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Abstract

The Alternating Direction Method of Mul-
tipliers (ADMM) has received lots of at-
tention recently due to the tremendous de-
mand from large-scale and data-distributed
machine learning applications. In this pa-
per, we present a stochastic setting for opti-
mization problems with non-smooth compos-
ite objective functions. To solve this prob-
lem, we propose a stochastic ADMM algo-
rithm. Our algorithm applies to a more gen-
eral class of convex and nonsmooth objec-
tive functions, beyond the smooth and sepa-
rable least squares loss used in lasso. We also
demonstrate the rates of convergence for our
algorithm under various structural assump-
tions of the stochastic function: O(1/

√
t) for

convex functions and O(log t/t) for strongly
convex functions. Compared to previous lit-
erature, we establish the convergence rate of
ADMM for convex problems in terms of both
the objective value and the feasibility vio-
lation. A novel application named Graph-
Guided SVM is proposed to demonstrate the
usefulness of our algorithm.

1. Introduction

The Alternating Direction Method of Multipliers
(ADMM) (Glowinski & Marroco, 1975; Gabay &
Mercier, 1976) is a very simple computational method
for optimization proposed in 1970s. It stemmed from
the augmented Lagrangian method (also known as the
method of multipliers) dating back to late 1960s. The
theoretical aspects of ADMM have been studied since
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1980s, and its global convergence was established in
the literature (Gabay, 1983; Glowinski & Tallec, 1989;
Eckstein & Bertsekas, 1992). As reviewed in the com-
prehensive paper (Boyd et al., 2010), with the ability
of dealing with objective functions separately and syn-
chronously , ADMM turned out to be a natural fit in
the field of large-scale data-distributed machine learn-
ing and big-data related optimization, and therefore
received significant amount of attention in the last few
years. Considerable work was conducted thereafter.
On the theoretical side, ADMM was shown to have
an O(1/N) rate of convergence for convex problems
(Monteiro & Svaiter, 2010; He & Yuan, 2012a;b; Wang
& Banerjee, 2012), where N stands for the number
of iterations. When objective functions are strongly
convex and Lipschitz smooth, linear convergence rates
were reported very recently (Hong & Luo, 2012; Deng
& Yin, 2012). On the practical side, ADMM has been
applied to a wide range of application domains, such
as compressed sensing (Yang & Zhang, 2011), image
restoration (Goldstein & Osher, 2009), video process-
ing and matrix completion (Goldfarb et al., 2010). Be-
sides that, many variations of this classical method
have been recently developed, such as linearized (Gold-
farb et al., 2010; Zhang et al., 2011; Yang & Yuan,
2012), accelerated (Goldfarb et al., 2010) and online
(Wang & Banerjee, 2012) ADMM. However, most of
these variants including the classic one implicitly as-
sume full accessibilty of true data values, while in
reality one can hardly ignore the existence of noise.
A more natural way of handling this issue is to con-
sider unbiased or even biased observations of true data,
which leads us to the stochastic setting.

1.1. Stochastic Setting for ADMM

In this work, we study a family of convex optimization
problems where our objective functions are stochastic
and composite. Specifically, we are interested in the
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following equality-constrained stochastic optimization:

min
x∈X ,y∈Y

Eξθ1(x, ξ) + θ2(y) s.t. Ax+By = b, (1)

where x ∈ Rd1 ,y ∈ Rd2 , A ∈ Rm×d1 , B ∈ Rm×d2 ,b ∈
Rm, X is a convex compact set, and Y is a closed
convex set. We use the notation θ1 for both the
instance function value θ1(x, ξ) and its expectation
θ1(x) ≡ Eξθ1(x, ξ). We are able to draw a sequence
of identical and independent (i.i.d.) observations from
the random vector ξ that obeys a fixed but unknown
distribution P . When ξ is deterministic, we can re-
cover the traditional problem formulation of ADMM
(Boyd et al., 2010). In our most general setting, real-
valued functions θ1(·) and θ2(·) are convex but not
necessarily continuously differentiable. We will make
additional assumptions in Section 4, in which we sug-
gest more structural information on θ1.

1.2. Motivations

The stochasticity of the proposed setting is inspired
by the structural risk minimization principle (Vap-
nik, 2000). Under this principle, a statistical learn-
ing system’s goal is to minimize the regularized ex-
pected risk function: R(x) ≡ EξL(x, ξ) + Ω(x), where
L(x, ξ) is the loss incurred when applying prediction
rule x on a sample ξ, and Ω is a regularizer. In the
batch learning setting, one uses a set of training sam-
ples to minimize the regularized empirical risk func-
tion Remp(x) ≡ 1

N

∑N
i=1 L(x, ξi) + Ω(x). With high

probability, R and Remp are close when the number
of samples is large (Vapnik, 2000). However, to mini-
mize Remp one has to handle larger amount of samples
which becomes less efficient under time and resource
constraints. In the stochastic setting, in each iteration
x is updated based on one noisy sample drawn from
P instead of a finite training set. One obvious advan-
tage is that the update costs much less time and re-
sources than in the batch setting. Another advantage
we will show later in this paper is that, when care-
fully designed, our algorithm optimizes the expected
risk directly with good rates of convergence.

The proposed stochastic ADMM setting fits per-
fectly with the regularized expected risk minimization.
Putting it into our canonical form (1): θ1(x, ξ) =
L(x, ξ), θ2(y) = Ω(y), and the constraint becomes
x = y. Beyond this simple formulation, the objective
separation of ADMM is so flexible that one can use a
more general linear constraint Ax+By = b to model
the complex structural information encoded in the reg-
ularizer Ω(x). For example, if Ω(v1, v2) = |v1−v2|, we
could add a variable v12, a linear constraint v1 − v2 =

v12, and simply minimize Ω(v12) = |v12|, which is eas-
ier to handle under our stochastic setting for ADMM.
More examples will be given in Section 5.

1.3. Our Contributions

We propose a stochastic setting of the ADMM prob-
lem and also design the Stochastic ADMM algorithm
to solve this problem. A key algorithmic feature of
our Stochastic ADMM that distinguishes our method
from previous ADMM and its variants is the first-
order approximation of θ1 that we used to modify the
augmented Lagrangian. This simple modification is
not only necessary for the convergence analysis of our
stochastic method, but also makes our method appli-
cable to a more general class of convex objective func-
tions which might not have a closed-form solution in
minimizing the augmented θ1 directly. Moreover, the
linearization makes the updates simpler and faster, as
demonstrated by the examples in Section 5.

We establish convergence rates under various struc-
tural assumptions of θ1: O(1/

√
t) for convex func-

tions and O(log t/t) for strongly convex functions in
terms of both the objective value and the feasibility
violation. By contrast, recent research (He & Yuan,
2012a;b; Wang & Banerjee, 2012) only show the con-
vergence of ADMM indirectly in terms of the satisfac-
tion of variational inequalities. We also demonstrate
the usefulness of our algorithm with a novel applica-
tion in Graph-Guided Support Vector Machine.

1.4. Related Work

A related setting named online ADMM was proposed
in (Wang & Banerjee, 2012). In this setting, one
does not assume ξ to be i.i.d., nor the objective
to be stochastic, and the minimization of regret is
concerned: R(x[1:t]) ≡

∑t
k=1[θ1(xk, ξk) + θ2(yk)] −

infAx+By=b

∑t
k=1[θ1(x, ξk) + θ2(y)]. Besides that, it

also differs from our stochastic ADMM algorithmi-
cally: a nonlinearized θ1 is used in online ADMM,
while a linearized one is adopted in our algorithm.

In an independent work (Suzuki, 2013), the author
also linearized θ1, and proposed dual averaging and
proximal gradient methods for problem (1). The pro-
posed OPG-ADMM algorithm enjoys the same order
of convergence rates as our stochastic ADMM.

1.5. Notations

Throughout this paper, we denote a subgradient of a
function f as f ′. When f is differentiable, we will
use ∇f . We denote by θ(u) ≡ θ1(x) + θ2(y) the
sum of the stochastic and the deterministic functions.
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For simplicity and clarity, we will use the following
notations to denote stacked vectors or tuples:

u ≡
(
x
y

)
,w ≡

x
y
λ

 ,wk ≡

xk

yk

λk

 , ūk ≡
(

1
k

∑k−1
i=0 xi

1
k

∑k
i=1 yi

)
,

w̄k ≡

 1
k

∑k
i=1 xi

1
k

∑k
i=1 yi

1
k

∑k
i=1 λi

 , F (w) ≡

 −ATλ

−BTλ
Ax + By − b

 ,W ≡

 X
Y
Rm

 .

(2)

the For a positive semidefinite matrix G ∈ Rd1×d1 , we
define the G-norm of a vector as ‖x‖G := ‖G1/2x‖2 =√
xTGx. We use 〈·, ·〉 to denote the inner prod-

uct in a finite dimensional Euclidean space. When
there is no ambiguity, we often use ‖ · ‖ to denote
the Euclidean norm ‖ · ‖2. For a differentiable func-
tion ω(·), Bregman divergence is defined as D(u,v) ≡
ω(u)− ω(v)− 〈∇ω(v),u− v〉.

We assume that the optimal solution of (1) exists, and
is denoted as u∗ ≡ (xT

∗ ,y
T
∗ )

T . The following quantities
appear frequently in our convergence analysis.

δk ≡ θ′1(xk−1, ξk)− θ′1(xk−1),

DX ≡ sup
xa,xb∈X

‖xa − xb‖, Dy∗,B ≡ ‖B(y0 − y∗)‖.

(3)

1.6. Assumptions

Before presenting the algorithm and convergence re-
sults, we list the following assumptions that will be
used in our statements. These assumptions provide
bounds for the magnitude and variance of subgradi-
ents for the stochastic function.

Assumption 1. For all x ∈ X , E
[
‖θ′1(x, ξ)‖2

]
≤M2.

Assumption 2. For all x ∈ X ,

E
[
exp

{
‖θ′1(x, ξ)‖2/M2

}]
≤ exp{1}.

Assumption 3. For all x ∈ X ,

E
[
‖θ′1(x, ξ)− θ′1(x)‖2

]
≤ σ2.

2. Stochastic ADMM Algorithm

Directly solving problem (1) can be nontrivial, even
if ξ is deterministic and the equality constraint is as
simple as x − y = 0. For example, using the aug-
mented Lagrangian method, one has to minimize the
augmented Lagrangian:

min
x∈X ,y∈Y

Lβ(x,y, λ) ≡ min
x∈X ,y∈Y

[
θ1(x) + θ2(y)−

〈λ, Ax+By − b〉+ β

2
‖Ax+By − b‖2

]
,

(4)

where β is a pre-defined penalty parameter. This prob-
lem is at least not easier than solving the original one.
The (deterministic) ADMM (Alg.1) solves this prob-
lem in a one-sweep Gauss-Seidel manner: minimizing
Lβ w.r.t. x and y alternatively given the other fixed,
followed by a penalty update over the Lagrangian mul-
tiplier λ.

Algorithm 1 Deterministic ADMM

0. Initialize y0 and λ0 = 0.
for k = 0, 1, 2, . . . do

1. xk+1 ← argmin
x∈X

Lβ(x,yk,λk).

2. yk+1 ← argmin
y∈Y
Lβ(xk+1,y,λk).

3. λk+1 ← λk − β (Axk+1 +Byk+1 − b).
end for

A variant deterministic algorithm named linearized
ADMM replaces Line 1 of Alg.1 by

xk+1 ← argmin
x∈X

[
θ1(x) +

1

2
‖x− xk‖2G

+
β

2
‖(Ax+Byk − b)− λk/β‖2

]
,

where G ∈ Rd1×d1 is positive semidefinite. This vari-
ant can be regarded as a generalization of the original
ADMM. When G = 0, it is the same as Alg.1. When
G = rId1 − βATA, it is equivalent to the following
linearized proximal point method:

xk+1 ← argmin
x∈X

{
θ1(x) +

r

2
‖x− xk‖2+

β(x− xk)
T
[
AT (Axk +Byk − b− λk/β)

] }
.

Note that the linearization is only applied to the
quadratic function ‖(Ax + Byk − b) − λk/β‖2, but
not to θ1. This approximation helps in some cases
when Line 1 of Alg.1 does not produce a closed-form
solution given the quadratic term. For example, let
θ1(x) = ‖x‖1 and A not identity.

As given in Alg.2, we propose a Stochastic Alternating
Direction Method of Multipliers (Stochastic ADMM )
algorithm. Our algorithm shares some features with
the classical and the linearized ADMM. One can see
that Line 2 and 3 are essentially the same as before.
However we have a different updating rule for x as
shown in Line 1, where we define an approximated aug-
mented Lagrangian:

L̂β,k(x,y,λ) ≡ θ1(xk) + 〈θ′1(xk, ξk+1),x〉+ θ2(y)−

〈λ, Ax+By − b〉+ β

2
‖Ax+By − b‖2 + ‖x− xk‖2

2ηk+1
.

(5)
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There are two differences between Lβ (4) and L̂β,k

(5). First, we replace θ1(x) with a first-order approxi-
mation of θ1(x, ξk+1) at xk: θ1(xk) + xT θ′1(xk, ξk+1).
This approximation has the same flavour of the
stochastic mirror descent (Nemirovski et al., 2009)
used for solving a one-variable stochastic convex prob-
lem. Second, similar to the linearized ADMM, we add
an l2-norm prox-function ‖x − xk‖2 but scale it by a
time-varying stepsize ηk+1. As we will see in Section
3, the choice of this stepsize is crucial in guaranteeing
a convergence.

Algorithm 2 Stochastic ADMM

0. Initialize x0,y0 and set λ0 = 0.
for k = 0, 1, 2, . . . do

1. xk+1 ← argmin
x∈X

L̂β,k(x,yk,λk).

2. yk+1 ← argmin
y∈Y
L̂β,k(xk+1,y,λk).

3. λk+1 ← λk − β (Axk+1 +Byk+1 − b).
end for

3. Main Results of Convergence Rates

In this section, we will show that our Stochastic
ADMM given in Alg.2 exhibits a rate O(1/

√
t) of con-

vergence in terms of both the objective value and the
feasibility violation:

E
[
θ(ūt)− θ(u∗) + ρ‖Ax̄t +Bȳt − b‖2

]
= O(1/

√
t).

All proofs in this section are provided in a longer ver-
sion of this paper that is available at arXiv.org.

Before we address the main theorem on convergence
rates, we will start with the following simple lemma,
which is a very useful result by implementing Bregman
divergence as a prox-function in proximal methods.

Lemma 1. Let l(x) : X → R be a convex differentiable
function with gradient g. Let scalar s ≥ 0. For any
vector u and v, denote their Bregman divergence as
D(u,v). If ∀u ∈ X ,

x∗ ≡ argmin
x∈X

l(x) + sD(x,u), (6)

then

〈g(x∗),x∗ − x〉 ≤ s [D(x,u)−D(x,x∗)−D(x∗,u)] .

Utilizing the above lemma, we are able to obtain an
upper bound of the variation of the Lagrangian func-
tion and its first order approximation based on each
iteration points.

Lemma 2. ∀w ∈ W, k ≥ 0 we have

θ1(xk) + θ2(yk+1)− θ(u) + (wk+1 −w)TF (wk+1) ≤
ηk+1‖θ′1(xk, ξk+1)‖2

2
+
‖xk − x‖2 − ‖xk+1 − x‖2

2ηk+1
+

β

2

(
‖Ax+Byk − b‖2 − ‖Ax+Byk+1 − b‖2

)
+

〈δk+1,x− xk〉+
1

2β

(
‖λ− λk‖22 − ‖λ− λk+1‖22

)
.

(7)

In what follows, we will present our main theorem of
the convergence in two fashions, both in terms of ex-
pectation and probability satisfication.

Theorem 1. Let ηk = DX
M

√
2k

for all k ≥ 1. Define

M1(t) ≡
√
2DXM√

t
and M2(t) ≡

βD2
y∗,B

+ ρ2/β

2t
.

(8)
Then ∀ρ > 0 and t ≥ 1 we have:

(i) Under Assumption 1

E[θ(ūt)−θ(u∗)+ρ‖Ax̄t+Bȳt−b‖] ≤M1(t)+M2(t).
(9)

(ii) Under Assumption 1 and 2, ∀Ω > 0

Prob
{
θ(ūt)− θ(u∗) + ρ‖Ax̄t +Bȳt − b‖ >

(1 + Ω/2 + 2
√
2Ω)M1(t) +M2(t)

}
≤ 2 exp{−Ω}.

(10)

Remark 1. Observe that our proof techniques can also
be adapted to the deterministic case where no noise
takes place. We are able to obtain a similar result for
the classic deterministic ADMM:

θ(ūt)− θ(u∗) + ρ‖Ax̄t +Bȳt − b‖2 ≤
βD2

y∗,B

2t
+

ρ2

2βt
.

The positive ρ in the preceding results controls the
trade-off between the objective value reduction and
the feasibility satisfaction. For a fixed ρ, one can set
an optimal β = ρ/Dy∗,B such that the upper bound is
minimized.

While the resulting O(1/t) rate for the deterministic
ADMM is the same as those in the existing literature,
the above finding is an advance in the theoretical as-
pects of ADMM. Our convergence rate for general con-
vex functions is proved in terms of both the objec-
tive value and the feasibility violation. By contrast,
the existing literature (He & Yuan, 2012a;b; Wang &
Banerjee, 2012) only shows the convergence of ADMM
in terms of the satisfaction of variational inequalities,
which is not a direct measure of how fast an algorithm
reaches the optimal solution.
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4. Extensions

4.1. Strongly Convex θ1

When function θ1(·) is strongly convex, the conver-
gence rate of Stochastic ADMM can be improved to

O
(

log t
t

)
, as shown in the following result.

Theorem 2. When θ1 is µ-strongly convex with re-
spect to ‖ · ‖, taking ηk = 1

kµ in Alg.2, under Assump-
tion 1 we have ∀ρ > 0, t ≥ 1,

E [θ(ūt)− θ(u∗) + ρ‖Ax̄t +Bȳt − b‖2]

≤ M2 log t

µt
+

µD2
X

2t
+

βD2
y∗,B

2t
+

ρ2

2βt
.

(11)

4.2. Lipschitz Smooth θ1

Since the bounds given in Theorem 1 are related to
the magnitude of subgradients, they do not provide
any intuition of the performance in low-noise scenarios.
With a Lipschitz smooth function θ1, we are able to
obtain convergence rates in terms of the variations of
gradients, as stated in Assumption 3. Besides, under
this assumption we are able to replace the unusual
definition of ūk in (2) with the following:

ūk ≡

(
1
k

∑k
i=1 xi

1
k

∑k
i=1 yi

)
. (12)

Theorem 3. When θ1(·) is L-Lipschitz smooth with
respect to ‖·‖, taking ηk = 1

L+σ
√
2k/DX

in Alg.2, under

Assumption 3 we have ∀ρ > 0, t ≥ 1,

E [θ(ūt)− θ(u∗) + ρ‖Ax̄t +Bȳt − b‖2]

≤
√
2DXσ√

t
+

LD2
X

2t
+

βD2
y∗,B

2t
+

ρ2

2βt
.

(13)

5. Examples and Numerical Evaluations

5.1. Lasso

As one of the many motivating examples given in
the review of ADMM (Boyd et al., 2010), the l1-
regularized sparse least squares problem, also known
as lasso, fits the general class of (1) very naturally.
The composite functions can be written as:

θ1(x, ξ) =
1

2

(
l − xT s

)2
, θ2(y) = γ‖y‖1, (14)

where the training sample ξ contains feature-label pair
{s, l} and γ is a regularization parameter. The con-
straint simply becomes A = I, B = −I, b = 0.
Same as in the deterministic case, applying stochas-
tic ADMM to l1-regularized problem produces closed-
form updating rules. The three updates for (14) are

actually very simple:

xk+1 ←
(lk+1 − sTk+1xk)sk+1 + λk + βyk + xk/ηk+1

β + 1/ηk+1
,

yk+1 ← S γ
β
(xk+1 − λk/β) ,

λk+1 ← λk − β(xk+1 − yk+1),

(15)

where the soft-thresholding operator Sα(x) is defined
in the same way as in (Boyd et al., 2010):

Sα(x) ≡


xi − α, if xi > α

0, if |xi| ≤ α

xi + α, if xi < −α
, ∀i.

Some vector-scaling operations can be saved by by re-
placing λk with βζk in (15):

xk+1 ←
(lk+1 − sTk+1xk)sk+1 + β(ζk + yk) + xk/ηk+1

β + 1/ηk+1
,

yk+1 ← S γ
β
(xk+1 − ζk) ,

ζk+1 ← ζk − (xk+1 − yk+1).

For simple problems like lasso, it is indeed not nec-
essary to formulate it as a two-variable equality-
constrained optimization. Instead, we can directly
minimize E(l−xT s)2 + γ‖x‖1 without any constraint.
A popular class of methods for solving this composite-
objective problem is called proximal gradient (Tseng,
2008; Nemirovski & Yudin, 1983) or proximal splitting
(Combettes & Pesquet, 2011), which was investigated
in various communities (Daubechies et al., 2004; Com-
bettes & Wajs, 2005; Beck & Teboulle, 2009; Nesterov,
2007; Wright et al., 2009). Stochastic and online vari-
ants of these methods have also been developed re-
cently, mainly in the large-scale machine learning and
optimization literature (Langford et al., 2009; Lan,
2010; Lan & Ghadimi, 2011; Duchi & Singer, 2009;
Hu et al., 2009; Xiao, 2010). For comparison pur-
poses, here we take the online forward-backward split-
ting method (FOBOS) (Combettes & Pesquet, 2011;
Duchi & Singer, 2009) as a first example. The FOBOS
can be regarded as a proximal method with lineariza-
tion of θ1:

xk+1 ← argmin
x∈X
〈θ′1(xk, ξk+1),x〉+θ2(x)+

‖x− xk‖2

2ηk+1
.

(16)
Comparing this method with our Alg.2, we can see
that (16) is actually a special Stochastic ADMM that
enforces xk = yk (hence λk = ζk = 0) in every iter-
ation k. Note that this constraint feasibility is easy
to enforce only because lasso comes with an extremely
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simple constraint x = y. One of the most attractive
features of (16) is its closed form solution for lasso in
terms of soft-thresholding:

xk+1 ← Sγηk+1

[
xk + ηk+1

(
lk+1 − sTk+1xk

)
sk+1

]
.

As we will see in our next example (Sec.5.2), with com-
plex constraints, applying proximal splitting methods
might not produce closed-form updates.

The second algorithm we are going to compare with
is the online ADMM (Wang & Banerjee, 2012), which
was proposed under a related but different setting of
online learning. In this algorithm, the first-order ap-
proximation θ1(xk) + 〈θ′1(xk, ξk+1),x〉 is replaced by
the exact function θ1(x, ξk), which is a very straight-
forward “stochastization” of the deterministic ADMM.
Applying this algorithm to lasso yields the following
update for x:

xk+1 ←
[
sk+1s

T
k+1 + (β + 1/ηk+1) I

]−1
u,

while u ≡ lk+1sk+1 + β(ζk + yk) +
xk

ηk+1
, and the up-

dates for y and ζ remain the same as our stochas-
tic ADMM. Comparing the x updates of online and
stochastic ADMM, it is clear that the linearization of
our algorithm results in a much simpler inner prod-
uct calculation, while a rank-1 matrix inversion is re-
quired for the online ADMM. Even with the Sherman-
Morrison formula, this inversion process is still slower
than the stochastic ADMM.

In the following experiments, we investigate two real-
world datasets to examine the efficiency of our algo-
rithm. Table 1 shows the statistics of these datasets
and parameters we used for lasso. The first dataset,
Abalone, obtained from the UCI Machine Learning
Repository1, is used to predict the age of abalones from
physical measurements. The second dataset, E2006-tf-
idf, a part of the 10K-Corpus2, is used to predict the
volatility of stock returns, an empirical measure of the
financial risk of a company. The features are tf-idf of
unigrams extracted from the financial reports of com-
panies during the years 1996-2006 (Kogan et al., 2009).

The prediction results are shown in Fig.1 and 2. One
can observe that all algorithms converge reasonably
well, as expected from our discussions above. The
stochastic ADMM performs slightly better than the
other two in Abalone. For E2006-tf-idf, an acceptable
accuracy is achieved with a fast sweep of merely 2, 000
samples, less than 25% of the entire dataset.

1http://archive.ics.uci.edu/ml/datasets/Abalone
2http://www.ark.cs.cmu.edu/10K/
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Figure 1. Lasso for Abalone Dataset.
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Figure 2. Lasso for E2600-tf-idf Dataset.

5.2. Graph-Guided SVM

Stochastic ADMM is more powerful for problems with
complex equality constraints, for which proximal split-
ting methods such as FOBOS are no longer applicable,
since there will be no closed-form for it. An important
class of these problems is called the generalized lasso
(Tibshirani & Taylor, 2011):

minEξ

[1
2

(
l − xT s

)2 ]
+ ‖Fx‖1, (17)

where the linear transformation F ∈ Rf×d1 encodes
the structural prior of a specific problem. When
F = I, one recovers lasso. We can write (17) in our
canonical form (1) with

θ1(x, ξ) =
1

2

(
l − xT s

)2
, θ2(y) = ‖y‖1,

A = F, B = −I, b = 0.
(18)

where ξ = {s, l} is a feature-label pair.

As a concrete example of the generalized lasso, we eval-
uate our algorithm based on the graph-guided fused
lasso (GFlasso) framework (Kim et al., 2009), a graph-
ical extension of the well-known fused lasso (Tibshi-
rani et al., 2004). Denote graph G ≡ {V, E}, in which
V = {x1, . . . , xd} is a set of the d variables of x and E is

http://archive.ics.uci.edu/ml/datasets/Abalone
http://www.ark.cs.cmu.edu/10K/
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Table 1. Two real-world datasets and parameters for lasso.

Name
# of Training # of Testing # of

γ β DX
M

√
2Samples Samples Dim. (d)

Abalone 3,342 835 8 0.01 1 1
E2006-tf-idf 16,087 3,308 150,360 0.1 1 1

the set of edges among V. Each edge {i, j} is assigned
with a weight wij . The optimization of GFlasso can
thus be formulated as:

minEξ

[1
2

(
l − xT s

)2 ]
+ γ‖x‖1 + ν

∑
{i,j}∈E

wij |xi − xj |.

(19)
The only difference between GFlasso and lasso is the
last term, referred as the fusion penalty (Tibshirani
et al., 2004), which penalizes the differences among
variables connected in G. A carefully designed fusion
penalty helps in further reducing the risk of overfit-
ting of our model over the training data. To imple-
ment Alg.2 to this problem, we only need to formu-
late the linear transformation F , which is very simple
for GFlasso: Fij = wij and Fji = −wij for any edge
{i, j} ∈ E .

According to our convergence analysis, the loss θ1 and
regularizator θ2 are allowed to be any convex func-
tions. To meet the goal of classification, we replace
the least squares loss in (19) by a nonsmooth hinge
loss L(x, ξ) ≡ max{0, 1− lsTx} and the l1-norm by an
Euclidean norm to enforce the maximum margin. The
resulting combination is also known as support vector
machine (SVM). With the additional graph-guided fu-
sion penalty, we name our formulation Graph-Guided
SVM (GGSVM):

minEξL(x, ξ) +
γ

2
‖x‖22 + ν‖y‖1

s.t. Fx− y = 0.
(20)

Before presenting the penalty term, we first give an
algorithmic solution of (20). Applying our stochastic
ADMM to GGSVM, we obtain the following updates:

xk+1 ← argminxTL′(xk, ξk+1) + γxTxk+

β

2
‖Fx− yk − λk/β‖22 +

‖x− xk‖22
2ηk+1

,

yk+1 ← argmin ν‖y‖1 +
β

2
‖Fxk+1 − y − λk/β‖22,

λk+1 ← λk − β(Fxk+1 − yk+1).

(21)

Without the graph-guided regularization, the stochas-
tic ADMM becomes exactly the same as the clas-

sic stochastic gradient descent (SGD): xk+1 ←
argminxTL′(xk, ξk+1) + γxTxk +

‖x−xk‖2
2

2ηk+1
.

The first two updates of (21) have close-forms:

xk+1 ←
(

I

ηk+1
+ βFTF

)−1 [
FT (βyk + λk)

+ (1/ηk+1 − γ)xk − L′(xk, ξk+1)
]
,

yk+1 ← S ν
β

(
Fxk+1 −

λk

β

)
.

(22)

Note that this simple x-update is exactly the benefit
that stochastic ADMM brings. In contrast, neither the
classic ADMM nor its variants have closed-forms due
to the nonseparable form of the hinge loss.

In each x-update of (22), due to the time-varying ηk+1,
one has to solve a symmetric linear system with a dif-
ferent system matrix. This can be carried out using
standard methods, e.g. conjugate gradient, where the
sparsity of FTF can help in reducing the time com-
plexity. However, for large-scale problems we can re-
move this computational burden completely by replac-
ing ηk+1 with a fixed ηt, if we want to run t itera-
tions. This indeed leads to a convergent algorithm,
although the proof is not shown in Section 3 due to
limited space. By this means we only need to solve
the linear system once, and save the result for succes-
sive iterations.

The data is the publicly available 20newsgroups
dataset3, which contains binary occurrences of 100
popular words counted from 16, 242 newsgroup post-
ings. On the top level of these postings are 4 main cat-
egories: computer, recreation, science and talks. We
are interested in a multi-class classification task: to
predict the category that a posting belongs to. We
split the original data into a training set and a testing
set. In each posting category, 80% postings are used
for training and the rest 20% for testing. We use the
one-vs-rest scheme for the multi-class classification.

The graphical structures we want to explore are the
dependencies among these 100 words. Specifically, if
two words i and j are strongly dependent, the differ-
ence between xi and xj in the linear predictor x ∈ R100

should be penalized. In order to obtain F , we use the

3http://www.cs.nyu.edu/~roweis/data.html

http://www.cs.nyu.edu/~roweis/data.html
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sparse inverse covariance selection (Banerjee et al.,
2008) (also known as graphical lasso (Friedman & Tib-
shirani, 2007; Boyd et al., 2010)) and determine the
sparsity pattern of the inverse covariance matrix Σ−1.
By properly thresholding the components of Σ−1 to 0
and 1, we obtain the affinity matrix of G and plot the
relations of these 100 words accordingly in Fig. 3. For
simplicity, we take all the weights in F to be 1 and −1
whenever there is an edge.
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Figure 3. Graph of relations among 100 popular words in
20newsgroups dataset.

We compare the prediction accuracies with and with-
out graphical regularization. Fig. 4 shows the ex-
perimental results. The x-axis stands for the number
of epochs for stochastic algorithms. For this dataset,
each epoch means 12, 994 iterations. We calculate the
mean and the standard deviation of all the accuracies
based on 10 runs of experiments under the same set-
ting. This figure clearly indicates that GGSVM out-
performs the classical SVM consistently in every set-
ting. After a single epoch, which corresponds to 1
iteration for the deterministic ADMM, the prediction
accuracy is already very close to the best. This is
a further evidence for the efficiency of our stochastic
ADMM.

6. Summary and Future Work

In this paper, we have proposed the stochastic set-
ting for ADMM along with our stochastic linearized
ADMM algorithm. As a benefit of the first-order ap-
proximation on the stochastic function, our algorithm
is applicable to a very broad class of problems even
with functions that have no closed-form solution to the
subproblem of minimizing the augmented θ1. We have
also established convergence rates under various struc-
tural assumptions of θ1: O(1/

√
t) for convex functions

and O(log t/t) for strongly convex functions. We are
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Figure 4. Accuracies for multi-class classification.

working on integrating Nesterov’s optimal first-order
methods (Nesterov, 2004) to our algorithm, which will
help in achieving optimal convergence rates. More in-
teresting and challenging applications will be carried
out in our future work.
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