
VNU Journal of Science: Comp. Science & Com. Eng. Vol. 31, No. 1 (2018) 22–30

Function-based Semantic-ware Cache Replacement Algorithm
for Web Systems

Xuan Tung Hoang1

Department of Networking and Computer Communications
Faculty of Information Technology

VNU University of Engineering and Technology
E3 Building, 144 Xuan Thuy Street, Cau Giay, Hanoi, Vietnam

Email: 1tunghx@vnu.edu.vn

Abstract

As the web expands overwhelmingly in our daily lives, the pressure to improve the performance of web servers
increases. A significant optimization technique that enables scalable web servers to serve clients more efficiently
and with lower resource demands consists in caching requested web objects on intermediate cache servers. At
the core of the cache server operation is the replacement algorithm, which is responsible for selecting, according
to a cache replacement policy, the cached pages that should be removed in order to make space for new pages.
Traditional replacement policies used in practice take advantage of temporal reference locality by removing the
least recently/frequently requested pages from the cache. Lately, due to the properties of semantic content in of
web page, there are some new attempts to implement cache replacement based on multiple parameters including
semantic content. This report presents a semantic-aware caching policy enhanced with the use of function-based
cache value. Our algorithm is believed to outperform traditional methods in terms of hit rate, which can be useful
for website with many small and equal-size web objects.

Keywords: web cache, replacement algorithm, semantic-aware, semantic distance, web performance

1. Introduction

In recent years, web-based systems have
become an essential tool for interaction among
people and for providing a wide range of Internet-
based services, including shopping, banking,
entertainment, etc. As a consequence, the volume
of transported Internet traffic has been increasing
at a fast rate. Such rapid growth has made the
network prone to congestion and has increased
the load on servers, resulting in an increase
in the access times of web documents. Web
caching provides an efficient solution to the
latency problem by bringing documents closer
to clients. Caching can be deployed at various
points in the Internet: within the client browser,
at or near the server (reverse proxy) to reduce the
server load, or at a proxy server. A proxy server

is a computer that is often placed near a gateway
to the Internet (Fig. 1) and that provides a shared
cache to a set of clients. Client requests arrive
at the proxy regardless of the Web servers that
host the required documents. The proxy either
serves these requests using previously cached
responses or obtains the required documents from
the original Web servers on behalf of the clients.
It optionally stores the responses in its cache for
future use. Hence, the goals of proxy caching are
twofold: first, proxy caching reduces the access
latency for a document; second, it reduces the
amount of external traffic that is transported over
the wide-area network (primarily from servers to
clients), which also reduces the users perceived
latency. A proxy cache may have limited
storage in which it stores popular documents that



Xuan Tung Hoang et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 31, No. 1 (2018) 22–30 23

users tend to request more frequently than other
documents.

Caching policies for traditional memory
systems do not necessarily perform well when
applied to Web traffic for the following reasons:

• In memory systems, caches deal mostly with
fixed-size pages, so the size of the page
does not play any role in the replacement
policy. In contrast, web documents are of
variable size, and document size can affect
the performance of the policy.

• The cost of retrieving missed web
documents from their original servers
depends on several factors, including the
distance between the proxy and the original
servers, the size of the document, and
the bandwidth between the proxy and the
original servers. Such dependence does not
exist in traditional memory systems.

• Web documents are frequently updated,
which means that it is very important to
consider the document expiration date at
replacement instances. In memory systems,
pages are not generally associated with
expiration dates.

• The popularity of web documents generally
follows a Zipf-like law (i.e., the relative
access frequency for a document is inversely
proportional to the rank of that document)
[6]. This essentially says that popular
WWW documents are very popular and
a few popular documents account for
a high percentage of the overall traffic.
Accordingly, document popularity needs to
be considered in any Web caching policy
to optimize a desired performance metric.
A Zipf-like law has not been noticed in
memory systems.

The design of efficient cache replacement
algorithms is crucial for caching mechanisms
achievement [1]. Thus, cache replacement
algorithms are also called web caching
algorithms [2]. Due to the limitation of
cache space, an intelligent mechanism is required

to manage the Web cache content efficiently.
The traditional caching policies are not efficient
in the Web caching since they consider just
one factor and ignore other factors that have
impact on the efficiency of the Web caching
[2, 3, 4]. In these caching policies, most popular
objects get the most requests, while a large
portion of objects, which are stored in the
cache, are never requested again. This is called
cache pollution problem. Therefore, many Web
cache replacement policies have been proposed
attempting to get good performance. However,
combination of the factors that can influence
the replacement process to get wise replacement
decision is not an easy task because one factor
in a particular situation or environment is more
important than other environments [4]. Hence,
the difficulty in determining which ideal web
objects will re-accessed is still a big challenge
faced by the existing Web caching techniques. In
other words, what Web objects should be cached
and what Web objects should be replaced to make
the best use of available cache space, improve hit
rates, reduce network traffic, and alleviate loads
on the original server [5].

This research contributes to the studies of
cache replacement algorithm, especially for web
caching. We propose an approach combining
traditional function-based cache value with
semantic technique. Our approach is believed
to overcome the pollution problem of traditional
caching policy, and mainly focuses on optimizing
cache hit rate. Higher hit rate is suitable for
caching system of website such as: news and
online music platform, since the object data in
these websites are quite small and the size of them
are relatively equal.

The rest of the report is structured as follows.
In section 2, we provide some related works
on caching policy and web caching, especially
semantic-aware algorithms. In section III,
we proposed our algorithm. We present the
performance evaluation in section 4. Finally, we
conclude the report in section 5.



24 Xuan Tung Hoang et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 31, No. 1 (2018) 22–30

Table 1. Commonly used parameters (keys) in cache
replacement policies

Factor Parameter Rationale

Recency Last access
time

Web traffic exhibits
strong temporal
locality.

Frequency Number of
previous
accesses

Frequently accessed
documents are likely to
be accessed in the near
future

Cost Average
fetching
(download)
delay

Caching documents
with high fetching
(download) delay can
reduce the average
access latency.

Size Object size Caching small
documents can
increase the hit ratio.

2. Related Work

Due to the importance of the replacement
algorithm for web caching system, a huge
amount of work in the area can be found in
literature. According to [6], these algorithms
can be grouped in two categories: key-based
algorithms, function-based algorithm. Since
our proposed algorithm is semantic-based, we
carefully present some other researches which
used semantic techniques.

2.1. Key-based Algorithms
Most popular group of deterministic

replacement policies are key-based. In these
policies, one or more keys are used in the
decision-making in a prioritized fashion. A
primary key (or parameter) is used to decide
which document to evict from the cache in
case of cache saturation. Table 1 shows some
regularly used deterministic key in caching
policy. Additional keys are used to break ties that
may arise during the selection process.

Classical replacement policies, such as the
LRU and the least frequently used (LFU) policies,

fall under this category. LRU evicts the least
recently accessed document first, on the basis
that the traffic exhibits temporal locality. In
other words, the further in time a document has
last been requested, the less likely it will be
requested in the near future. LFU evicts the
least frequently accessed document first, on the
basis that a popular document tends to have a
long-term popularity profile. Other key-based
policies (e.g., SIZE [6] and LOG2-SIZE [7])
consider document size as the primary key (large
documents are evicted first), assuming that users
are less likely to re-access large documents
because of the high access delay associated with
such documents. SIZE considers the document
size as the only key, while LOG2-SIZE breaks
ties according to blog2(DocumentS ize)c, using
the last access time as a secondary key. Note that
LOG2-SIZE is less sensitive than SIZE to small
variations in document size (e.g. blog21024c =

blog22040c = 10). The LRU- threshold and
the LRU-MIN [7] policies are variations of the
LRU policy. LRU-threshold works the same
way as LRU except that documents that are
larger than a given threshold are never cached.
This policy tries to prevent the replacement of
several small documents with a large document
by enforcing a maximum size on all cached
documents. Moreover, it implicitly assumes that a
user tends not to re-access documents greater than
a certain size. This is particularly true for users
with low-bandwidth connections. LRU-MIN
gives preference to small-size documents to stay
in the cache. This policy tries to minimize the
number of replaced documents, but in a way that
is less discriminating against large documents.
In other words, large documents can stay in the
cache when replacement is required as long as
they are smaller than the incoming one. If an
incoming document with size S does not fit in
the cache, the policy considers documents whose
sizes are no less than S for eviction using the
LRU policy. If there is no document with such
size, the process is repeated for documents whose
sizes are at least S

2 , then documents whose sizes
are at least S

4 , and so on. Effectively, LRU-
MIN uses blog2(DocumentS ize)c as its primary



Xuan Tung Hoang et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 31, No. 1 (2018) 22–30 25

key and the time since last access as the secondary
key, in the sense that the cache is partitioned into
several size ranges and document removal starts
from the group with the largest size range. The
difference between LOG2-SIZE and LRU-MIN
is that cache partitioning in LRU-MIN depends
on the incoming document size and LOG2-SIZE
tends to discard larger documents more often than
LRUMIN. Hyper-G [6] is an extension of the
LFU policy, where ties are broken according to
the last access time. Note that under the LFU
policy, ties are very likely to happen.

The Least Frequent Recently Used (LFRU) [8]
cache replacement scheme combines the benefits
of LFU and LRU schemes. In LFRU, the cache
is divided into two partitions called privileged
and unprivileged partitions. The privileged
partition can be defined as a protected partition.
If content is highly popular it is pushed into
privileged partition. If it is require replacing
content from privileged partition, the replacement
is done as follows: LFRU evicts content
from unprivileged partition, push content from
privileged partition to unprivileged partition, and
finally insert new content in privileged partition.
In the above procedure, the LRU is used for
the privileged partitions and approximated LFU
(ALFU) scheme is used for the unprivileged
partition; hence together is called LFRU. The
basic idea is to filter out the locally popular
contents with ALFU scheme and push the popular
contents to one of the privileged partition.

2.2. Function-based Algorithms

Function-based policies are another type of
deterministic policy. These policies are also key-
based, but with multiple keys used together in
a balanced way, that is, there is no sequential
ordering of these keys. Instead, the keys
can have different weights in the cost function.
All function-based policies aim at retaining the
most valuable documents in the caches, but
may differ in the way they define the cost
function. Weights given to different keys
are based on their relative importance and the
optimized performance metric. Since the relative
importance of these keys can vary from one web

stream of requests to another or even within the
same stream, some policies adjust the weights
dynamically to achieve the best performance. The
GreedyDual algorithms [9] constitute a broad
class of algorithms that include a generalization
of LRU (GreedyDual-LRU). GreedyDual-LRU is
concerned with the case in which different costs
are associated with fetching documents from
their servers. Several function-based policies
are designed based on GreedyDual-LRU. They
include the Greedy Dual Size (GDS) [10], the
Popularity-Aware Greedy DualSize (PGDS) [11],
and the Greedy Dual* (GD*) [12] policies.

Other function-based policies are based on
classical algorithms (e.g., LRU). These policies
include the Size-adjusted LRU (SLRU) policy
[13]. The basic idea of Size-adjusted LRU
(SLRU) is to orders the object by ratio of cost to
size and choose objects with the best cost-to-size
ratio. Least Relative Value (LRV) [14] assigns a
value V(p) for each document p. Initially, V(p) is
set to Cp×Pr(p)

G(p) , where Pr(p) is the probability that
document p will be accessed again in the future
starting from the current replacement time and
G(p) is a quantity that reflects the gain obtained
from evicting document p from the cache (G(p)
is related to the size S (p)). As a result of this
choice, the value of any document is weighted
by its access probability, meaning that a valuable
document (from the cache point of view) that is
unlikely to be re-accessed is actually not valuable.

2.3. Semantic-aware Algorithms

SEMALRU [15] algorithm introduces a
cache replacement policy based on document
semantics, i.e. based on the content of the
document. It is referred to as Semantic and Least
Recently Used (SEMALRU). This algorithm
assumes that for a period of time, the user seeks
objects that are related to a given subject, and
hence have close semantics. This is accomplished
by evicting objects that are least related to a new
entry with respect to semantics. Hence at any
point of time, the objects in cache have some
relation semantically. SEMALRU favors the
permanence of objects in the cache which are
closely related and discard documents which



26 Xuan Tung Hoang et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 31, No. 1 (2018) 22–30

might be of less interest to the user. The
capacity of a cache is limited by its size. Hence
when no more free space is available and an
incoming document needs to be accommodated,
a parameter known as semantic distance is
computed to every object in the cache. The
document with the highest semantic distance
is marked for eviction from cache. When this
happens iteratively, the cache tends to hold
objects of a kind which may be of interest to
the client. It is claimed that this algorithm
outperforms LRU and semantically related. It
is of common observation that when he/she
searches for a particular topic of interest, the
user visits pages of the same nature. In technical
terms, the sameness of nature is referred to as a
semantic relation.

here are several problems when we examine
SEMALRU. First, the authors did not explicitly
clarify the semantic distance of two page. Since
the most common distance is the content of
the web page, it may lead to another problem.
Computing the semantic distance for every object
in the cache is significantly expensive and not
scalable.

Fig. 1. Distance between objects

Lately in [1], Negrao et al proposed and
semantic-aware cache replacement algorithm,
called SACS, with the idea of adding a
spatial dimension to the cache replacement
process. Their solution is motivated by the
observation that users typically browse the Web
by successively following the links on the web
pages they visit. SACS measures the distance

between objects in terms of the number of links
necessary to navigate from one object to another.
Then, when replacement takes place, objects that
are far from the most recently accessed pages are
candidates for removal; the closer an object is to
a recently accessed page, the less likely it is to be
evicted.

Figure 1 shows a simple example of a
web site and the corresponding distances
between its pages. In this example, we have
d(“menu.html′′, “index.html′′) = 1, while
d(“about.html′′, “index.html′′) = 2.

At any moment, SACS keeps a list of recently
accessed pages as pivots. The distance assigned
to a page x j is distance to the closest pivot p in
the pivot set P. That is d(x j) = minpi∈P d(x j, p1).
And smaller d(x j) mean less probable page x j is
evicted.

Although, SACS provides good caching
performance to Web systems, it has several
drawbacks. Firstly, at the begining when no
pages are in cache, pivot-base cache eviction
does not function properly. Also the caching
eviction performance is biased by what pages are
populated in the cache first. Secondly, choosing
pivots only by their recency may not be sufficient.
It could be better if pivots are selected according
to both their freshness and access frequencies.
Finally, choosing all pivots that are accessed
within the last α seconds could lead to high
number of pivots for busy sites. A large number
of pivots could degrade calculation of distances.

3. The Proposed Scheme

Our proposed algorithm, called FSA, is
based on SACS with enhancements added.
Our improvements are pivots selection, and
tie-breaking mechanism that are discussed as
follows.

3.1. Pivots selection

Similar to SACS, a set of special pages
are chosen as pivots for distance measurement.
However, instead of selecting pivots as recently
accessed pages, we select pivots as follows:
• Initial Pivot: At the begining, when there



Xuan Tung Hoang et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 31, No. 1 (2018) 22–30 27

are no pages in the cache memory, a set of
important pages are proactively chosen as pivots
and put into the cache. Special pages of a
site such as homepage, about page, category
pages, etc. can be selected for such pages.
By selecting initial pivots, cold-start sittuation
happend in SACS is avoided. Also, initial pivots
help cache administrators in better fine-tunning
access pattern of user to the site by priotizing
some special pages that they want to promote.
• Pivot Value: After the cache memory is
populated with pages and objects, unlike SACS
does, FSA does not select all pages that are
accessed within the last α seconds for pivoting.
Insteads, only a subset of those pages are picked
according to a quantity called Pivot Value (PV),
which is calculated as

PVi = Ni × Fi

Here, Ni is the number of links that can be
accessed directly via the page i, and Fi is access
frequency of that page. The higher PVi value
means the higher probability page i is chosen as
a pivot. By building pivots from PV values, our
pivot selection algorithm is superior to SACS in
the following aspects. Firstly, it considers not
only the recency or freshness of cached items
but also access frequencies and content of cached
items. Intuitively, a page that have many links
to other pages and have hight access frequency
should be more prefered to be in cache and thus is
a good candidate for picking as a pivot. Secondly,
our mechanism of choosing pivot pages can keep
the size of pivot pages small without degrading its
quality since only a limited number of top pages
are remained in cache.

3.2. Tie-breaking
In eviction phase, where pages are chosen to

be removed from cache, tie can happend when
eviction candidates have equal distances to pivots.
Such cases happend frequently and require an
additional cache value assign to each page to
break tie. We proposed Cache Value CV that are
calculated for candidate victims as a tie-breaking
criteria:

CVi =
Fi

C + S i

where, Fi is access frequency of victim i, S i is
size of i, and C is a contant that regulates the
importance between access frequency and cache
item size. Between two victims with the same
distance to pivots, one that have higher CV value
wins and remains in the cache. The other is
evicted from cache to provide space for new
cacing items. By calculating CV as above, pages
or other web objects that are frequently accessed
and have small sizes are prefered to be in cache.
The large value of C makes object size S i less
important than access frequency Fi

4. Performance Evaluation

Our performance evaluation is performed using
the access log of the FIFA World Cup 1998 web
site [16]. The logs contain information about
approximately 1.35 billion user requests made
over a period of around 3 months, starting one
month before the beginning of the world cup
and finishing a few weeks after the end of this
event. Each log entry contains information about
a single user request, including the identification
of the user that made the request (abstracted as
a unique numeric identifier for privacy reasons),
the id of the requested object (also a unique
identifier), the timestamp of the request, the
number of bytes of the requested object and
the HTTP code of the response sent to user.
The reason why we choose FIFA World Cup
it provides us all the information required to
evaluate our algorithm. In addition, other log
traces online are too old that we can retrieve the
content of page or no longer available. Although
the dataset does not include an actual content of
the web site, the logs come with a file that maps
the unique identifiers of the web objects to their
respective URLs. Since our solution requires that
we have access to the link information (which is
only available within the web pages), we used the
Internet Archive [15] to download the web site.

Our cache simulator is fully implemented
using JAVA and Netbean IDE. Although it
does not handle actual users HTTP request, its
functionality is to measure hit ratio and byte ratio
of the cache policy used. Hit rate measures the



28 Xuan Tung Hoang et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 31, No. 1 (2018) 22–30

Fig. 2. Hit ratios on 1998-May-1

Fig. 3. Hit ratios on 1998-July-26

percentage of requests that are serviced from the
cache (i.e., requests for pages that are cached).
Byte hit rate measures the amount of data (in
bytes) served from the cache as a percentage
of the total number of bytes requested. These
metrics are among the most commonly used to
evaluate caching, and allow us to analyze the
ability of our caching system in caching the pages
that are most likely to be requested in the near
future.

More specifically, we build a server simulator
that serves the HTTP requests in the access log
data. Instead of returning response with payload
data, the simulator returns nothing but a Boolean
variable which indicate if the object is available
in the cache. By that, the simulator is aware of
the miss/hit status of each request, hence measure

Table 2. Configuration parameters for algorithms and
simulations

Parameter Value

Total data size ∼ 100MB

Cache size from 2% to 12%
of total data size

Number of web objects ∼ 6500

Period for pivot selection
(α)

2s

Pivot size limit 5

Constant C in cache value
calculation

100

our metrics: hit ratio and byte ratio. On top of the
simulator, we implement four different policies
includes: LRU, LFU, SA (or SACS) and our
policy FSA. We intend to compare our algorithm
with traditional LRU and LFU, which are good
overall algorithm commonly used in practice. We
also compare with the original SA algorithm to
see if our improvement enhances the proficiency
of the cache in our scenarios. The configuration
parameters for our simulations are given in table
2. We run the simulation of two different
days: 1998-May-1 and 1998-July-26 which are
respectively the very first day and last day of the
league. Log file for each day contains around 1
million requests made to the website. For each
caching algorithm we implemented, we recorded
hit ratios and byte hit ratios and represented
in the same plot for comparison purposes. In
our simulations, hit ratio and byte hit ratios are
defined as the fraction between the number of
objects/bytes served from cache and the total
number of objects/bytes requested

As we can see from plots in figures 2, 3,
4, and 5, FSA outperforms LRU, LFU and
SA in term of hit ratio in both scenarios. It
shows the efficiency of our proposed mechanisms
to previous mechanisms. However, when we
consider byte hit ratios, it seems FSA does not
bring differences in performance in comparisons



Xuan Tung Hoang et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 31, No. 1 (2018) 22–30 29

Fig. 4. Byte hit ratios on 1998-May-1

Fig. 5. Byte hit ratios on 1998-July-26

to other algorithms. It is because FSA takes
object size into account and favors small objects
over large objects. As a result, there are more
cache hits with small objects than large objects.
This leads to very little improvement in terms of
byte hit ratios.

5. Conclusion

In this paper, we have proposed an algorithm
that combines a function-based and semantic-
aware approaches in caching algorithm for Web
systems. Our algorithm, called FSA, adopts
the idea of web object distance from SACS and
combine them with several parameters including
recency, access frequency and object size in
cache replacement cost function. FSA also
provides some parameters that can be set by cache

administrators in order to tune the cache system
in different use cases. In our evaluation scenarios,
FSA has the best performance in terms of hit ratio
compared to existing algorithms. It also shows
relative good result in terms of byte hit ratio.

References

[1] A. P. Negrão, C. Roque, P. Ferreira, L. Veiga,
An adaptive semantics-aware replacement algorithm
for web caching, Journal of Internet Services and
Applications 6 (1) (2015) 4.

[2] T. Koskela, J. Heikkonen, K. Kaski, Web cache
optimization with nonlinear model using object
features, Computer Networks 43 (6) (2003) 805–817.

[3] J. Cobb, H. ElAarag, Web proxy cache replacement
scheme based on back-propagation neural network,
Journal of Systems and Software 81 (9) (2008) 1539–
1558.

[4] R. Ayani, Y. M. Teo, Y. S. Ng, Cache pollution in web
proxy servers, in: Parallel and Distributed Processing
Symposium, 2003. Proceedings. International, IEEE,
2003, pp. 7–pp.

[5] W. Ali, S. M. Shamsuddin, A. S. Ismail, A survey
of web caching and prefetching, Int. J. Advance. Soft
Comput. Appl 3 (1) (2011) 18–44.

[6] A. Balamash, M. Krunz, An overview of web caching
replacement algorithms, IEEE Communications
Surveys & Tutorials 6 (2).

[7] M. Abrams, C. R. Standridge, G. Abdulla, E. A.
Fox, S. Williams, Removal policies in network caches
for world-wide web documents, SIGCOMM Comput.
Commun. Rev. 26 (4) (1996) 293–305.

[8] M. Bilal, S.-G. Kang, A cache management scheme
for efficient content eviction and replication in cache
networks, IEEE Access 5 (2017) 1692–1701.

[9] N. Young, Thek-server dual and loose competitiveness
for paging, Algorithmica 11 (6) (1994) 525–541.

[10] P. Cao, S. Irani, Cost-aware www proxy caching
algorithms., in: Usenix symposium on internet
technologies and systems, Vol. 12, 1997, pp. 193–206.

[11] S. Jin, A. Bestavros, Popularity-aware greedy
dual-size web proxy caching algorithms, in:
Distributed computing systems, 2000. Proceedings.
20th international conference on, IEEE, 2000, pp.
254–261.

[12] S. Jin, A. Bestavros, Greedydual* web caching
algorithm: Exploiting the two sources of temporal
locality in web request streams, Comput. Commun.
24 (2) (2001) 174–183.

[13] C. Aggarwal, J. L. Wolf, P. S. Yu, Caching on the
world wide web, IEEE Transactions on Knowledge
and data Engineering 11 (1) (1999) 94–107.

[14] L. Rizzo, L. Vicisano, Replacement policies for a
proxy cache, IEEE/ACM Transactions on networking
8 (2) (2000) 158–170.



30 Xuan Tung Hoang et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 31, No. 1 (2018) 22–30

[15] K. Geetha, N. A. Gounden, S. Monikandan,
Semalru: An implementation of modified web cache
replacement algorithm, in: Nature & Biologically
Inspired Computing, 2009. NaBIC 2009. World

Congress on, IEEE, 2009, pp. 1406–1410.
[16] Worldcup 98.

URL http://ita.ee.lbl.gov/html/contrib/WorldCup.html


