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Abstract—As humans are the ultimate receivers of the majority
of visual signals being processed, the most accurate way of
assessing image quality is to ask humans for their opinions of an
image’s quality, known as the subjective visual quality assessment
(VQA). The subjective image quality scores gathered from all
subjects are processed to be the mean opinion score (MOS),
which is regarded as the ground truth of image quality. Due
to the fact that the human visual system (HVS) is differently
sensitive to features of image patch, a novel coding distortion
modelling method for local image perception is proposed in this
paper. An experimental quality assessment to approach database
for image patch has been developed. Mean opinion score is
regarded as an essential parameter meanwhile the QP-MOS
sigmoid curve is determined by local image content.

Index Terms—image quality assessment, coding distortion,
logistic modelling

I. INTRODUCTION

Subjective assessments are still frequently used as a bench-
mark for image and video quality, where a group of human
viewers are asked for their opinions on quality under a
range of test conditions. Subjective testing conditions must
be closely controlled, with appropriate screening of observers
and post-processing of the results to ensure consistency and
statistical significance. Despite of being generally effective,
they are costly and time consuming.

For the above reason, objective measures of video quality
are taken under consideration as an alteration. They have
conventionally been computed using the absolute or squared
difference between the distorted version of frames and their
reference version. It is however well known that the perceptual
distortion experienced by the human viewers cannot be fully
characterized using such simple mathematical differences.
Due to the limitations of these distortion-based measures,
perception-based metrics have begun to replace them. These
offer the potential for enhanced correlation with subjective
opinions, thus enabling more accurate estimations of visual
quality.

Playing an important role in perception-based metrics,
databases with subjective data facilitate metric development
and benchmark have been well developed over the time. There
is a number of publicly available image quality benchmark
databases, including LIVE Image [1], TID2008 [2], TID2013
[3], CSIQ [4], IVC [5], IVC-LAR [6], Toyoma [7], WIQ
[8], A57 [9], MMSP 3D Image [10], and Image Re-targeting
Subjective Quality [11]. All of the above mentioned databases
evaluate the overall picture quality. But the problem is that
the perceptual quality of each image patch is different with
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the same level of noise. Figure 1 show that the distortions
around the houses and on the sky regions (solid square) are
easily observable. However, those on textural regions (dash
dot square) are less noticeable.

Fig. 1. Example of distorted image

In this paper, we propose a quality assessment approach
database for image patch with the desire to create a new
perception-based metric to apply for each region. Therefore,
authors present a modeling method to assess the coding
distortion at image locality based on human visual perception.
In this method, authors would create a new testing database
and conduct subjective test.From the data obtained, we model
and analyze the coding distortion using logistic regression.
The result can be customized quantization parameter (QP)
block- based in video coding.

The rest of this paper is organized as follows: The subject
testing is described in Section 2. In Section 3, a novel coding
distortion modelling method method is proposed. Section 4
presents our conclusions.

II. SUBJECTIVE TESTING

Since all available image quality benchmark databases are
not suitable for evaluating the quality image as a whole,
it is unable to investigate which parts of the testing image
contribute to the testing results. In this work, we set up an
experimental database to evaluate the quality of human for
each image patch.

A. Testing image database creation

The goal of our study is to create a testing image database
for local image perception. Due to the research orientation
for video coding, testing images are extracted from the video
test sequence and noise types are added to the original video
by H.264/AVC compression before extracting. In each image,



we will select several patches for rating. In this database,
instead of random selection, we assume that there are three
attributes (smooth texture, complex texture and edge texture)
in an image patch affecting the subjective image quality. These
attributes are classified by a region growing algorithm (Fig. 2).
Image patches (64x64) are selected in the respective regions.

Image quality ratings greatly depend on the viewing dis-
tance between the observer and the testing display. In practi-
cal, it is very difficult to change such distance so we choose
two resolutions for the image including: full size image
(original image) and half size image. After this procedure,
we obtain 20 video sequence × 5 images × 3 positions × 2
sizes = 600 image patches.

Fig. 2. Classified into three types: smooth texture (none), complex texture
(o), and edge regions (+)

B. Testing methodology

For the purpose of this study, 20 subjects who have been
trained and practiced quality assessing of several sample
images. Because the image quality assessment methods [12]
are only suitable for assess quality of image as a whole.
Therefore, we modify this image selection method in the
standard so that the users can only concentrate and assess
the local image patch instead of the whole image. Each pair
quality is assessed following the procedure of Fig. 3. After
watching at least twice per image, the observers would score
on scale of 5 (excellent, good, fair, poor or bad).

Fig. 3. Presentation structure of test material

At the end of experiment, each original image patch was
compared to five distort image patches corresponding to five
testing pairs. Table I shows an example of a complex texture
image patch where each column is a testing pair.

C. Statistical analysis of subjective test results

After the experiment, the results of 12 000 subjective ratings
to 600 image patches from 20 different subjects are obtained.

TABLE I
MOS OF A COMPLEX TEXTURE IMAGE PATCH

Patch
QP 35 40 45 50 55

Average 4.8 3.85 2.25 1.45 1.05

Let Io denote original image patch of an image patch and
let Io,qp denote distortion image compressed by qp. The
mean opinion score of a subjective rating under a given test
condition c for subject s is y(Io, Io,qp, c, s), where o ranging
from 1 to 120 denote index of original patches and indicating
the resolution of testing images c ∈ (full, half). In our
experiment, the mean opinion score (MOS) of each image
pair is calculated by:

y(Io, Io,qp, c) =
1

S

S∑
s=1

y(Io, Io,qp, c, s) (1)

where S is the total number of testing subjects.

Fig. 4. Relationship between MOS and QP levels

Figure 4 shows the statistical relationship between MOS
and QP levels for all tested image patches. It can be seen from
the figure that average MOS decreases when QP increases.
While the MOS decreases when QP increases and standard
deviations increase along with QP but still in acceptable
range.

Table II show average of MOSs respectively for each
tested image patch type, resolution and QP . There is a
difference in quality among complex texture area, edge texture
area and smooth texture area. The smooth texture areas have
the lowest MOS score, followed by the edge and finally, the
highest complex texture.

III. MOS MODELLING USING LOGISTIC FUNCTION

Subjective results are frequently used as a benchmark for
establishing a relationship between MOS and QP [12]. The
scores produced by the objective video quality metric must
be correlated with the viewer scores in a predictable and
repeatable fashion. The relationship between prediction and
MOS does not need to be linear as subjective testing can
exhibit non-linear quality rating compression at the extreme
of the test range. The typical relationship between mean



TABLE II
AVG MOS SCORE OF EACH TYPES OF AREAS

Types Resolution qp=25 qp=30 qp=35 qp=40 qp=45 qp=50 qp=55
smooth texture full - - 3.80 3.22 2.52 2.04 1.73
complex texture full - - 4.43 3.75 2.86 1.87 1.32

edge full 4.70 4.54 4.09 3.35 2.55 - -
smooth texture half - - 4.48 4.05 3.06 2.45 1.73
complex texture half - - 4.60 4.27 3.56 2.43 1.66

edge half 4.69 4.68 4.56 4.22 3.34 - -

opinion score of a image patch Y and a given distortion level
qp, generally exhibit a skew-symmetric sigmoid form. Hence
the function Y = f(qp) can be approximated by a logistic
function of the form:

Y (Io, qp, c) =
5

1 + e(qp−a)b
, (2)

where a denotes qp when Y at average, b is the rate of
declining in image quality while increasing qp.

Two variants a and b can be derived from the experimental
data. Because y depends on non-linearity of a and b, it is
not possible to solve the equation to find them. The Pearson
Linear Correlation Coefficient (PLCC) is used as a measure
of the accuracy of fit of variants to the subjective scores.
It characterizes how well the metric under test can predict
the subjective quality ratings. For example, with the complex
texture image patch as shown in Table I, a = 42.7148 and
b = −0.30482. The chart is as follows (fig.5).

Fig. 5. Logistic function fit of data in Table I

The variable a, b can also be estimated by the visual features
of image patch. Here, we denote fi as scalar value for an
visual feature of image patch. We also assume that a and b
are the linear combination of the image features as follows:

a = a0 +

N∑
i=1

aifi (3)

b = b0 +

N∑
i=1

bifi (4)

where N is the total number of features.
In equation 3 and 4, we can not determine the number of

visual features as well as the importance of each visual feature.

Therefore, visual features of image (m × n) that may affect
image quality are estimated including:

• Luminance coefficient mean of 16× 16 image patch µ16

calculated according to the formula:

f1 = µ16 [p, q] =
1

256

16∑
j=1

16∑
i=1

Y [j + 16p, i+ 16q] (5)

where p = 1, 2, 3 . . . n/16, q = 1, 2, 3 . . .m/16 are
row and column indices of luminance coefficient mean
matrix.

• Variance of 16×16 image patch σ16 calculated according
to the formula:

f2 = σ16 [p, q]

=

16∑
j=1

16∑
i=1

|Y [j + 16p, i+ 16q]− µ16 [p, q]| (6)

where p = 1, 2, 3 . . . n/16, q = 1, 2, 3 . . .m/16 are row
and column indices of variance matrix.

• The edge density f3 = θ16 [p, q] of each 16× 16 image
patch is calculated based on the total number of pixels
in the edge region.

• Maximum and minimum of luminance coefficient are
calculated according to the formula:

f4 = max16 [p, q] = max{Y [j, i]}, (7)
f5 = min16 [p, q] = min {Y [j, i]} , (8)

where p = 1, 2, 3 . . . n/16, q = 1, 2, 3 . . .m/16 are row
and column indices, i = 16q+1 . . . 16q+16, j = 16p+
1 . . . 16p+ 16.

• The neighboring luminance average of 16 × 16 image
patch in terms eight neighboring patches is as follows:

f6 = µlc [p, q] =
1

8
(µ16 [p, q − 1] + µ16 [p− 1, q] +

+ µ16 [p− 1, p+ 1] + µ16 [p− 1, q − 1]+

+ µ16 [p, q + 1] + µ16 [p+ 1, q − 1]+

+ µ16 [p+ 1, q] + µ16 [p+ 1, q + 1]) , (9)

where p = 1, 2, 3 . . . n/16, q = 1, 2, 3 . . .m/16 are row
and column indices.

• The neighboring variance average (f7) and the neighbor-
ing edge density average ((f8)) of 16 × 16 image patch
in terms eight neighboring patches are calculated similar
to the equation 9.

• Next, convert the 16×16 blocks of luminance coefficient
matrix Y into the Cosin (DCT transform) frequency
domain and take the absolute value:

Zpq = |DCT (Ypq)| , (10)



TABLE III
REGRESSION STATISTICS

Method Decision Tree Linear k-Nearest
Neighbors

Multiple R 0.7498 0.7943 0.5843
R Square 0.5622 0.63091 0.34140

Standard Error 2.382687 1.94254 3.45296

where Ypq denote a block including row indices p =
1, 2, 3 . . . n/16, row indices q = 1, 2, 3 . . .m/16 in Y .

• Convert Zpq into a one-dimensional matrix Xpq consist-
ing of 255 elements after removing the first element.

• Mean of coefficient in frequency domain is calculated
by:

f9 = µdct [p, q] =
1

255

255∑
j=1

Xpq [j] . (11)

where j = 1..255.
• Variance of coefficient in frequency domain is calculated

by:

f10 = σdct [p, q] =

254∑
j=0

|Xpq [j]− µdct [p, q]| (12)

where j = 1..255.
• Maximum and minimum of coefficient in frequency

domain are calculated by:

f11 = maxdct [p, q] = max{Xpq [j]}, (13)
f12 = mindct [p, q] = min {Xpq [j]} , (14)

where j = 1..255.
Analyzing the data has determined the relationship between
parameters of the logistic model with the features by three
regression methods. Table III shows that Linear method is the
best match to the tested data. Parameters of the logistic model
are calculated by 15, 16.

a = 36.2247− 0.0581f2 + 0.0153f3 + 0.0248f4+

+ 0.1874f7 − 0.0127f8 − 0.0052f11 (15)
b = −0.2003− 0.0009f1 + 0.0003f3 + 0.0002f5+

+ 0.0006f6 (16)

The results of regression method show that some features
affect the model and some does not. In equation 15, the
average quality of compressed image patch a depends on
the features of original image patch including: edge density,
variance, maximum of luminance coefficient, maximum of
coefficient in frequency domain. In addition, a contrasts with
features of neighboring area including: edge density and
variance. This is consistent with the experimental results that
complex regions have subjective score higher other regions.
The highest score of complex region occurs when neighboring
area is in another region (smooth or edge). It can be seen
from equation 16 that the rate of declining b depends on
the brightness (luminance coefficient) and edge density. The
higher the value of brightness is, the faster the image quality
decreases. For example, with the original complex texture

image patch as shown in Table I, we can predict a = 43.0352
and b = −0.31143 following equation 15, 16. This result
match the model in figure 5 which can be used to select an
appropriate qp for the image quality in video coding.

IV. CONCLUSIONS

This paper presents a coding distortion modelling method
for local image perception, which is able to predict objective
evaluation from the perceptual point of local image con-
tent. There are 600 distortion samples in quality assessment
database rated by 20 subjects with standards ITU-R BT.500-
11. Experimental results show that compressed image quality
decreases depending on the visual features of image. The
intrinsic visual features of the image patches are: edge density,
average brightness, variance, maximum coefficient, minimum
coefficient on the pixel domain and frequency domain. At the
same time, the research also considers neighborhood patches
visual features that affect the quality of the image. A method
is used for determining the intrinsic visual features of image
patches that can affect the sensitivity of the human eye to
noise. The patches in the image are compressed at different
levels depending on the sensitivity to the human eye: the less
sensitive the patch, the less the encoder will be used compared
to the other patches. In video compression, the QP is used to
change the number of image bit encoders, the higher the port
number, the lower the bitrate.

In addition, the author models the relationship between
QP and visual quality measured by human visuals in the
form of logical curves. According to this model, image
quality decreases as the QP increases. However, the average
image quality and the quality loss rate are different among
the patches depending on the sensitivity of the patch. For
noise-sensitive patches, the average image quality is lower
and the speed is reduced faster. Experimentally, the control
coefficients of the imaginary loop are calculated based on the
characteristics that affect the noise sensitivity of the image
patch.
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