
92/��(����%�12���
0$5&+�����

7KH�XVDJH�RI�WKLV�3')�ILOH�PXVW�FRPSO\�ZLWK�WKH�,(,&(�3URYLVLRQV
RQ�&RS\ULJKW�
7KH�DXWKRU�V��FDQ�GLVWULEXWH�WKLV�3')�ILOH�IRU�UHVHDUFK�DQG
HGXFDWLRQDO��QRQSURILW��SXUSRVHV�RQO\�
'LVWULEXWLRQ�E\�DQ\RQH�RWKHU�WKDQ�WKH�DXWKRU�V��LV�SURKLELWHG�



IEICE TRANS. COMMUN., VOL.E102–B, NO.3 MARCH 2019
545

PAPER
A Dynamic-Clustering Backup Scheme for High-Availability

Distributed File Sharing Systems
⇤

Hoai Son NGUYEN
†a)

, Dinh Nghia NGUYEN
†,††

, Nonmembers, and Shinji SUGAWARA
†††

, Senior Member

SUMMARY DHT routing algorithms can provide e�cient mechanisms
for resource placement and lookup for distributed file sharing systems.
However, we must still deal with irregular and frequent join/leave of nodes
and the problem of load unbalancing between nodes in DHT-based file shar-
ing systems. This paper presents an e�cient file backup scheme based on
dynamic DHT key space clustering in order to guarantee data availability
and support load balancing. The main idea of our method is to dynam-
ically divide the DHT network into a number of clusters, each of which
locally stores and maintains data chunks of data files to guarantee the data
availability of user data files even when node churn occurs. Further, high-
capacity nodes in clusters are selected as backup nodes to achieve adequate
load balancing. Simulation results demonstrate the superior e↵ectiveness
of the proposed scheme over other file replication schemes.
key words: peer-to-peer (P2P), distributed hash table (DHT), file backup,
load balancing

1. Introduction

With the rapid growth of the Internet, nowadays more and
more computing resources such as storage capacity and net-
work bandwidth can be shared between Internet users with
the help of peer-to-peer (P2P) network applications. Among
them, P2P file sharing applications such as BitTorrent, Mor-
pheus, eDonkey and Gnutella are popular since they allow
users to easily store and share their data files with each other.
In order to provide e�cient mechanisms for data placement
and lookup, distributed hash table (DHT) algorithms [1]–[3]
are broadly used. In a DHT-based file sharing system, when
a node needs to back up a data file, it creates a unique DHT
key from the content of the file and then sends a file replica
to a node responsible for the DHT key. When a node wants
to query for a file, it sends the query message to the node
responsible for the DHT key of the file based on the DHT
routing algorithm. The responsible node then returns the
file replica. However, irregular and frequent join/leave of
nodes in a P2P network poses a problem with file availabil-
ity since data files will be lost due to irregular and frequent
churn (i.e. join/leave) of nodes. Further, the heterogeneity

Manuscript received April 10, 2018.
Manuscript revised July 26, 2018.
Manuscript publicized September 10, 2018.
†The authors are with the Faculty of Information Technology,

VNU-University of Engineering and Technology, Vietnam.
††The author is with the Foreign Language and Informatic Cen-

ter, People Security Academy, Vietnam.
†††The author is with the Faculty of Engineering, Chiba Institute

of Technology, Narashino-shi, 275-0016 Japan.
⇤This paper is an extended version of a conference paper that

appeared as [20].
a) E-mail: sonnh@vnu.edu.vn

DOI: 10.1587/transcom.2018EBP3108

of nodes in terms of storage capacities may cause load im-
balance among nodes. In this paper, we tackle the problem
of how to maintain data availability with minimal data stor-
age and maintenance overheads in DHT-based file sharing
systems.

In order to guarantee data availability for DHT-based
P2P networks, a number of replication methods have been
proposed. The conventional approach is to allow a node to
replicate its responsible data to a number of nearest neigh-
bour nodes [2], [6], [11]. This approach is simple, how-
ever, data migration cost is high and node overloading may
prevent proper data replication. RelaxDHTs [8] relaxes the
requirement of replicating at nearest neighbors but it still
su↵ers the problem of storage unbalancing between nodes
and high cost of data migration. Another approach is to
place replicas of data files at a number of distinct nodes and
redirect a file query to these nodes [1], [5], [12]. This ap-
proach can achieve query load balancing between replica
nodes. However, the maintenance of data replicas to ensure
data availability requires a large amount of overhead and the
problem of storage load unbalancing still exists.

This paper presents an e�cient file backup scheme
based on DHT key space clustering in order to guarantee
data availability and support load balancing for DHT-based
file backup systems. The main idea of our method is to di-
vide a DHT-based network into a number of clusters, each
of which locally stores and maintains the availability of data
files. A data file will be encoded into a number of data
chunks and these data chunks will be stored in nodes in
the same cluster. When a node leaves the network, lost
chunks of data files are replicated to other nodes to guar-
antee the number of available data chunk. We propose a
simple cluster management method to allow the selection of
high-capacity nodes for data storing in order to avoid load
unbalancing between nodes in a cluster. We utilize a simple
locality-preserving method to allow nodes, which are physi-
cally close to each other, to join the same cluster. As a result,
we can reduce the update time of cluster information and
the costs for data maintenance. Simulation results demon-
strate the e↵ectiveness of our proposed scheme in compar-
ison with the conventional backup scheme. It can achieve
high data lookup success rate with a small overhead of data
storage and chunk maintenance. In addition, it yields signif-
icant reductions in node overloading.

The rest of this paper is structured as follows. Sec-
tion 2 presents our cluster-based file backup scheme for
DHT-based file backup systems. Section 3 shows the per-

Copyright c� 2019 The Institute of Electronics, Information and Communication Engineers



546
IEICE TRANS. COMMUN., VOL.E102–B, NO.3 MARCH 2019

formance evaluation of our proposed scheme. Section 4
presents a concise review of representative file backup ap-
proaches for structured P2P systems and Sect. 5 concludes
this paper with remarks on possible future work.

2. Cluster-Based File Backup Scheme

2.1 Overview

We consider a DHT-based file backup system, which utilizes
a ring-based DHT algorithm (e.g. Chord [2], Pastry [3], etc.)
as a substrate of the P2P network. The algorithm creates
one-dimensional circular key space across multiple nodes in
a P2P network. Each node in the network is identified by a
key, called node identifier, and is responsible for a portion of
the DHT key space between its counterclockwise neighbor’s
identifier and its own identifier. In order to route messages
to nodes responsible for DHT keys, each node maintains a
set of links to its successor node (i.e., its clockwise neigh-
bor) and a number of other nodes defined by the DHT rout-
ing algorithm. A message containing a key as its destination
is routed to the node responsible for the key based on the
DHT routing algorithm. With the Chord protocol [2], it can
route a message to a node responsible for a key in O(log N)
hops while each node only needs to maintain O(log N) links
to other nodes, where N is the number of nodes in the net-
work. The use of a DHT routing algorithm can guarantee the
scalable and fault-tolerant characteristics of our file backup
system.

Our backup scheme dynamically divides a DHT net-
work into a number of clusters, each of which contains a
number of nodes responsible for a continuous portion of
DHT key space. When a node has a data file that needs to be
backed up, it encodes the data file into n data chunks using
erasure code [9] and these data chunks are stored in a num-
ber of nodes in the same cluster, which have high available
storage capacities. As the characteristic of erasure code, if a
number, say k (k < n), of any chunks of a data file are col-
lected, the file can be reconstructed. Here, k and n are prede-
fined system parameters. In order to maintain the availabil-
ity of data files when a node churn occurs in the network,
the number of data chunks of a file is kept to be larger than
or equal to k, the number of chunks necessary to reconstruct
the file.

The next subsections describe our proposed backup
scheme in detail.

2.2 Cluster Information Management

In our scheme, DHT key space is divided into partitions,
each of which corresponds to a cluster. For a d-bit DHT key
space, the border of kth cluster is defined by the first key and
the last key of the cluster in the clockwise direction. Nodes
that are responsible for DHT keys falling between the first
and the last key of a cluster belong to that cluster. We define
a node, which is responsible for the first key of a cluster, as
the first node of the cluster and a node, which is responsible

Fig. 1 The key range of clusters.

for the last key of a cluster, as the last node of a cluster.
The last node of a cluster is also the first node of the next
cluster as shown in Fig. 1. A node determines whether it is
the first node or the last node of a cluster by checking if it is
responsible for the first or the last key of the cluster.

Nodes in the same cluster exchange messages between
each other to update the information of the cluster. An up-
date message contains the following information.

• The key range of the cluster
• The address of the first node of the cluster
• A list of high-capacity nodes: the list of nodes in the

cluster, which have high available storage capacities.
The available storage capacity of a node is the amount
of data that the node is still able to store. It is calcu-
lated by the di↵erence between the storage capacity of
a node and the amount of data chunks already stored in
the node.
• A list of nodes left the network in an update round. The

first node of the cluster determines the list of nodes
leaving the network by the notification messages sent
by the leaving nodes or their successor nodes as de-
scribed in Sect. 2.4.
• Hop count: The number of nodes that the update mes-

sage travels over beginning from the first node. The
hop count will be reset to 0 by the first node when it
sends a new update message.

The first node of a cluster initiates the update process in a
round by sending an update message to its successor node.
The successor node then updates the received message with
its information and sends the message to the next node and
so on. When the last node of the cluster receives the mes-
sage, it sends the message back to the first node and the
first node will send the message in the next update round
(Fig. 2). The update time of cluster information is the total
delay time of sending messages between nodes in the clus-
ter, and is roughly proportional to the number of nodes in
the cluster.

If the first node of a cluster is failed in the middle of an
update process, its successor node will detect the failure due
to the stabilization procedure of the DHT algorithm [2], [3].
Since the successor node is within the same cluster with the
failed first node, it keeps information of the cluster includ-
ing the key range of the cluster. The successor node now is
responsible for the first key of a cluster. Thus, it itself be-
comes the new first node of the cluster and sends an update



NGUYEN et al.: A DYNAMIC-CLUSTERING BACKUP SCHEME FOR HIGH-AVAILABILITY DISTRIBUTED FILE SHARING SYSTEMS
547

Fig. 2 Transmission of update messages in the dth cluster whose key
range is [Kd

f ,K
d
l ].

message immediately. The last node of the cluster cannot
send back the update message using the address of the failed
first node. In this case, the last node sends back the update
message by the use of the conventional DHT routing proce-
dure. The destination address of the message now becomes
the first key of the cluster. Similarly, in the case a last node
of a cluster is failed, its successor node will become the last
node of the cluster when it receives an update message sent
from the predecessor node of the failure node, thanks to the
stabilization procedure of the DHT algorithm.

When a node receives an update message, it stores the
information of the cluster into its database. It then checks
the capacity of nodes in the list of high-capacity nodes. If
its capacity is bigger than the capacity of any node in the list,
it will insert its information to the list including its address
and capacity. If the list is full, it removes the information of
the lowest capacity node. When the first node in the cluster
receives an update message from the last node, it can obtain
the list of high-capacity nodes in the cluster and send this
list within an update message in the next round.

The list of high-capacity nodes in a cluster is used for
each node in the cluster to select nodes to store its backup
data chunks. By using this list, we can avoid high network
overhead due to probe messages used to find available nodes
for data backup. When a node joins the network, it can get
cluster information from its successor node including the list
of high-capacity nodes in its cluster.

Update messages will be sent periodically. However,
when the number of nodes leaving the network due to fail-
ures in a period is higher than a threshold value, the first
node of the cluster will send an update message immedi-
ately without waiting for the end of the update period.

2.3 Data Backup and Queries

In our backup scheme, data chunks of a file are stored in a
number of nodes, which belong to the same cluster as the
node responsible for the DHT key of the file. The DHT key
of a file is a unique key created from the content of the file
and is used to query the backup file. The node responsible
for the DHT key of a file (i.e. responsible node) will man-
age the data backup information of the file. The information
includes the list of backup nodes storing the data chunks of
the file. When node churn occurs in the network, the re-
sponsible node maintains the availability of the file by mon-
itoring the number of available data chunks as mentioned in

Fig. 3 Data file backup procedure.

Sect. 2.4 and performing a further backup if necessary.
A data backup process for a new data file is done as

follows (Fig. 3).

• Step 1. When a node has a new data file to backup (i.e.
the source node), it first creates the DHT key of the
file and sends a backup request message to the node
responsible for the DHT key based on DHT-routing al-
gorithm.
• Step 2. The responsible node sends the list of high-

capacity nodes in the cluster to the source node. Af-
ter receiving the list of high-capacity nodes, the source
node randomly selects a number of backup nodes from
the list and notifies the responsible node about the list
of backup nodes.
• Step 3. The source node creates data chunks from the

file using erasure code and sends each data chunk and
the DHT key of the file to a backup node for data stor-
age. If a backup node cannot accept a data chunk, it
informs the source node and the source node will se-
lect another backup node to store the data chunk and
update the responsible node on the information of the
new backup node.
• Step 4. When the backup process finishes, the source

node notifies the responsible node of the finish of the
process. The responsible node stores into its database
the information of the backup file including the DHT
key of the file and the list of backup nodes.

If a source node is failed before the backup process of
a file finishes, the node responsible for the DHT key of the
file cannot receive the confirmation message from the source
node. In this case, it will confirm the number of backup data
chunks with nodes in the list of backup nodes of the file.
If this number is smaller than k (i.e. the minimum number
of data chunks needed to reconstruct the file), the responsi-
ble node will discard the information of the file and inform
nodes in the list of backup nodes to discard data chunks of
this file. The file then will be considered as not being backed
up. If the number of backup data chunks is bigger than k,
the file will be considered as being backed up and the re-
sponsible node stores into its database the information of



548
IEICE TRANS. COMMUN., VOL.E102–B, NO.3 MARCH 2019

the backup file.
The use of erasure coding scheme for file redundancy

can improve file availability while still maintaining the same
level of redundancy compared with replication scheme. If a
file is encoded into n data chunks and the number of data
chunks needed to reconstruct the file is k, the size of a data
chunk will be |F|/k, where |F| is the size of the file, and the
e↵ective redundancy factor will be n/k [9]. The file can be
reconstructed even though any n � k data chunks are lost.
However, erasure coding scheme has the disadvantage that
it requires more computation cost to create data chunks from
a file and reconstruct a file from its data chunks.

Since the number of nodes in a cluster is large, with
high probability the source node will find a backup node
that can store data chunks. The random selection of backup
nodes from the list of high-capacity nodes helps to avoid
high backup load for the highest-capacity nodes in the list.

When a node wants to query a backup file, it sends a
query message to the node responsible for the DHT key of
the file. The responsible node looks up its database for the
DHT key and sends back the list of backup nodes, which
store data chunks of the file. The query node then randomly
chooses backup nodes from the backup node list and sends
query messages to these nodes until it acquires k data chunks
necessary to reconstruct the file.

Since the information of backup nodes is essential for
query resolution, the responsible node also stores this infor-
mation in its successor node list. If the node leaves due to
failure, the successor node will be responsible for the infor-
mation.

2.4 File Recovery

When a node leaves the network, it moves information of
backup files that it is responsible for to its successor node
and sends a notice message about its leaving status to the
first node of the cluster. If a node leaves the network with-
out notification due to network failure or node failure, the
successor node detects node failure based on the stabiliza-
tion procedure of the DHT algorithm. The successor node
then sends a notice message about the leaving node to the
first node of the cluster. However, in both cases, data chunks
of backup files stored in the leaving node may be lost. As
mentioned above, we need to maintain at least k data chunks
of any file in the network to guarantee file availability.

To deal with that problem, the first node of the clus-
ter sends an update message including the list of leaving
nodes in a cluster periodically or immediately depending on
the number of leaving nodes in an update period. When a
node receives an update message, it checks the list of backup
nodes for data files that it is responsible for. If a leaving node
is in the list, the number of data chunks of each file backed
up at the leaving node is recounted. If the number of data
chunks of a data file is smaller than a threshold value say m
but larger than or equal to k (i.e. the number of data chunks
necessary to reconstruct the file), the responsible node per-
forms data backup to recover lost chunks. Here, m must be

Fig. 4 Pseudocode of data backup for a data file at responsible nodes.

bigger than or equal to k.
In order to recover a lost data chunk of a file, the node

responsible for the DHT key of the file will randomly se-
lect a node in the list of high-capacity nodes as a backup
node and send a chunk backup request message to that node
(Fig. 4). The message contains the information of existing
data chunks such as the list of backup nodes that are keeping
these data chunks. The newly selected backup node will re-
trieve data chunks from other backup nodes, reconstruct the
file and create the lost backup chunk by itself. If there are
multiple data chunks necessary to restore, the node will send
other restored data chunks to other newly selected backup
nodes, which are randomly selected from the list of high-
capacity nodes, and updates the list of backup nodes to the
node responsible for the DHT key of the file.

If the number of data chunks of a data file is smaller
than k, the data file cannot be reconstructed. In this case, the
correspondent node sends a chunk delete request message to
nodes that keep the data chunks of the file and request these
nodes to delete the data chunks.

The procedure of file backup can ensure the availability
of files, however, the reconstruction of a file by collecting
data chunks from backup nodes will take high cost of data
transfer. In order to reduce the backup cost, querying nodes
that look up files can create data chunks which are lost due
to node leaving and send the data chunks to new backup
nodes. This procedure can be performed as follows (Fig. 5).

When a node wants to query a file, it sends a query
message to the node responsible for the DHT key of the file.
The responsible node will check the number of available
data chunks. If there are lost data chunks, it will request
the querying node to send lost chunks to newly selected
backup nodes. The request is sent, along with the high-
capacity node list, in the response message for the query-
ing node. After reconstructing the queried file from exist-
ing data chunks, the querying node re-creates the lost data
chunks as requested. It then sends the data chunks to backup
nodes which are selected among nodes in the high-capacity
node list sent from the responsible node. In this case, a lost
chunk is recovered only at the cost of sending the chunk
from the querying node to the newly backup node.

Due to the propagation delay of information update



NGUYEN et al.: A DYNAMIC-CLUSTERING BACKUP SCHEME FOR HIGH-AVAILABILITY DISTRIBUTED FILE SHARING SYSTEMS
549

Fig. 5 File query and backup procedure.

messages and the high churn rate of nodes, the number of
lost data chunks of a file may be high. If the number of
existing data chunks of a file is lower than the number of
data chunks necessary to reconstruct a file, the file is not
able to be recovered. In this case, the node responsible for
the DHT key of the file will notify the node storing existing
data chunks to remove these data chunks.

2.5 Dynamic Cluster Construction

In P2P networks, nodes freely join or leave the network.
Thus, if the key range of clusters is fixed, the number of
nodes in a cluster will change heavily depending on the
number of nodes existing in the network. If the number of
nodes in a cluster is small, it may not be able to find any
available node to back up data due to the lack of storage ca-
pacity. If the number of nodes in a cluster is large, the time
required for a cluster information update message passing
through all nodes in a cluster is large and therefore the time
of updating cluster information is also large. It means that
the list of high-capacity nodes in the cluster may be stale
and the backup may be failed because the source node can-
not find any available node in the list for backup. Further,
if the list of lost nodes is sent to nodes in a cluster too late,
file backup may be failed due to the lack of available data
chunks. Therefore, the number of nodes in a cluster should
be kept to be a reasonable number.

We propose a dynamic cluster construction method,
which allows a cluster to split into two smaller clusters when
the number of nodes in a cluster is over a threshold value.
In this method, when the first node of a cluster receives an
update message from the last node, it checks the number of
nodes in the cluster. If the number of nodes in the cluster is
over a threshold value, it will initiate the splitting procedure
by sending a notification message to the first node of the sec-
ond cluster by the use of DHT routing. The destination of
the message will be the first key of the second cluster. After
receiving the acknowledgement message from the first node
of the second cluster, it sends an update message to inform
all nodes in the first new cluster about the splitting. The first
node of the second new cluster also sends an update message
to other nodes in the same cluster.

The key range of new clusters is decided as follows. If
the key range of an original cluster is [Kd

f ,K
d
l ), the key range

of two new clusters after splitting will be half of the original
cluster as Eq. (1).

Kd1
f = Kd

f

Kd1
l = Kd2

f = Kd
f + 1/2(Kd

l � Kd
f )

Kd2
l = Kd

l

(1)

where [Kd1
f ,K

d1
l ] are the key range of the first new cluster

and [Kd2
f ,K

d2
l ] are the key range of the second new cluster.

For some reasons such as the failure of a first node of
new clusters just after the splitting process starts, the split-
ting process of a cluster may be failed. In this case, the
successor node of the failed node will become the new first
node of the cluster as mentioned in Sect. 2.2. As a result
of the failure of the splitting process, the key range stored
at nodes in the new first cluster and the key range stored at
nodes in the new second cluster may be di↵erent. In this
case, the first node of the second new cluster will detect the
di↵erence since it is also the last node of the first new clus-
ter (Fig. 1) and receives update messages of the first clus-
ter. If nodes in the first new cluster are not updated with
the new range, the first node of the second new cluster no-
tifies the first node of the first new cluster to complete the
splitting process. If nodes in the second new cluster are not
updated with the new range, it sends an update message to
other nodes in the same cluster.

The number of nodes in a cluster may decrease due to
node churn. In order to keep the number of nodes in a clus-
ter to be large enough, if the total number of nodes of two
neighbour clusters is smaller than a threshold value, the two
clusters will be merged into one cluster. In this case, when
the number of nodes in a cluster is smaller than a thresh-
old value, the first node will check the node number in the
neighbour cluster to which it also belongs. If the merging
condition is satisfied, the first node will send a notification
message to the first node of the neighbour cluster. If the first
node of the neighbour cluster agrees to merge, it will send a
reply message and the two first nodes will send update mes-
sage to all nodes in the new merged cluster.

Since a cluster may be split to a number of clusters,
data chunks of a file may not be stored in nodes in the same
cluster with the node responsible for the key of the file. In
this case, when a node storing a data chunk of a file leaves
the network, the node responsible for the key of the file may
not know the leaving of the node. In order to solve this prob-
lem, the first node of a cluster will send the list of leaving
nodes in its cluster to the first nodes of i-neighbour clusters.
Here, cluster A and cluster B are i-neighbour clusters if there
are maximum i clusters between them. The update of leav-
ing nodes is easy to implement because the first node of a
cluster is also the last node of the preceding neighbour clus-
ter. The list of leaving nodes in i-neighbour clusters then
is sent within the update message to all nodes in the clus-
ter. The node storing a data chunk of a file may belong to a



550
IEICE TRANS. COMMUN., VOL.E102–B, NO.3 MARCH 2019

cluster which is not a i-neighbour cluster of the cluster that
the node responsible for the key of the file belongs to. In
this case, the data chunk will be moved to a node within the
same cluster with the node responsible for the key of the file.

2.6 Locality Preserving and Load Balancing

The maintenance of data chunks of a data file in a cluster
introduces network overhead due to the movement of data
chunks between nodes. Further, the propagation delay be-
tween nodes in the same cluster has an e↵ect on the delay of
update information, and therefore e↵ects the success ratio of
file maintenance. In order to reduce network overhead and
delay, nodes in the same cluster should be physically closely
located. Another problem is that when the total capacity of
files distributed over the cluster exceeds that of nodes be-
longing to the cluster, a number of nodes in the cluster will
be overloaded.

In order to deal with above problems, we allow a newly
joining node to select a position in the DHT ring from a set
of randomly selected positions. When a new node joins the
network, instead of having the node randomly generate only
one node-identifier, we let the node generate a set of t node-
identifiers, each of which corresponds to a candidate posi-
tion in the DHT ring. Here, t is a system parameter. The
set of t node-identifiers can be generated randomly by mak-
ing use of a hash function on the combination of the node’s
unique information such as IP address and several random
values. The new node then sends a query message to the
successor node of each identifier in the identifier set by DHT
routing algorithm in order to get information of the succes-
sor node and predecessor node of the identifier and informa-
tion of the cluster that contains the identifier. After measur-
ing the propagation delays between the joining node and the
successor node or the predecessor node of each identifier,
the following cost function Ci is then used for the joining
node to select the best position among candidate positions.

C(i) = (d(i)
sel f ,succ + d(i)

sel f ,pred) + ↵C(i)
bestNodeList (2)

where d(i)
sel f ,succ is the delay between the joining node and the

successor node of the ith identifier, and d(i)
sel f ,pred is the prop-

agation delay between the joining node and the predecessor
node of the ith identifier, C(i)

bestNodeList is the total capacity of
nodes in the high-capacity node list in the cluster that con-
tains the ith identifier and ↵ is a parameter.

The position which has the lowest value of the cost
function due to Eq. (2) will be selected as the joining po-
sition of the new node. This cost function will guarantee
that the new node will be put into the position that the delay
to its successor node and its predecessor node is small. Fur-
ther, if there are two positions that the delay is almost the
same, it will join the cluster which has smaller capacity. Al-
though adding delay and overhead to the joining process of
a node, this joining scheme helps to keep a good degree of
load balancing between clusters and reduce the propagation
delay between nodes.

3. Evaluation

3.1 Evaluation Method

We evaluate our backup algorithm by building a simulation
program, which simulate the following backup methods

• The successor list replication method [2]: A data file
will be replicated at successor nodes of the node re-
sponsible for the key of the file. When a new node
joins the network and become a new successor node
of a node, file replicas will be moved from an old suc-
cessor node to the new successor node. In the case a
successor node leaves the network, the node responsi-
ble for the key of the file will maintain the availability
of replicas of the file by copying a file replica and store
at the new successor node.
• RelaxDHT method [8]: An extension of the successor

list replication method. A data file will be replicated at
a number of nodes in a list of neighbour nodes. When
a new node joins the network, file replicas are moved
to the new node only if the node storing the replica is
not within the extended list of neighbour nodes. In our
simulations, the size of the list of neighbour nodes and
the size of the list of extended list of neighbour nodes
are set to be 8 and 16 respectively.
• Fixed clustering method: Our proposed method except

that the number of clusters and the key range of each
cluster is fixed.
• Dynamic clustering method: Our proposed method, in

which the number of clusters and the key range of each
cluster is dynamically changed due to the number of
nodes in the network as described in Sect. 2.5.

The simulator is extended from Jonathan Ledlie’s sim-
ulator [15]. It operates in discrete time steps. Each time step
consists of the following phases: node arrival and departure,
information updates, data replication, file consistency main-
tenance and file query. We use simulation instead of deploy-
ing our method in a real network such as Planet Lab because
it enables us to track down and observe all system’s opera-
tions easily. In addition, by using simulation we can check
the performance of the system in a wide range of evaluation
scenarios.

At each step, nodes arrive and depart with the lifetime
of the nodes based on Pareto birth/death distributions. We
generated several Pareto birth/death distributions with aver-
age lifetime of a node set to be 15 minutes, 30 minutes, 1
hours, 2 hours and 3 hours. The simulation time is set to be
3 hours but we recorded statistics only for the second half of
a simulation to avoid instabilities of simulation results. The
capacity of a node is generated randomly from 5 to 235 data
units. The average capacity of a node is 120 data units. Each
file has the same size that is equal to 3 data units.

In order to simulate the delay between nodes, we use
the GT-ITM Generator [16] to create a 18750-node transit-
stub graph based on transit-stub model (Fig. 6). There are 50



NGUYEN et al.: A DYNAMIC-CLUSTERING BACKUP SCHEME FOR HIGH-AVAILABILITY DISTRIBUTED FILE SHARING SYSTEMS
551

Fig. 6 Example of a transit stub model.

transit nodes, which have direct connection to each other.
Each transit node connects to 15 stub domains on average
and each stub domain contains 25 nodes on average. We
use a randomized function to generate the delay between
nodes in the same stub domain. The delays between transit
nodes are ranged from 100ms to 200ms. The delays between
transit nodes to stub domains are ranged between 20ms and
50ms. Delays from nodes to stub domains are ranged from
1ms and 10ms.

We evaluate the performance of the proposed methods
by a number of parameters as following subsections.

3.2 Simulation Results

3.2.1 Evaluation of Query Hit Ratio

We perform simulations to evaluate the query hit ratio, de-
fined as the ratio between the number of queries that suc-
cessfully get a file and the total number of queries. DHT
keys of files which are already distributed into the network
are randomly selected as queried DHT keys.

In the simulations of four methods, the backup ratio is
set to be 2. It means that the total size of backup data chunks
is twice as big as the size of data file. In the simulation
of our backup methods, the number of data chunks created
from a file and stored in the system (i.e. the parameter n) is
6 and the smallest number of data chunks that is necessary
to reconstruct a file (i.e. the parameter k]) is 3. The number
of data chunks of a file that triggers the recovery procedure
(i.e. the parameter m) is set to 4. The size of a data chunk
is 1 data unit. In the simulation of successor list backup
method and relaxDHT method, two file replicas of a file will
be stored at two successor nodes of the node responsible
for the key of the file. If the number of replicas of a file
is smaller than or equal to one, the node will perform the
maintenance procedure to maintain the file replicas in the
system.

In the first simulation, we evaluate the query hit ratio
with the change of system load, which is measured as the
total size of backup data files in the network. We change the
number of data files distributed into the network such that
the total size of backup data files in the network is changed
from 10% to 100% of total storage capacity of the network.

Fig. 7 Successful query rates with di↵erent amounts of distributed data
files versus node capacity.

The average lifetime of a node is 15 minutes. The total num-
ber of joining nodes and leaving nodes is 8000. When the
network is stable, about half of them (i.e. 4000 nodes) join
the network. Each node takes 10 samples of positions dur-
ing joining phase. The size of high-capacity node list sent
within each update message is set to 20. In the proposed dy-
namic clustering method, the threshold number for a cluster
to split into smaller clusters is 200. Moreover, if the node
number of two neighbour clusters is more than 150, they will
be merged into one cluster. In the fixed clustering method,
the number of clusters is set to be 10. The high-capacity
node list in a cluster is updated in a time period equal to the
total delay of cluster information update messages. For each
round of a simulation, we perform queries on 1% of files al-
ready distributed into the network and count the number of
files successfully recovered by query nodes.

The evaluation results of query hit ratio are plotted in
Fig. 7. We show successful query rate on the y-axis and
the percentage of data units per node capacity on the x-axis.
The results show that the proposed method can achieve bet-
ter query hit ratio than the conventional methods. When
total data amount of backup data files is 50% of total stor-
age capacity of the network, our dynamic cluster method
can achieve a query hit ratio of 98.88% while the query hit
ratio of relaxDHT method and the successor list replication
method only achieve a query hit ratio of 80.88% and 54.40%
respectively. When the system load is small, relaxDHT can
achieve as high query hit ratio as the proposed methods.
However, when the system load increases, its query hit ratio
is not as high as the proposed method. It is because, in the
proposed methods, data chunks of files are stored at a num-
ber of high-capacity nodes in the same cluster, which often
have a large number of nodes. On the other hand, relaxDHT
method and the successor list replication method only stores
replicas of a file in a limited set of nodes. Therefore, the
probability that data chunks of a file cannot be stored due to
the lack of available nodes is high compared with the pro-
posed methods.

When total data amount of backup data files increases
over 50% of total storage capacity of the network, the query
hit ratio of the proposed methods decreases quickly. It is



552
IEICE TRANS. COMMUN., VOL.E102–B, NO.3 MARCH 2019

Fig. 8 Successful query rates with di↵erent average lifetimes of nodes.

because in this simulation, we set the backup ratio to be
2. Hence, when total data amount of backup data files in-
creases over 50% of total storage capacity of the network,
the amount of data storage required to store all data chunks
increases over the total storage capacity of the network and
the system can not maintain enough number (i.e. 6 data
chunks per file in this simulation) of data chunks for an in-
creasing number of files. As a result, the number of files lost
due to the leaving of backup nodes rises quickly.

In the following simulation, we study the e↵ect of node
churn rate on the performance of our methods and the suc-
cessor list replication method. The parameters used in the
simulation are kept the same as the previous simulation ex-
cept the average lifetime of a node is changed between 15
minutes and 180 minutes and the total size of backup data
files in the network is set to 50% of total storage capacity of
the network. The simulation result is shown in Fig. 8.

We found that the proposed dynamic clustering method
can achieve high query hit ratio when nodes leave and join
the network frequently (i.e. the average lifetime of a node is
small) thanks to our proposed file recovery mechanism. The
query hit ratio reaches to 98.88% when the average node
lifetime is 15 minutes and increases to above 99.72% when
the average node lifetime is longer than 120 minutes (i.e. the
number of data chunks lost due to the leaving nodes in a time
unit is small). The query hit ratios of the relaxDHT method
and the successor list replication method are much lower
and increase slightly up to 86.00% and 59.84% respectively
when the average node life time increases. The query hit
ratio with the fixed clustering method is a little lower than
the one with the dynamic clustering method when the aver-
age node lifetime is 15 minutes but about the same when the
average node lifetime increases.

We also investigate the relationship between the query
hit ratio and the number of nodes joining into the network.
The average lifetime of nodes is set to 15 minutes and the
number of clusters in the case of the fixed clustering method
is 10. As shown in Fig. 9, the proposed dynamic cluster
method can achieve stable performance with high query hit
ratio (above 97.99%). The fixed clustering method only
achieves high query hit ratio when total number of nodes

Fig. 9 Query hit ratio with di↵erent total number of nodes join-
ing/leaving the network.

Fig. 10 Query hit ratio with the number of sampling positions.

joining/leaving the network is 2000-6000 nodes but reduces
query hit ratio when the number of nodes is smaller or larger
than the range of 2000-6000. When the number of nodes in
a network is small, some clusters only have a small num-
ber of nodes and there is not any backup node available for
a number of files. Conversely, when the number of nodes
in a network is large, some clusters have a large number of
nodes. The delay of update messages in this case is large
and therefore some files may be lost due to node churn be-
fore being maintained.

In order to show the e↵ectiveness of our proposed node
joining scheme for locality preserving and load balancing,
we study the e↵ect of the number of sampling positions on
the query hit ratio (Fig. 10). When the number of sampling
positions increases, the delay between nodes belonging to
the same cluster decreases and the load balancing between
clusters is also improved. It results in the improvement of
query hit ratio from 98.93% to 99.9% in dynamic cluster-
ing method and from 84.8% to 96.22% in fixed clustering
method when the number of sampling position increases
from 1 to 16. In fixed clustering method, the e↵ectiveness of
position sampling technique in load balancing contributes a
lot to the improvement of query hit ratio since the number
of nodes may be very di↵erent between clusters.



NGUYEN et al.: A DYNAMIC-CLUSTERING BACKUP SCHEME FOR HIGH-AVAILABILITY DISTRIBUTED FILE SHARING SYSTEMS
553

Fig. 11 File maintenance cost with di↵erent average lifetimes of nodes.

3.2.2 Evaluation of Maintenance Cost

File maintenance cost constitutes a major portion of our sys-
tem overhead. We evaluate the file maintenance cost as the
total amount of data chunks moved between nodes to ensure
the availability of the data files in the case of node leaving.
As shown in Sect. 2.4, the maintenance cost of our meth-
ods includes the cost of collecting data chunks of a file and
re-distributing lost data chunks. If a lost data chunk is re-
created by a querying node, only the cost of re-distributing
lost data chunks is calculated. The maintenance cost of the
successor list replication scheme is the cost to replicate data
files to successor nodes due to node churns.

Since the cost is directly related to node churn, we eval-
uate the maintenance cost with the change of the average
lifetime of nodes. The parameter used in this simulation is
the same as the first simulation except that the amount of
data files distributed by a node is set to be 20% of node ca-
pacity.

The result is demonstrated in Fig. 11. We see that the
maintenance cost of three methods decreases significantly
when the average lifetime of a node increases (i.e. the num-
ber of leaving nodes decreases). When the number of leav-
ing nodes decreases, the number of lost data chunks de-
crease and therefore the data moving cost for data recov-
ery decreases. When the average lifetime of a node is 15
minutes, the proposed dynamic clustering method requires
about 25.61% and 22.77% higher cost for file consistency
maintenance than the successor list replication method and
relaxDHT method. However, when the average lifetime of a
node is longer than 90 minutes, the file maintenance cost of
our method is lower than the one of the successor list repli-
cation method but the successful query rate of our method is
higher than the one of the successor list replication method.
It is because in the successor list replication method, when
new nodes join the network, data moving is also required to
guarantee that the replicas of data files are stored near the
responsible nodes.

We also evaluate the maintenance cost with the change
of total number of nodes joining/leaving the network. The
amount of data files distributed by a node is set to be 20%

Fig. 12 File maintenance cost with di↵erent total number of nodes join-
ing/leaving the network.

Fig. 13 Total number of update and notification messages per second
with di↵erent total number of nodes joining/leaving the network.

of node capacity and the average lifetime of a node is set
to be 60 minutes. The file maintenance cost of our meth-
ods depends on the number of nodes leaving the network.
Therefore, as shown in Fig. 12, the file maintenance cost of
our method increases linearly with the number of nodes in
the network. The simulation results also show that the file
maintenance cost of our method is lower than the one of the
successor list replication method and relaxDHT method as
the number of nodes in the network grows.

Compared with conventional methods, the proposed
method introduces cluster maintenance cost due to the trans-
mission of update messages and notification messages for
node leaving and dynamic clustering. We evaluate this
maintenance cost by counting the average number of mes-
sages the network sends per second. The results are shown
in Fig. 13. If total number of nodes joining/leaving the net-
work is 8000 nodes, 363 messages are necessary to send in
each second. The cost increases linearly with the number
of nodes in the network since each node receives and sends
an update message in a period of time and the number of
leaving nodes is also proportional to the number of nodes in
the network. The number of messages sent by each node in
each second is almost the same. In each round about a half
of total number of nodes joining/leaving the network, each
node sends about 0.1 message per second on average. If the



554
IEICE TRANS. COMMUN., VOL.E102–B, NO.3 MARCH 2019

Fig. 14 E↵ect of file backup parameters on successful query rates with
di↵erent average lifetimes of nodes.

size of each message is 500 byte, the bandwidth required to
send these messages is about 400bps, which is small enough
in practice.

3.2.3 E↵ects of File Backup Parameters

In order to evaluate the e↵ects of file backup parameters,
which are the number n of data chunks created from a file,
the number k of data chunks required for file reconstruction
and the number m of existing data chunks that triggers a
data backup to recover lost chunks. In this simulation, we
evaluate the following parameter sets (n = 6, k = 3,m = 3),
(n = 6, k = 3, m = 4), (n = 6, k = 3, m = 5) and (n = 9, k = 3,
m = 6) with k unchanged at 3. The total number of joining
nodes and leaving nodes is 8000.

In the first simulation, we investigate the e↵ect of file
backup parameters on successful query rate and file mainte-
nance cost with di↵erent average lifetimes of nodes. Total
data amount of backup data files is set to be 20% of total
storage capacity of the network. When the average life time
is small (i.e. nude churn rate is high), the higher parameter m
(i.e.) is, the higher query hit ratio is (Fig. 14). It is because
a system with high value of m will trigger a data backup
process early and therefore lost data chunks will be recov-
ered early. However, the file maintenance cost will be high
since early recovery of lost data chunks requires high cost
of data transfer between nodes (Fig. 15). The simulation re-
sults show that the file maintenance cost of the system with
(n = 6, k = 3,m = 5) is 84.69% higher than the one with
(n = 6, k = 3,m = 4) when average life time of nodes is 15
minutes.

When total data amount of backup data files is 20%
of total storage capacity of the network, the parameter set
(n = 9, k = 3,m = 6) gives the highest query hit ratio for
the system. However, the system with n = 9 will require
1.5 times more storage space for file backup than the system
with n = 6. Therefore, when the number of backup data
file increases, nodes in the system with n = 9 will be over-
loaded earlier than nodes in the system with n = 6 and the
query hit ratio of the system with n = 9 will decrease faster
than the system with n = 6 (Fig. 16). By changing these pa-

Fig. 15 E↵ect of file backup parameters on data moving cost with di↵er-
ent average lifetimes of nodes.

Fig. 16 E↵ect of file backup parameters on successful query rates with
di↵erent amounts of distributed data files versus node capacity.

rameters for some high-priority files, we can guarantee the
availability of these files in P2P networks.

4. Related Works

There are three basic replica placement approaches to im-
prove data availability for DHT-based structured P2P net-
works. In the neighbor replication approach, the replicas of
a data file are stored in the nearest neighbor nodes, i.e. the
successor list [1] or the leaf-set [2] of a node responsible
for the file. As shown in the simulation results, when node
churn rate or the system load is high, this approach can-
not maintain the availability of data files e↵ectively which
results in a low query hit ratio. Further, the cost of data
migrations due to node churn can be high in terms of band-
width consumption. RelaxDHTs [8] relaxes the requirement
of replicating at nearest neighbors by randomly selecting
replica nodes from a set of neighbor nodes. Therefore, this
approach can reduce the cost of data migrations. However,
when the system load is high, this approach still su↵ers the
problem of storage unbalancing between nodes, which re-
sults in a low query hit ratio.

Path replication is another file replication method,
which chooses replica nodes on the search path from query
nodes to a queried node when the queried node su↵ers high



NGUYEN et al.: A DYNAMIC-CLUSTERING BACKUP SCHEME FOR HIGH-AVAILABILITY DISTRIBUTED FILE SHARING SYSTEMS
555

load [4]. Since the goal of this approach is to reduce the
query load for queried nodes, it does not guarantee data
availability for backup files when node churn occurs.

The last replication approach is multi publication key
replication [11]–[13]. In this approach, a key is associated
with a set of r selected points in DHT key space, which
correspond to r distinct replica nodes for a file. Symmet-
ric replication [12] is a representative method based on this
approach. This approach can achieve a good degree of query
load balancing by sending requests to a random replica.
However, in order to maintain the persistence of the location
of replicas, the cost of replica maintenance for data avail-
ability such as the cost of data migration due to node churn
or the cost for monitoring the replication degree is high.

A method, which has a similar approach with our al-
gorithm, is Plover [10]. In Plover, nodes are organized in a
number of clusters. Each cluster contains a super node and a
number of regular nodes, which are physically close. Super
nodes form a structured P2P network and maintain metadata
of files stored in regular nodes. When a file becomes pop-
ular, Plover makes file replication among physically close
nodes based on node available capacities. Therefore, Plover
can support low-cost and timely consistency maintenance.
However, Plover does not provide a method to maintain data
availability. Further, super nodes can become bottleneck and
easily become a single point of failure in the cluster.

SWARM [14] also organize nodes in clusters based on
node interest and proximity and determines the placement of
a file replica based on the accumulated query rates of nodes
to reduce query overhead. However, SWARM does not
guarantee the availability of data files due to the join/leave
of nodes.

Bhagwan et al. [17] has investigated the use of erasure
codes to improve the level of file availability in Gnutella, an
unstructured peer-to-peer network. In [18], Friedman et al.
have proposed replicated erasure codes (REC) for storage
in P2P networks, which does not increase the storage over-
head significantly but reduce the tra�c for repair operation.
Our system could benefit from the use of the proposed REC
code to reduce the cost of file maintenance. However, di↵er-
ent from our method, these works do not tackle the problem
of node overloading, which may prevent proper data repli-
cation.

In [19], the authors proposed a replication method for
file availability, which allows a node responsible for a file
to select replica nodes from a consistent set based on node
availability. The consistent set contains nodes, which are
closest to the responsible node. Node availability is calcu-
lated based on the Mean Time To Failure and the Mean Time
To Recover. The proposed method di↵ers from our method
in two folds. Firstly, our method organizes a P2P network
as a number of clusters and chooses nodes, which have high
available storage capacity in each cluster as new replicas.
Thus, our method can achieve a good degree of load bal-
ancing. Secondly, our backup method utilizes erasure code
to create data chunks of each file and store/maintain data
chunks of a file in a number of nodes. As a result, our

backup method using erasure code can improve file avail-
ability in comparison with whole file replication method
[9], [17].

5. Conclusion and Future Works

This paper proposed a cluster-based backup scheme for
DHT-based file backup systems. Di↵erent from conven-
tional data backup approaches for P2P networks, we or-
ganize the network as clusters and store data chunks of a
file within nodes in a cluster. We proposed a maintenance
method that guarantees file availability by utilizing erasure
coding and maintaining the number of data chunks of a file
above a threshold value. We also proposed a method for
cluster information update, which allows nodes in a clus-
ter to choose high-capacity nodes to store data chunks for
file backup. Therefore, with high probability, our proposed
system can find backup nodes that are capable to store data
chunks for file backup and it results in high query hit ra-
tio of proposed method even when the system load and the
rate of node churn are high. The simulation results demon-
strate the e�ciency of our solution in terms of data lookup
success rate and the chunk maintenance cost compared with
conventional solutions.

In our future research, we will work on the problem of
query overhead by replication of data chunks inside clusters.
Another problem to be tackled is the deletion of unnecessary
files when a node becomes overloaded. We also implement
the proposed scheme in a testbed system and develop appli-
cations based on the scheme.

Acknowledgments

This work was partially supported by JSPS KAKENHI
Grant Number JP17K00134.

References

[1] S. Ratnasamy, P. Francis, M. Handley, and R. Karp, “A scalable
content-addressable network,” Proc. ACM SIGCOMM’01, pp.161–
172, San Diego, CA, Aug. 2001.

[2] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrisnan,
“Chord: A scalable peer-to-peer lookup service for Internet appli-
cations,” Proc. ACM SIGCOMM’01, San Diego, CA, pp.149–160,
Aug. 2001.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems,” Proc.
IFIP/ACM International Conf. on Distributed Systems Platforms,
pp.329–350, Nov. 2001.

[4] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D.
Kubiatowicz, “Tapestry: A global-scale overlay for rapid service de-
ployment,” IEEE J. Sel. Areas Commun., pp.41–53, Sept. 2006.

[5] M. Landers, H. Zhang, and K.-L. Tan, “Peerstore: Better per-
formance by relaxing in peer-to-peer backup,” Proc. 4th Interna-
tional Conference on Peer-to-Peer Computing, pp.72–79, Washing-
ton, DC, USA, 2004.

[6] A. Rowstron and P. Druschel, “Storage management and caching in
PAST, a large-scale persistent peer-to-peer storage utility,” Proc. The
18th ACM Symposium on Operating Systems Principles (SOSP),
pp.188–201, Alberta, Canada, Oct. 2001.

http://dx.doi.org/10.1145/964723.383072
http://dx.doi.org/10.1145/964723.383072
http://dx.doi.org/10.1145/964723.383072
http://dx.doi.org/10.1145/964723.383071
http://dx.doi.org/10.1145/964723.383071
http://dx.doi.org/10.1145/964723.383071
http://dx.doi.org/10.1145/964723.383071
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1109/ptp.2004.1334933
http://dx.doi.org/10.1109/ptp.2004.1334933
http://dx.doi.org/10.1109/ptp.2004.1334933
http://dx.doi.org/10.1109/ptp.2004.1334933
http://dx.doi.org/10.1145/502051.502053
http://dx.doi.org/10.1145/502051.502053
http://dx.doi.org/10.1145/502051.502053
http://dx.doi.org/10.1145/502051.502053


556
IEICE TRANS. COMMUN., VOL.E102–B, NO.3 MARCH 2019

[7] J. Pang, P.B. Gibbons, M. Kaminsky, S. Seshan, and H. Yu, “Defrag-
menting DHT-based distributed file systems,” Proc. 27th Interna-
tional Conference on Distributed Computing Systems (ICDCS’07),
p.14, Toronto, ON, 2007.

[8] S. Legtchenko, S. Monnet, P. Sens, and G. Muller, “RelaxDHT: A
churn-resilient replication strategy for peer-to-peer distributed hash-
tables,” ACM Trans. Auton. Adapt. Syst., vol.7, no.2, pp.28:1–
28:18, July 2012.

[9] M. Rabin, “E�cient dispersal of information for security, load bal-
ancing, and fault tolerance,” J. ACM, vol.36, no.2, pp.335–348,
April 1989.

[10] H. Shen and Y. Zhu, “Plover: A proactive low-overhead file replica-
tion scheme for structured P2P systems,” Proc. IEEE ICC, pp.5619–
5623, May 2008.

[11] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher,
“Adaptive replication in peer-to-peer systems,” Proc. 24th Interna-
tional Conference on Distributed Computing Systems, pp.360–369,
March 2004.

[12] A. Ghodsi, L.O. Alima, and S. Haridi, “Symmetric replication for
structured peer-to-peer systems,” Proc. 3rd International Workshop
on Databases, Information Systems, and Peer-to-Peer Computing,
pp.74–85, Trondheim, Norway, Aug. 2005.

[13] Z. Trifa and M. Khemakhem, “A novel replication technique to at-
tenuate churn e↵ects,” Peer-to-Peer Netw. Appl., vol.9, no.2, pp
344–355, 2016.

[14] H. Shen, G. Liu, and H. Chandler, “Swarm intelligence based file
replication and consistency maintenance in structured P2P file shar-
ing systems,” IEEE Trans. Comput., vol.64, no.10, pp.2953–2967,
Jan. 2015.

[15] J. Ledlie and M. Seltzer, “Distributed, secure load balancing with
skew, heterogeneity, and churn,” Proc. INFOCOM 2005. 24th An-
nual Joint Conference of the IEEE Computer and Comunications
Societies, vol.2, pp.1419–1430, March 2005.

[16] K. Calvert, M. Doar, and E.W. Zegura, “Modeling Internet topol-
ogy,” IEEE Commun. Mag., vol.35, no.6, pp.160–163, June 1997.

[17] R. Bhagwan, S. Savage, and G.M. Voelker, “Replication strategies
for highly available peer-to-peer storage systems,” Proc. FuDiCo
2002, pp.40–49, June 2002.

[18] R. Friedman, Y. Kantor, and A. Kantor, “Replicated erasure codes
for storage and repair-tra�c e�ciency,” Proc. 14th IEEE Interna-
tional Conference on Peer-to-Peer Computing, pp.1–10, Sept. 2014.

[19] K. Kim and D. Park, “Reducing replication overhead for data
durability in DHT based P2P system,” IEICE Trans. Inf. & Syst.,
vol.E90-D, no.9, pp.1452–1455, Sept. 2007.

[20] N.D. Nghia, T.X. Hoang, and N.H. Son, “A cluster-based file replica-
tion scheme for DHT-based file backup systems,” Proc. International
Conference on Advanced Technologies for Communications (ATC),
pp.204–209, Oct. 2016.

Hoai Son Nguyen received the B.Eng.,
B.Eng. and Dr. Eng. degrees from the Univer-
sity of Tokyo, Japan, in 2001, 2003, and 2006
respectively. He is currently a lecturer of the
Faculty of Information Technology at VNU-
University of Engineering and Technology. His
research interests are in the area of mobile wire-
less networks, P2P overlay networks and Cyber
physical systems.

Dinh Nghia Nguyen received the B.Eng.
degree from People Security Academy, Vietnam
and the M.E. degree from VNU-University of
Engineering and Technology, in 2001 and 2006
respectively. He is currently working for the
Foreign language and Informatic Center, Peo-
ple Security Academy, Vietnam. He is also a
PhD student in the Faculty of Information Tech-
nology at VNU-University of Engineering and
Technology.

Shinji Sugawara received B.Eng., M.Eng.,
and Dr.Eng. degrees from Tokyo Institute of
Technology, in 1994, 1996, and 1999, respec-
tively. In 1999, he joined the University of
Electro-Communications, Tokyo, as an assistant
professor, and then in 2005, joined Nagoya In-
stitute of Technology, Japan as an associate pro-
fessor. From January 2006 to January 2007,
he concurrently was a visiting researcher in the
University of California, Irvine. In April in
2013, he joined Chiba Institute of Technology,

Narashino, Japan as a professor. He is interested in computer communica-
tion network, contents retrieval, and distributed systems. He is a member
of IEEE and ACM.

http://dx.doi.org/10.1109/icdcs.2007.97
http://dx.doi.org/10.1109/icdcs.2007.97
http://dx.doi.org/10.1109/icdcs.2007.97
http://dx.doi.org/10.1109/icdcs.2007.97
http://dx.doi.org/10.1145/2240166.2240178
http://dx.doi.org/10.1145/2240166.2240178
http://dx.doi.org/10.1145/2240166.2240178
http://dx.doi.org/10.1145/2240166.2240178
http://dx.doi.org/10.1145/62044.62050
http://dx.doi.org/10.1145/62044.62050
http://dx.doi.org/10.1145/62044.62050
http://dx.doi.org/10.1109/icc.2008.1053
http://dx.doi.org/10.1109/icc.2008.1053
http://dx.doi.org/10.1109/icc.2008.1053
http://dx.doi.org/10.1109/icdcs.2004.1281601
http://dx.doi.org/10.1109/icdcs.2004.1281601
http://dx.doi.org/10.1109/icdcs.2004.1281601
http://dx.doi.org/10.1109/icdcs.2004.1281601
http://dx.doi.org/10.1007/978-3-540-71661-7_7
http://dx.doi.org/10.1007/978-3-540-71661-7_7
http://dx.doi.org/10.1007/978-3-540-71661-7_7
http://dx.doi.org/10.1007/978-3-540-71661-7_7
http://dx.doi.org/10.1007/s12083-015-0340-4
http://dx.doi.org/10.1007/s12083-015-0340-4
http://dx.doi.org/10.1007/s12083-015-0340-4
http://dx.doi.org/10.1109/tc.2015.2389845
http://dx.doi.org/10.1109/tc.2015.2389845
http://dx.doi.org/10.1109/tc.2015.2389845
http://dx.doi.org/10.1109/tc.2015.2389845
http://dx.doi.org/10.1109/infcom.2005.1498366
http://dx.doi.org/10.1109/infcom.2005.1498366
http://dx.doi.org/10.1109/infcom.2005.1498366
http://dx.doi.org/10.1109/infcom.2005.1498366
http://dx.doi.org/10.1109/35.587723
http://dx.doi.org/10.1109/35.587723
http://dx.doi.org/10.1109/p2p.2014.6934310
http://dx.doi.org/10.1109/p2p.2014.6934310
http://dx.doi.org/10.1109/p2p.2014.6934310
http://dx.doi.org/10.1093/ietisy/e90-d.9.1452
http://dx.doi.org/10.1093/ietisy/e90-d.9.1452
http://dx.doi.org/10.1093/ietisy/e90-d.9.1452
http://dx.doi.org/10.1109/atc.2016.7764774
http://dx.doi.org/10.1109/atc.2016.7764774
http://dx.doi.org/10.1109/atc.2016.7764774
http://dx.doi.org/10.1109/atc.2016.7764774

