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Abstract. Experimental performance on the task of relation extrac-
tion/classification has generally improved using deep neural network ar-
chitectures. In which, data representation has been proven to be one of
the most influential factors to the model’s performance but still has many
limitations. In this work, we take advantage of compressed information in
the shortest dependency path (SDP) between two corresponding entities
to classify the relation between them. We propose (i) a compositional
embedding that combines several dominant linguistic as well as architec-
tural features and (ii) dependency tree normalization techniques for gen-
erating rich representations for both words and dependency relations in
the SDP. We also present a Convolutional Neural Network (CNN) model
to process the proposed SDP enriched representation. Experimental re-
sults for both general and biomedical data demonstrate the effectiveness
of compositional embedding, dependency tree normalization technique
as well as the suitability of the CNN model.

Keywords: Relation extraction - Dependency unit - Shortest depen-
dency path - Convolutional neural network.

1 Introduction

Relation extraction (RE) is an important task of natural language processing
(NLP). It plays an essential role in knowledge extraction tasks from information
extraction [I7], question answering [I3], medical and biomedical informatics [4]
to improving the access to scientific literature [5], etc. The relation extraction
task can be defined as the task of identifying the semantic relations between two
entities e; and ey in a given sentence S to a pre-defined relation type [5].

Many deep neural network (DNN) architectures are introduced to learn a
robust feature set from unstructured data [I5], which have been proved effec-
tive, but, often suffer from irrelevant information, especially when the distance
between two entities is too long. Previous researches have illustrated the effective-
ness of the shortest dependency path between entities for relation extraction [4].
We, therefore, propose a model that using convolution neural network (CNN) [9]
to learn more robust relation representation through the SDP.



The on-trending researches demonstrated that machine learn a language bet-
ter by using a deep understanding of words. The better representation of data
may help machine learning models understanding data better. Word representa-
tion has been studied for a long time, several approaches to embed a word into
an informative vector has been proposed [I1I], especially with the development
of deep learning. Up to now, enriching word representation is still attracting
the interest of the research community; in most cases, sophisticated design is
required [7]. Meanwhile, the problem of representing the dependency between
words is still an open problem. In our knowledge, most previous researches often
used a simple way to represent them, or even ignore them in the SDP [18].

Considering these problems as motivation to improve, in this paper, we
present a compositional embedding that takes advantage of several dominant
linguistic and architectural features. These compositional embedding then are
processed within a dependency unit manner to represent the SDPs.

The main contributions of our work can be concluded as:

1. We introduce a enriched representation of SDP that utilizes a major part of
linguistic and architectural features by using compositional embedding.

2. We investigate the effectiveness of dependency tree normalizing before gen-
erating the SDP.

3. We propose a deep neural architecture which processes the above enriched
SDP effectively; we also further investigate the contributions of model com-
ponents and features to the final performance that provide a useful insight
into some aspects of our approach for future research.

2 Related Work

Relation extraction has been widely studied in the NLP community for many
years. There has been a variety of computational models applied to this problem,
and supervised methods have shown to be the most effective approach. Generally,
these methods can be divided into two categories: feature engineering-based
methods and deep learning-based methods.

With feature-based methods, researchers concentrate on extracting a rich
feature set. The typical studies are of Le et al. [§] and Rink et al. [I4], in which
variety of handcrafted features that capture the, semantic and syntactic infor-
mation are fed to an SVM classifier to extract the relations of the nominals.
However, these methods suffer from the problem of selecting a suitable feature
set for each particular data that requires tremendous human labor.

In the last decade, deep learning methods have made significant improvement
and produced the state-of-the-art result in relation extraction. These methods
usually utilize the word embeddings with various DNN architectures to learn
the features without prior knowledge. Socher et al. [I5] proposed a Recursive
Neural Network (mvRNN) on tree structure to determine the relations between
nominals. Study of Zhou et al. [21] presents an ensemble model using DNN with
syntactic and semantic information. Some other studies use all words in sentence
with position feature [20] to extract the relations within it.



In recent years, many studies attempt other possibilities by using dependency
tree-based methods. Panyam et al. [I2] exploit graph kernels using constituency
parse tree and dependency parse tree of a sentence. The SDP also receives more
and more attention on relation extraction researches. CNN models (Xu et al. [18])
are among the earliest approaches applied on SDP. Xu et al. [19] rebuilt an Re-
current Neural Network (RNN) with Long Short-Term Memory (LSTM) unit
on the dependency path between two marked entities to utilize sequential infor-
mation of sentences. Various of improvements have been suggested to boost the
performance of RE models, such as negative sampling [I8], exploring subtrees go
along with SDP’s node [10], voting schema and combining several deep neural
networks [7].

3 Enriched Shortest Dependency Path

3.1 Dependency Tree and Shortest Dependency Path

The dependency tree of a sentence is a tree-structural representation, in
which each token is represented as a node and each token-token dependency is
represented as a directed edge. The original dependency tree provides the full
grammatical information of a sentence, but some of this information may be not
useful for the relation extraction problem, even bring noises.

The Shortest Dependency Path (SDP) is the shortest sequence go from
a starting token to the ending token in the dependency tree. Because the SDP
represents the concise information between two entities [3], we suppose that the
SDP contain necessary information to shows their relationship.

3.2 Dependency Tree Normalization

In this work, we applied two techniques to normalize the dependency tree, in
order to reduce noise as well as enrich information in the SDP extracted from
the dependency tree (see Figure 1| for example).

Preposition normalization: We collapse the “pobj” dependency (object
of preposition) with the predecessor dependency (e.g., “prep”, “acl”, etc) into a
single dependency, and cut the preposition off from the SDP.

Conjunction normalization: Base on the assumption that two tokens that
linked by a conjunction dependency “conj” should have the same semantical and
grammatical roles; we then add a skip-edges to ensure that these conjuncted
tokens have same dependencies with other tokens.

3.3 The Dependency Unit on the SDP

According to the study of [7], a pair of a token and its ancestor has the difference
in meaning when they are linked by a different dependency relation. We make
use of this structure and represent the SDP as a sequence of substructures like
“ta et ty”, in which t, and t; are token and its ancestor respectively; r4p is the
dependency relation between them. This substructure refers to the Dependency

Unit (DU) as described in Figure
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Fig. 2: Dependency units on the SDP.

4 Proposed Model

We design our cduCNN model to learn the features on the sequence of DUs
that consist of both token and dependency information. Figure [3] depicts the
overall architecture of our proposed model. The model mainly consists of three
components: compositional embeddings layer, convolution phase, and a softmax
classifier.

Given the dependency tree of a sentence as input, we extract the shortest
path between two entities from the tree, pass it through an embedding generation
layer for token embeddings and dependency embeddings. These two embeddings
matrix are then composed into dependency units. A convolution layer is applied
to capture local features from each unit and its neighbors. A max pooling layer
thereafter gathers information from these features combines these features into a
global feature vector, and a softmax layer is followed to perform a (K + 1)-class
classification. This final (K + 1)-class distribution indicates the probability of
each relation respectively. The details of each layer are described below.
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Fig. 3: An overview of proposed model.

4.1 Compositional embeddings

In the embeddings layer, each component of the SDP (i.e., token or depen-
dency) is transformed into a vector w, € R?, where d is the desired embedding
dimension. In order to capture more features along the SDP, we compositionally
represent the token and dependency on SDP with various type of information.

Dependency embeddings: The dependency directions are proved effective
for the relation extraction task [I8]. However, treated the dependency relations
with opposite directions as two separated relations can induce that two vectors
of the same relation are disparate. We represent dependency relation dep; as
a vector that is the concatenation of dependency type and dependency direc-
tion. The concatenated vector is then transform into a final representation d; of
dependency relation as follow:

d; = tanh (Wy [di¥P @ d¥"] + ba) (1)

where dtvP € R4 represents the dependency relation type among 62 labels;
- ddir
and d¥" € R4 is the direction of the dependency relation, i.e. from left-to-
right or vice versa on the SDP.



Token embeddings: For token representation, we take advantage of five types
of information, including:

— Pre-trained fastText embeddings [1]: which learned the word representa-
tion based on its external context, therefore allows words that often appear
in similar context to have similar representations. Each token in the input
SDP is transformed into a vector ¢}’ by looking up the embedding matrix
We € RYXIVUI where V% is a vocabulary of all words we consider.

— Character-based embeddings: CNN is an effective approach to learn the
character-level representations that offer the information about word mor-
phology and shape (like the prefix or suffix of word). Given a token com-
posed of n characters ¢y, co, ..., c,, we first represent each character ¢; by
an embedding r; using a look-up table W¢ € R <Vl where V¢ is the
alphabet. A deep CNN with various window sizes is applied on the sequence
{r1,ra,...,r} to capture the character features. A pooling layer is followed
to produce the final character embedding 5.

— Position embeddings: To extract the semantic relation, the structure fea-
tures (e.g., the SDP between nominals) do not have sufficient information.
The SDP is lack of in-sentence location information that the informative
words are usually close to the target entities. We make use of position em-
beddings to keep track of how close each SDP token is to the target entities
on the original sentence. We first create a 2—dimensional vector [dS*, d;?] for
each token that is combination of relative distances from current token to
two entities. Then, we obtain the position embedding ¥ as follow:

t? = tanh (W, [d5", d5?] + by) (2)
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— POS tag embeddings: A token may have more than one meaning repre-
senting by its grammatical tag such as noun, verb, adjective, adverb, etc.
To address this problem, we use the part-of-speech (POS) tag information
in the token representation. We randomly initialize the embeddings matrix
W¢ e R 56 for 56 OntoNotes v5.0 of the Penn Treebank POS tags. Each
POS tag is then represented as a corresponding vector t¢.

— WordNet embeddings: WordNet is a large lexical database containing the
set of the cognitive synonyms (synsets). Each synset represents a distinct
concept of a group and has a coarse-grained POS tag (i.e., nouns, verbs,
adjectives or adverbs). Synsets are interlinked by their conceptual-semantic
and lexical meanings. For this paper, we heuristically select 45 F'1-children
of the WordNet root which can represent the super-senses of all synsets. The
WordNet embedding ¢} of a token is in form of a sparse vector that figure
out which sets the token belongs to.

Finally, we concatenate the word embedding, character-based embedding,
position embedding, POS tag embedding, and WordNet embedding of each token
into a vector, and transform it into the final token embedding as follow:

t; = tanh (Wit @t @7 @ t! D 7] + by) (3)



4.2 CNN with Dependency Unit

Our CNN receives the sequence of DUs [ug,us,...,u,] as the input, in which
two token embeddings ¢;, ¢;41 and dependency relation d; are concatenate into
a d-dimensional vector u;. Formally, we have:

u; =18, ®d; Bt (4)

In general, let the vector u;.;4; refer to the concatenation of [w;, ujy1, ..., Uit;].
A convolution operation with region size 7 applies a filter w, € R™ on a window
of r successive units to capture a local feature. We apply this filter to all possible
window on the SDP [u1., U2:p41, --vs Un—ri1:n) 10 produce convolved feature map.
For example, a feature map ¢” € R*~"*! is generated from a SDP of n DUs by:

n—r+1
= {taﬂh(wcui:i+r—1 + bc)} (5)

i=1

We then gather the most important features from the feature map, which
have the highest values by applying a max pooling [2] layer. This idea of pool-
ing can naturally deal with variable sentence lengths since we take only the
maximum value ¢ = max(c") as the feature to this particular filter.

Our model manipulates multiple filters with varying region sizes (1 — 3) to
obtain a feature vector f which take advantage from wide ranges of n-gram
features that can boost relation extraction performance.

4.3 Classification

The features from the penultimate layer are then fed into a fully connected
multi-layer perceptron network (MLP). The output h,, of the last hidden layer
is the higher abstraction-level features, which is then fed to a softmax classifier
to predict a (K + 1)—class distribution over labels §:

9 = softmax (W, h,, + by) (6)

4.4 Objective Function and Learning Method

The proposed cduCNN relation classification model can be stated as a parameter
tuple 6. The (K 4 1)—class distribution § predicted by the softmax classifier
denotes the probability that SDP is of relation R. We compute the the penalized
cross-entropy, and further define the training objective for a data sample as:

K
L(0) = =Y yilogdi + A6 (7)

i=0
where y € {0,1}F*Y indicating the one-hot vector represented the target
label, and A is a regularization coefficient. To compute the model parameters
0, we minimize L(#) by applying mini-batch gradient descent (GD) with Adam
optimizer [6] in our experiments. § is randomly initialized and is updated via

back-propagation through neural network structures.



Table 1: System’s performance on SemEval-2010 Task 8 dataset

Model Feature set F1
SVM Lexical features, dependency parse, hypernym, NGrams, 82.9
(Rink et al., 2010) |PropBank, FanmeNet, NomLex-Plus, TextRunner ’
CNN Word embeddings 69.7
(Zeng et al., 2014) |+ Lexical features, WordNet, position feature 82.7
mvRNN Word embeddings 79.1
(Socher et al., 2012)|+ WordNet, NER, POS tag 82.4
SDP-LSTM Word embeddings 82.4
(Xu et al., 2015b) |+ WordNet, GR, POS tag 83.7
depLCNN Word embeddings ' 81.9
(Xu et al., 2015a) + WordNet@ word altound nominals 83.7
+ Negative sampling 85.6
Baseline ‘Word embeddings 83.4
+ DU 83.7
Compositional Embedding, DU 84.7
cduCNN + Normalize conjunction 85.1
(our model) + Ensemble 86.1
+ Normalize object of a preposition 80.6

5 Experimental evaluation

5.1 Dataset

Our model was evaluated on two different datasets: SemEval-2010 Task 8 for
general domain relation extraction and BioCreative V CDR for chemical-induced
disease relation extraction in biomedical scientific abstracts.

The SemEval-2010 Task 8 [5] contains 10,717 annotated relation classifica-
tion examples and is separated into two subsets: 8,000 instances for training
and 2,717 for testing. We randomly split 10 percents of the training data for
validation. There are 9 directed relations and one undirected Other class.

The BioCreative V. CDR task corpus [I6] (BC5 corpus) consists of three
datasets, called training, development and testing set. Each dataset has 500
PubMed abstracts, in which each abstract contains human annotated chemicals,
diseases entities, and their abstract-level chemical-induced disease relations.

In the experiments, we fine-tune our model on training (and development)
set(s) and report the results on the testing set, which is kept secret with the
model. We conduct the training and testing process 20 times and calculate the av-
eraged results. For evaluation, the predicted labels were compared to the golden
annotated data using standard precision (P), recall (R), and F1 score metrics.

5.2 Experimental results and discussion

System’s performance: Table [I| summarizes the performances of our model
and comparative models. For a fair comparison with other researches, we im-
plemented a baseline model, in which we interleave the word embeddings and
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Fig. 4: Contribution of each component. The black columns indicate the kick-out
of components. The grey columns indicate the alternative methods of embedding.

dependency type embeddings for the input of CNN. It yields higher F1 than
competitors which are feature-based or DNN-based with information from pre-
trained Word embeddings only. With the improvement of 0.3% when apply-
ing DU on the baseline model, our model achieves the better result than the
remaining comparative DNN approaches which utilized full sentence and posi-
tion feature without the advanced information selection methods (e.g., attention
mechanism). This result is also equivalent to other SDP-based methods.

The results also demonstrate the effectiveness of using compositional em-
bedding that brings an improvement of 1.0% in F1. Our ¢cduCNN model yields
an Fl-score of 84.7%, outperforms other comparative models, except depLCNN
model with data augmented strategy, by a large margin. However, the ensemble
strategy by majority voting on the results of 20 runs drives our model to achieve
a better result than the augmented depLCNN model.

It is worth to note that we have also conducted two techniques to normalize
the dependency tree. Unfortunately, the results did not meet our expectations,
with only 0.4% improvement of conjunction normalization. Normalizing the ob-
ject of preposition even degrades the performance of the model with 4.1% of F1
reduction. A possible reason is that the preposition itself represent the relation
on SDP, such as “scars from stitches” shows Cause-Effect relation while “clip
about crime” shows Message-Topic relation. With the cut-off of prepositions,
the SDP is lack of information to predict the relation.

Contribution of components on enriched SDP: Figure[d]shows the changes
in F1 when ablating each component and information source from the cduCNN
model. The F1 reductions illustrate the contributions of all proposals to the fi-
nal result. However, the important levels are varied among different components
and information sources. Both dependency and token embeddings have a great



Table 2: System’s performance on BioCreative V CDR dataset

Model Feature set P R F1
. . Average result” 47.09 42.61 43.37
BioCreative benchmarks g 1700 1 result® 55.67 5844 57.03
UET-CAM SVM, rich feature set 53.41 49.91 51.60
(Le et al., 2016) + silverCID corpus 57.63 60.23 58.90
. Syntactic feature, word embeddings| 62.15 47.28 53.70
?%’EZfStNﬁ 2016) + Context 62.39 4747 53.92
’ + Position 62.86 47.47 54.09
ASM (Panyam et al., 2018)|Dependency graph 49.00 67.40 56.80
Baseline Word embeddings 60.25 49.37 54.27
+ DU 60.33 50.36 54.90
Compositional Embedding, DU 57.24 55.27 56.24
+ Normalize conjunction 56.95 56.14 56.54
cduCNN + Ensemble 58.74 56.10 57.39
(our model) + Post processing 52.09 70.09 59.75
+ Normalize object of a preposition| 56.66 55.94 56.30

* results are provided by the BioCreative V.

influence on the model performance. Token embedding plays the leading role,
eliminating it will reduce the F1 by 48.18%. However, dependency embedding
is also an essential component to have the good results. Removing fastText em-
bedding, dependency embedding and dependency type make significant changes
of 15.5% 4.15% and 2.78% respectively. The use of other components brings a
quite small improvement.

An interesting observation comes from the interior of dependency and token
embeddings. The impact of kicking the whole component out is much higher
than the total impact of kicking each minor component out. This proves that
the combination of constituent parts is thoroughly utilized by our compositional
embedding structure.

Another experiment on using alternative methods of embedding also proves
the minor improvement of compositional embedding. The result lightly reduces
when we concatenate the embedding elements directly without transforming into
a final vector or treat two divergent directional relations as to atomic relations.

Model’s adaptation to other domain: Table[2]shows our results on biomedi-
cal BioCreative V CDR corpus compared to some related researches. Our model
outperforms the traditional SVM model using rich feature set without addi-
tional data and the hybrid DNN model with position feature. The average result
is lower than ASM model using dependency graph. However, the conjunction
normalization and ensemble technique can boost our Fl-score 1.15%.

We further apply the post processing rules on the predictions of the model
to improve the recall and achieve the best result among competing models with
59.75%. The results also highlight out the limitation of our model about cross-
sentence relation. We leave this issue for our future works.



6 Conclusion

In this paper, we have presented a neural relation extraction architecture with
the compositional representation of the SDP. The proposed model is capable of
utilizing the dominant linguistic and architectural features, such as word em-
beddings, character embeddings, position feature, WordNet and part-of-speech
tag.

The experiments on SemEval-2010 Task 8 and BioCreative V CDR datasets
showed that our model achieves promising result when compared with other
comparative models. We also investigated and verified the rationality and con-
tributions of each model’s constituent parts, features, and additional techniques.
The result also demonstrated the adaptability of our model on classifying many
types of relation in different domains.

Our limitation of cross-sentence relations extraction is highlighted since it
resulted in low performance on the BioCreative V. CDR corpus compared to
state-of-the-art results which handled this problem significantly. Moreover, the
SDP between two nominals may be lack of supported information, raising the
motivation to take advantages of more informative feature for augmenting the
SDP. We aim to address these problems in our future works.
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