pattern classes. Since many details can be
found from the Web sites, we shall provide only a brief
account on the data sets and summarize the size of data set
and the number of pattern attributes used in Table 2.

1. Two-class problems. The data sets for 2-class problems
include: Shuttle Landing Control, BUPA Liver-Dis-
orders donated by R.S. Forsyth, Monk’s Problems
donated by S. Thrun, Pima Indians Diabetes donated
by P. Turney, Tic-Tac-Toe Endgame donated by
D.W. Aha, Wisconsin Breast Cancer Databases do-
nated by O. Mangasarian and N. Street, StatLog
Project data set of Heart donated by R. King, Credit
Card Application Approval, Congressional Voting
Records, Mushrooms Characteristics from Audobon
Society Field Guide, Ionosphere radar returns from
V. Sigillito, and Sonar data set.

2. Three-class problems. The data sets for 3-class problems
include: Iris Plant from Fisher (1936), Balance Scale
donated by T. Hume, Teaching Assistant Evaluation
donated byW.-Y. Loh and T.-S. Lim, Thyroid Disease
data sets from Garavan Institute and Stefan Aeber-
hard (New), Abalone Age Prediction donated by
S. Waugh, Contraceptive Method Choice Prediction
donated by T.-S. Lim, Housing Prices in Suburbs of
Boston from CMU StatLib Library, Wine Recognition
donated by S. Aeberhard, Attitude Towards Work-
place Smoking Restrictions from StatLib, Waveform
Data Generator from classification and regression
trees book, and StatLog data set of DNA donated by
R. King.

3. Multiclass problems. The data sets for multiclass
problems include: Car Evaluation donated by
M. Bohanec and B. Zupan, StatLog Project data sets
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2. Data from the Attitudes Towards Smoking Legislation Survey-
Metropolitan Toronto 1988, which was funded by NHRDP (Health and
Welfare Canada), were collected by the Institute for Social Research at York
University for Dr. Linda Pederson and Dr. Shelley Bull.

Fig. 2. Decision landscapes for SVM-RBF, MLP, and RM.



(Vehicle Silhouettes, Landsat Satellite Image and
Image Segmentation) donated by R. King, Soynean
Small data set donated by Michalski, Nursery Rank
Applications donated by M. Bohanec and B. Zupan,
Glass Identification from USA Forensic Science
Service, Zoo Data set from R. Forsyth, Ecoli Cellular
Localization Sites of Protein Prediction donated by
P. Horton, LED display from classification and
regression trees book, Yeast Cellular Localization
Sites of Protein Prediction donated by P. Horton,
Pen-Based Recognition of Handwritten Digits from
E. Alpaydin, F. Alimoglu, Optical Recognition of
Handwritten Digits from E. Alpaydin, C. Kayna, and
Letter Recognition from D. Slate.

5.2 Classification Algorithms Compared

To show the effectiveness of our proposed reduced model
as compared to nonreduced ones, the classification perfor-
mance of full multivariate third-order and sixth-order
polynomial models (abbreviated as MP3 and MP6) are
included. As for the performances of existing classification
algorithms in the literature, the classification results are
directly taken from [11], [12], and [24] since much similarity
among the experimental conditions (including ours) can be
identified, besides the fact that the best known tuning of
their proposed methods have been obtained by the
originators themselves. As details of experiments can be
found in the references, these comparative works are only
briefly described below for immediate reference.

Best-I: In the recent work by [11], the proposed best tuned
algorithm ICPL (Integrated Concept Prototype Learner,
which integrates instance filtering and abstraction techni-
ques) was comparedwith four other algorithms namely, RT3
(an instance pruning technique), kNN (k-Nearest Neighbors),
C4.5 (decision tree), and SVM-Poly (Support VectorMachine
using polynomial kernel). Their experiments used a single
run of the 10-fold stratified cross-validation on 35 data sets
from UCI machine learning repository. Only the average
classification accuracy and the data retention rate (defined as
ratio of number of prototypes learned over number of training
instances) are reported and no CPU times recorded. Applica-
tion of the above five algorithms in the reported 35 data sets
resulted in the following ranking in terms of average
classification accuracy: SVM-Poly (0.878), kNN (0.875), ICPL
(0.863),RT3 (0.861), andC4.5(0.842).Wewill compareour two
settings (RM-Fixed and RM-Tuned) of the reduced model
with these five algorithms using those 30 data sets with
known and comparable settings. In addition to the accuracy
from individual algorithm, the set of best accurate results
containing individual best out of those five compared
algorithms in each data set as seen in [11] is abbreviated as
Best-I (Best from reference-I) and tabulated in our subsequent
presentation for immediate reference. The reference [11] will
be denoted as Ref-I for convenient reading.

Best-II: In [12], a total of 33 old and new classification
algorithms (22 belonged to the decision trees type including
the C4.5, nine belonged to the statistical type including the
Nearest Neighbor, and two belonged to the neural networks
type including the RBF) were compared using 16 data sets
from the UCI machine learning repository. Extensive experi-
ments were performed on these data sets and a comprehen-
sive analysis was presented regarding the error rates, ranks,
training time, size of trees, and scalability aspects for the
compared algorithms. For the reported results,most data sets
used the average 10-fold validation error rates (a single run)
except for those six data sets listed in Section 6.1.2 that used
the given test set to compute the error rates. Their results
placed a statistical spline-based algorithm (acronymed as
POL) at the top in terms of average classification accuracy
even though it was ranked third last in terms of training time.
It is noted that themean rankof POLamong the 33 algorithms
on these data sets is found to be 8.3. This shows that no
algorithm in this study is close to being uniformly most
accurate across the data sets. The interested reader is referred
to [12] for detailed ranking of other algorithms. The set of best
accurate results containing individual best out of those 33
compared algorithms in each data set as seen in [12] is
abbreviated as Best-II (Best from reference-II) in our sub-
sequent presentation. The reference [12] will be denoted as
Ref-II for convenient reading.
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TABLE 2
Summary of Data Sets



Best-III: In the most recent reference [24], the authors
compared their proposed CLEF (a Constructive Learning
method) algorithm with other five existing algorithms
including C4.5, SVM-RBF (using RBF kernel), and DNC(Dy-
namicNodeCreation, a constructive neural network). Except
for the Monk-2 data set that used the training and test sets
provided, all accuracy results on the totaling 20 data sets are
reported using 10-fold stratified cross validation (a single
run). In terms of average classification accuracy, the follow-
ing rankingwas established: CLEF (76.25 percent), SVM-RBF
(75.81 percent), C4.5 (70.03 percent), DNC (69.39 percent),
�-RT (67.51 percent), and�-DNC (65.45 percent). As some of
the data sets are either different from that, in UCI but with
same name or different class grouping being used, only nine
data sets are found to be common to those in [11], [12] and
they are also listed for our comparison. The set of best
accurate results containing individual best out of those six
compared algorithms in each of those nine data sets as seen in
[24] is abbreviated as Best-III (Best from reference-III) in our
subsequent presentation. The reference [24] will be denoted
as Ref-III for convenient reading.

6 PERFORMANCE EVALUATION CRITERIA

We shall evaluate the accuracy and efficiency of the
proposed algorithm empirically. The following measures
will be adopted in our performance evaluation.

6.1 Accuracy

6.1.1 Ten Runs of 10-Fold Validations

In all the experiments except for six cases following that of
[12], the classification errors are estimated using 10-fold
stratified cross validation and this cross validation is repeated
10 times using different random reordering of the samples in the
data set. The same set of reorderings have been used for all
10-fold experiments on RM and MP models. The minimum
(min), average (ave), maximum (max), and standard devia-
tion (std) of the classification error rates of these 10 runs of
10-fold validations are recorded and the average error rates
will beusedasbasis for comparison forourproposedreduced
model. We believe that this average value provides a less
biased representation of classifier performance as compared
to that obtained from a single run.

6.1.2 Training and Test Sets

According to [12], the following six data sets are partitioned
into two sets, namely, the training set and the test set for
experimentation: Attitude-Smoking, Waveform, Thyroid,
StatLog-DNA, StatLog-sat-image, and LED-display. These
data sets are considered to be large [12] as their sizes aremuch
larger than 1,000 and the test set sizes are all at least 1,000. In
these six cases, the error rates are estimated from the test sets
and these error rates are compared with those in [12].

6.1.3 Accuracy Rankings

Apart form the classification error rates, the accuracy
rankings of our reduced model are also tabulated for each
data set with reference to those compared algorithms in [11],
[12], and [24]. Similar to that of [12], for each data set, the
algorithmwith the lowest error rate is assigned as rank 1 and
the second lowest error rate assigned as rank 2, and this
continues for the rest of data sets. In cases of ties, an average
rank will be assigned for those algorithms which share a
similar rank. These rankings provide information regarding

the relative performances of the reduced model with
reference to those compared algorithms in individual data
sets and it reveals whether a top ranked algorithm is close to
uniformly most accurate (average rank across data sets
approaches one) across the data sets.

6.2 Efficiency

6.2.1 Computational Effort

The computing effort is recorded for the training time of the
proposed reducedmodel in terms of standard CPU time unit
where each standard time unit is the CPU time taken to
evaluate 1,000 times theShekel-5 function at thepoint (4,4,4,4)
[25]. In our experimental setup on a Pentium IV-1.8GHz
computer, each standard CPU time unit is equivalent to
0.0569 seconds. Although the standard CPU time unit is
supposed to be machine independence, it nevertheless
depends on efficiency of implementation and computer
architecture.3 The purpose of the standard CPU time unit is
to provide some hints about the computing effort for our
nonoptimized Matlab implementation under the commonly
used Windows environment, since according to [12], the
training CPU times for different algorithms can have large
difference (secondsversusdays) and this cannot be attributed
to implementation alone.

6.2.2 Memory Storage Requirement

The number of learning parameters to be stored for future
pattern classification tasks can be an important issue
especially for stand-alone applications where only limited
memory is available. For model-based algorithms like in
our case, the number of weight parameters to be estimated
for the reduced polynomial expansion is tabulated for each
data set. For decision tree algorithms, the size of the tree is
directly related to storage requirement. For those decision
tree algorithms as seen in [12], the reported number of
leaves will be directly used as a comparison quantity.

6.2.3 Initialization and Model Structure Parameters

For many iterative algorithms especially formulated in a
nonlinear fashion, initialization of estimate is a nontrivial
matter since it could result in different local solutions [26].
Our proposed reduced model does not inherit this problem
since it’s training is a single step task and no initialization is
required.

Many model-based algorithms require some model
structure parameters to be selected before training can begin.
For example, the neural networks require the number of
layers and the number of nodes within each layer to be
selected. For radial basis function networks, additional
parameters like the centers andwidth parameters are chosen
before a single-step computation of weights can be per-
formed. In our reduced model, only two model structure
parameters, namely, the model order (r) and the regulariza-
tion parameter (b) are required to be preselected. From our
experience, the choice of r 2 ½1; 10� and b 2 ½10�6; 1� can
produce good results in many applications. This reduces
the training task to just a few trials of settings where one can
simplybeginwith thesevaluesand then tune forbetter results
based on validation.
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3. Computing resource with vectorization can create much difference
among different implementations of matrix multiplications.



7 EXPERIMENTS

7.1 Preprocessing and Settings for the Reduced
Model

We shall test the proposed reduced model using two
settings: RM-Fixed and RM-Tuned. The fixed setting uses a
6th-order model with b ¼ 10�4. The tuned setting is the
result of model order selection using 10-fold validation
search for r 2 ½1; 10� with b ¼ 10�4 based on the training set.
The selected model order r was then used to compute the
errors for all the 10 runs of 10-fold tests. As tuning for good
generalization could easily open up much research issues,
our purpose of this study is to show how simple the model
can be and reasonably good results can be achieved from
such simple model and tuning.

For all problems using the fixed setting, all the input
features are normalized to values within ½0; 1�. This input
normalization is carried forward to the tuned case for all
data sets except in Monk-1 problem where the first two
inputs are scaled to within the range ½0; 10� with the rest
normalized as above.

7.2 Results

7.2.1 Standard CPU-Time

Table 5 lists the model settings (model order r and
regularization parameter b) and the resulted total number
of weight parameters to be estimated for RM-Fixed and RM-
Tuned. The standard CPU time for training a single fold of
the 10-fold partitioning is tabulated to provide some hints
regarding the computing speed for training each data set. For
RM-Tuned, the total training CPU time (in standard unit)

including the model order search using cross-validation
process (labeled as CPU-CV) is also tabulated to reflect the
additional tuning effort incurred. It is noted that the
“Optdigit” problem took the longest training CPU-CV time
which is about 24minutes (25,140.60 standardunits as seen in
Table 5) running in our Pentium IV computer.

As different machines running different types of floating
operations have different speeds since each machine could
be optimized for a certain specific operation, we never-
theless perform a Matlab’s benchmarking [27] in Table 3
and, hopefully, some clues on the relative machines’ speeds
can be observed. Following the approach in Ref-II, we
convert the RM-Tuned’s CPU time into “SPARC-2-equiva-
lent” times (seconds).4 The “conversion” of our CPU times
for those sixteen data sets used in Ref-II [12] into “SPARC-2-
equivalent” times is done using the average values for all
the benchmarking functions. The converted SPARC-2 CPU
seconds are listed in Table 5 for immediate reference.

The median and mean SPARC-2 times for RM-Tuned are
found to be respectively 0.17 seconds and 5.14 seconds for the
16 data sets from [12]. These results show that the CPU time
for training the reduced model is “either fastest or compar-
able” (i.e., we do not expect more than a few hundred times
difference in computing time given nondrastic differences in
CPU architecture) to that of the fastest reported algorithms in
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TABLE 4
Number of Leaves and Number of Parameters

4. In Ref-II, the CPU times recorded on a SPARCstation 5 and a
SPARCstation 20 are converted into DEC 3000-equivalent seconds using a
factor of 1.4 and 0.8, respectively. In our CPU benchmarking, the closest
compatible machine from Table 3 is SPARC-2 and, hence, it is used for
timing reference.

TABLE 3
Matlab CPU Benchmarks (Time in Seconds)



Ref-II [12] since, among the 33 studied algorithms, the
median training times was reported to range from 5 seconds
(for C4.5) to 11.3 hours (for RBF) operating in a faster
DEC 3000 machine [12].

7.2.2 Number of Memory Parameters

The reducedmodel, as compared to radial basis functionsand
neural networks, would use more weight parameters
(memory storage required) for pattern classification since it
is linear in parameters and probably noncompact. For highly
nonlinear pattern classification problems, we expect to have
more weight parameters in the reduced model than that in
radial basis functions and neural networks. The gain from
paying suchprice of largernumberofweightparameters is its
single step training that is also least-squares optimal. In view

of the low memory cost nowadays, the gain in obtaining
possible “good” solutions in a single step could be a
significant achievement since nonlinear formulations have
yet to have their global optimality characterized like those for
local minima [28]. We shall show in the following that the

reduced model can achieve accurate classification solutions.
As we do not have the necessary and sufficient number of

weights in neural networks and radial basis function net-
works forpattern classification fromthe literature,5 inTable 4,
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TABLE 5
Algorithm Settings and CPU Time (Standard CPU Unit: 1,000 Evaluations of Shekel-5 at (4,4,4,4))

5. Determining the minimum number of neurons for pattern classifica-
tion or function approximation is still an unsolved problem to the best of
theauthors’ knowledge. These parameters related to memory storage are
thus left out in our tabulation though we generally know that neural
networks are highly nonlinear and they may use only a small set of weight
parameters in many applications.



we list only the number of leaves for some algorithms as seen
in [12] along sidewith the number ofweight parameters used
in our RM-Fixed and RM-Tuned algorithms which we think
could be comparable though not so directly. The first row of
the table lists the data set indices and the first column lists
some algorithms as seen in [12]. The algorithmswith smallest
number of leaves (QL1, FTL, and OCL) are listed together
with thosewith largest number of leaves (IBO and IMO). The
most accurate among thedecision tree algorithms isQL0with
averageaccuracyof 0.792 is also included inTable4alongside
with an implementation of the well-known C4.5 algorithm

with average accuracy of 0.780 for immediate reference. The
storage sizes for RM-Fixed and RM-Tuned are seen to be of
medium requirement from this tabling. The number of
weight parameters is seen to be relatively large for high-
dimensionalmulticlass problems. It is noted here that, for the
given medium number of parameters used, the RM-Tuned
algorithm scores an average accuracy (for 10 runs of 10-folds)
of 0.811 which is above the most accurate POL (a statistical
algorithm) with average accuracy of 0.805 (for a single run of
10-folds) [12]. The RM-Fixed scores an average accuracy of
0.798 which ranks right after POL (see Table 9).
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TABLE 6
Classification Accuracy Statistics for Two Settings of RM Using 10 Runs of 10-fold Cross Validation



7.2.3 Accuracy Statistics for the Proposed Reduced

Model Using Fixed and Tuned Settings

The classification error rates using the fixed and the tuned
settings of the reduced model are presented in Table 6 in
terms of the accuracy statistics (minimum, average, max-
imum, and standard deviation of one minus error rates)
across the 10 runs of 10-fold cross validation for each data set.
In the last four rows of the table, we present also the means
taken with reference to those data sets used in Ref-I, Ref-II,
Ref-III, and that for all the 42data sets. In this table,we see that
the accuracy differences between the fixed and the tuned
reduced model are quite uniformly close to 0.02 across
different data set groupings (mean(I), mean(II), mean(III),
and mean(All)) for min, ave, and max values. This suggests

that the tuning provides an average of 2 percent accuracy

improvement over the fixed setting.
Toshowtheeffectivenessof thereducedmodel inhandling

thosehigh-dimensionalproblems, two full ordermultivariate

polynomial models with similar weight decay regularization

areexperimentedusing thesamevalidationdata sets fromthe

10 runs. The accuracy results for the third-order and sixth-

order models (MP3 andMP6) are shown in Table 7. It is seen

from this table that, for 2-class problems,MP3 andMP6broke

down at input dimensions 15 and 8, respectively, in our

experimental setup. This is also generally true for 3-class and

multiclass problems with higher possibility of matrix singu-

larity due to packing of multiple outputs.

750 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 6, JUNE 2004

TABLE 7
Classification Accuracy Statistics for Two Full-Order Multivariate Polynomial Models Using 10 Runs of 10-Fold Cross Validation



7.2.4 Comparison with Accuracy Results in the

Literature

The accuracies for our RM-Fixed and RM-Tuned algorithms
are plotted in Figs. 3, 4, and 5 together with results of those
algorithms from Ref-I, Ref-II, and Ref-III. The accuracies as
shown in these figures for the proposed RM-Fixed and
RM-Tuned algorithms are presented as shaded areas using
the minimum and maximum values from the 10 runs of
10-fold cross validation process (see Table 6). In all the three
figures, the darker tone and the lighter tone represent those
results from RM-Tuned and RM-Fixed, respectively. The

stars in the figures are those best accurate algorithms

reported in Ref-I, Ref-II, and Ref-III. It is clear from these

figures that the RM-Tuned scores many top accuracies in

many instances while the RM-Fixed followed by closely. For

those data sets compared, Table 9 summarizes the average

accuracies in ranking order.
To summarize, the RM-Tuned scores the highest average

accuracy among the compared algorithms for the three

groups of data sets compared and the RM-Fixed is

comparable to those top algorithms.
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Fig. 3. Accuracy plotted over data sets with reference to those in Ref-I (shaded-dark-tone: RM-Tuned, shaded-light-tone: RM-Fixed, ??: SVM-Poly,
ut : ICPL, 4: RT3, 5: kNN, �: C4.5).

Fig. 4. Accuracy plotted over data sets with reference to six algorithms from Ref-II (shaded-dark-tone: RM-Tuned, shaded-light-tone: RM-Fixed,

??: POL, ut : LOG, 4: LVQ, 5: RBF, �: C4T, �: C4R).



7.2.5 Ranking

Table 8 lists the best classification results for each data set
from the references (Ref-I, Ref-II, and Ref-III) together with
the average accuracies of the fixed and tuned reduced
models. The best accurate results are taken from different
algorithms in each reference for each data set (see columns
Best-I, Best-II, and Best-III). The average of these top ranked
accuracies is shown in the table as mean (Best-I:III). Here,
we see that the RM-Tuned algorithm has an average
accuracy higher than mean(Best-III) and it is found to be
close to mean(Best-I) and mean(Best-II).

The average rankings for the fixed and tuned reduced
models are also comparedwith those in Ref-I, Ref-II, andRef-
III for theexperimenteddata sets (seeTable8).Here,we found
that the ranking (average rank value in bracket inclusive of
RM-Tuned) in descending order of accuracy for the algo-
rithms compared with reference to Ref-I is: RM-Tuned(3.0),6

SVM-Poly(3.1), kNN(3.4), C4.5(3.8), RT3(3.9), and IPCL(3.9).
Here,wenote that the rankvalue forRM-Fixed is3.4 (outof six
algorithms) (See Table 8) excluding RM-Tuned.

Comparing with those algorithms in Ref-II, we have the
following ranking order (average rank value in bracket):
RM-Tuned(8.1) (See Table 8 last row), POL(8.3), LOG(12.1),
FM1(12.2), FM2(12.2), QLO(12.6), LDA(13.7), QU0(13.9),
C4R(14.0), IMO(14.0), MDA(14.3), PDA(14.5), C4T(14.5),
IBO(14.7), ..., NN(25.5), T1(27.5)[12].7 The rank value for
RM-Fixed is found to be 14.8 (out of 34 algorithms) (See
Table 8) excluding that of RM-Tuned.

For those algorithms experimented in Ref-III, we found
that the top two ranked algorithms are SVM-RBF(2.4) and
CLEF(3.1). The fixed and tuned RM scores 2.4 (See Table 8)
and 1.6 (out of 7 algorithms), respectively, in the average
rank (See Table 8).

To summarize, the average ranks for the proposed
RM-Tuned and RM-Fixed, respectively, score the lowest
(best) and above-average among the compared algorithms
on three data groups based on Ref-I, Ref-II, and Ref-III.

7.3 Summary of Results

The results in terms of accuracy and efficiency are
summarized in Table 10 where we include only those top
and bottom ranked algorithms. It can be seen from this
summary that RM, SVM, and kNN are among the top
accurate classifiers with relatively good training CPU
speed. The C4.5 has good CPU speed but not classification
accuracy. Combining implementation simplicity, memory
storage requirement, number of prior model structure
settings to be decided, and training task, the RM appears
to be a good candidate for pattern classification.

8 CONCLUSION

In this paper, extensive experiments were performed on a
reducedmultivariate polynomialmodel basedon 42data sets
from UCI machine learning repository. Ten runs of 10-fold
stratified cross validation were performed on these data sets
to present a good picture of performance statistics. The
resulted average classification accuracywere comparedwith
those results in the literature which used only a single run of
10-fold validation. The empirical results show that the
reduced model is either better than or comparable to top
ranking algorithms in the literature in terms of average
classification accuracy despite its simplicity in implementa-
tion. The computing timeneeded for training is also observed
to be among the fastest in those compared algorithms. Main
reason for the fast computing speed is that no initialization is
needed and the solution can be obtained in a single-step that
is also least squares optimal. While awaiting for possibly
optimal solutions or tuning to universal approximators or
classifiers like Neural Networks, RBF and SVM to appear in
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Fig. 5. Accuracy plotted over data sets with reference to those in Ref-III (shaded-dark-toner: RM-Tuned, shaded-light-tone: RM-Fixed, ??: CLEF,

ut : C4.5, 4: �-RT, 5: �-DNC, �: DNC, �: SVM-RBF).

6. See Table 8, last row. The rest of the average ranks are computed from
the published accuracies in Ref-I.

7. The actual ranking values for many algorithms in [12] should add about
1 since these algorithms do not have RM-Tuned included in rank count.



the research literature, we hope that this simple reduced

model can provide a benchmark considering both accuracy

and efficiency for good classification algorithms design.

APPENDIX A

THE REDUCED MULTIVARIATE POLYNOMIAL MODEL

CODED AS MATLAB FUNCTION

% Beginning of Function %

function P = RMmodel(order,X)

% Build regressor matrix P (mxK):

% order = desired order of approximation,

% X = input matrix (mxl), K = number of

parameters to be est.

% m = number of data samples, l = input

dimension.

[m,l] = size(X); MM1=[]; MM3=[];

Msum=sum(X,2);

for i=1:order

for k=1:l
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TABLE 8
RM-Fixed and RM-Tuned Compared to Best Reported Results in the Literature



M1(:,k)=X(:,k).^i;

if (i>1)

M3(:,k)=X(:,k).*Msum.^(i-1);

end

end

M2(:,i)=Msum.^i;

MM1=[MM1,M1];

if (i>1)

MM3=[MM3,M3];

end

end

P = [ones(m,1),MM1,M2,MM3];

return;

% End of Function %

APPENDIX B

AN EXAMPLE MATLAB FUNCTION CALL FOR

TRAINING AND TEST FOR USE IN 2-CLASS PROBLEMS

% Training %

% setup input matrix X(mxl) and target output

vector y(mx1)

% m = number of data samples; l = input dimension

% X = input matrix, y = target output vector,

load TrainFILENAME X,y; %need a prestored file

containing X and y

% generate regressor matrix P and identity

matrix for training

P = RMmodel(6,X); %6th-order-Reduced-Model

I = eye(size(P’*P)); %identity matrix

b = 1e-4; %regularization constant

% solve for the weight coefficients

alpha = inv(P’*P + b*I)*P’*y;
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TABLE 9
Summary of Average Accuracy in Rank Order with Reference to Ref-I, Ref-II, and Ref-III

TABLE 10
Summary of Algorithm Properties (Tabulation Solely Based on Compared References)



% generate trained output

y_train = P*alpha;

% Test %

% Note: do not clear the variable ”alpha” here

% setup input matrix for test: Xt(mxl)

% m = number of data samples; l = input dimension

load TestFILENAME Xt; %need a prestored file

containing Xt

% generate regressor matrix Pt for test

Pt = RMmodel(6,Xt); %6th-order Reduced model

% generate test output

y_test = Pt*alpha;

% End Test %
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