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This paper aims to investigate the nonlinear buckling and post-buckling of eccentrically oblique stiffened 
sandwich functionally graded double curved shallow shells resting on elastic foundations in thermal 
environment. The shells are reinforced by functionally graded eccentrically oblique stiffeners with 
deviation angles. Two types of sandwich functionally graded double curved shallow shells with the 
differences of distribution of functionally graded face sheets and homogeneous core are considered. 
Material properties of the sandwich shells and stiffeners are assumed to vary continuously and smoothly 
in the thickness direction according to Sigmoid power law. The formula of force and moment resultants 
and the nonlinear equilibrium equations are established based on the improved Donnell theory and 
Lekhnitskii’s smeared stiffeners technique. The analytical displacement solutions are chosen based on 
the trigonometric forms satisfying the boundary conditions. The value of critical buckling loads and the 
load – deflection curves of the shells are obtained by using the Bubnov – Galerkin method. In numerical 
results; effect of geometrical parameters, elastic foundations, temperature increment, compressive load 
and oblique stiffeners on the critical buckling loads and post-buckling load – deflection curves of the 
shells are studied specifically. The obtained results are also compared with others from literature to 
validate the accuracy of the present method and approach.

© 2019 Elsevier Masson SAS. All rights reserved.
1. Introduction

Functionally graded sandwich structures are multi-layered 
structures which made up of two face sheets and a core. Func-
tionally graded sandwich structures are widely used in aerospace 
industry due to its excellent load carrying capacity, good heat 
resistance and effective sound insulation. In order to avoid dis-
aggregate between layers as well as stress- focusing phenomenon, 
it has been proposed that the two face sheet of functionally graded 
sandwich structures are made of functionally graded materials 
with ceramic and metal constituents and the core is made of 
homogeneous materials. Recently, many investigations have been 
implemented on the mechanical behaviors of functionally graded 
sandwich structures. Fazzolari and Carrera [1] carried out the free 
vibration analysis of doubly curved shallow and deep functionally 
graded material shells based on the Ritz minimum energy method 
and the principle of virtual displacements. Mohammadzadeh and 
Noh [2] presented an analytical approach to investigate nonlinear 
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dynamic responses of sandwich plates with functionally graded 
faces resting on elastic foundation considering blast loads. Alipour 
and Shariyat [3] introduced an analytical stress analysis of annular 
functionally graded sandwich plates with non-uniform shear and 
normal tractions using a zigzag-elasticity plate theory; Sobhy [4]
presented a new accurate four-variable shear deformation plate 
theory to illustrate the hygrothermal vibration and buckling of 
functionally graded sandwich plates resting on Winkler-Pasternak 
elastic foundations. Further, Sofiyev [5] studied the stability of 
freely supported functionally graded sandwich conical shells sub-
jected to the axial load within the first order shear deformation 
theory. Based on a layerwise higher-order theory, Pandey and 
Pradyumna [6] investigated thermal stresses analysis of function-
ally graded material sandwich beam subjected to thermal shock. 
In 2011, Wang and Shen [7] presented nonlinear vibration, nonlin-
ear bending and post-buckling analyses for a sandwich plate with 
functionally graded face sheets resting on an elastic foundation in 
thermal environments. Recently, Tomar and Talha [8] focused on 
the influence of material uncertainties on vibration and bending 
behavior of skewed sandwich functionally graded plates based on 
Reddy’s higher order shear deformation theory.
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In order to reduce the weight but increasing the load carrying 
capacity, structures are often reinforced by eccentrically stiffeners. 
In most of studies, stiffeners are supposed to be positioned orthog-
onal to each other. Hong et al. [9] suggested an improved wave 
finite element method that can be employed to predict the band-
gap characteristics of stiffened shell structures efficiently. Kövesdi 
et al. [10] dealt with minimum requirements for transverse stiff-
eners on orthotropic plates subjected to compression; Ahmadi and 
Rahimi [11] investigated the behavior of grid stiffened composite 
panel subjected to transverse loading by analytical and experimen-
tal approach. A theoretical model to study the dynamic stability 
and nonlinear vibrations of the stiffened functionally graded cylin-
drical shell in thermal environments is developed in work of Sheng 
and Wang [12]. Besides, Zhu et al. [13] established some simple 
formulae based on the rigid-perfectly plastic method to examine 
the dynamic response of stiffened rectangular plates repeatedly 
impacted by a rigid knife-edged striker at any location. In 2014, 
Duc and Quan [14] studied the nonlinear response of eccentrically 
stiffened functionally graded cylindrical panels on elastic founda-
tion subjected to mechanical loads. Tao et al. [15,15] proposed a 
novel foam-core sandwich cylinder to obtain a strong and weight-
efficient cylindrical shell with glass fibre-reinforced plastic stiff-
eners inserted between the faces and the foam core. Up to date, 
there have been very few researches on the mechanical behaviors 
of structures reinforced by oblique stiffeners with any deviation 
angle because of the complexity in calculating the effect of stiff-
eners on forces and moments of the structures. Won [16] carried 
out an analysis for a stiffened plate with arbitrarily oblique and 
equally spaced eccentric stiffeners and Yang et al. [17] researched 
optimization design of unitized panels with stiffeners in differ-
ent formats using the evolutionary strategy with covariance matrix 
adaptation.

Buckling and post-buckling behaviors are the basic problems of 
structural mechanics. The solutions from these problems provide 
scientists the critical buckling load and the load carrying capac-
ity of the structures for ensuring the suitability in manufacturing 
and the safety in using. Gulizzi et al. [18] presented a multi-
domain eXtended Ritz formulation, called X-Ritz, for the analysis 
of buckling and post-buckling of stiffened panels with cracks. Sob-
hani et al. [19] introduced a comprehensive set of designed and 
tested glass/epoxy composites to investigate the effect of mul-
tiple delaminations on buckling and post-buckling behaviors of 
laminated composites. An analytical investigation on the nonlinear 
post-buckling of imperfect eccentrically stiffened thin FGM plates 
under temperature and resting on elastic foundation using a simple 
power-law distribution is implemented in work of Duc and Cong 
[20]. Su et al. [21] considered buckling and post-buckling behavior 
of titanium alloy stiffened panels under shear load by experiments 
and numerical analysis. Tanzadeh and Amoushahi [22] developed 
a finite strip method for buckling and free vibration analysis of 
piezoelectric laminated composite plates based on various plate 
theories such as Zigzag, Refined plate and other higher order shear 
deformation theory by variation of transverse shear strains through 
plate thickness in the form of parabolic, sine and exponential. Re-
cently, Milazzo et al. [23] established an extended Ritz formulation 
for the analysis of buckling and post-buckling behavior of cracked 
composite multilayered plates.

Double curved shell is special structure which is composed of 
two curved sheets. Due to its curvatures, a double curved shell 
is able to transfer applied loads by both of in-plane and out-of-
plane actions. Double curved shell is widely used in civil, me-
chanical, architectural, and aerospace engineering. As a result, the 
researches on static and dynamic stability of double curved shell 
have been received great attention from scientists around the 
world. Guo et al. [24] studied dynamic analysis of composite lam-
inated doubly-curved shells with various boundary conditions by 
Fig. 1. Geometry and coordinate system of an eccentrically oblique stiffened func-
tionally graded sandwich double curved shallow shells.

a domain decomposition method; Tornabene and Brischetto [25]
proposed a comparative study between different analytical and nu-
merical three-dimensional and two-dimensional shell models for 
the bending analysis of composite and sandwich plates, spherical 
and doubly-curved shells subjected to a transverse normal load 
applied at the top surface. Further, Chen et al. [26] investigated 
free vibration of the functionally graded material sandwich doubly-
curved shallow shells under simply supported conditions. Duc et 
al. [27] introduced analytical solutions for the nonlinear vibra-
tion of imperfect functionally graded nanocomposite double curved 
shallow shells on elastic foundations subjected to mechanical load 
in thermal environments; Zhai et al. [28] used the first-order shear 
deformation shell theory to consider the damping properties anal-
ysis of composite sandwich doubly-curved shells.

Up to date, there is no publication on the mechanical behaviors 
of oblique stiffened functionally graded sandwich double curved 
shallow shells. The most difficult part in this type of problem is to 
determine the mechanism of oblique stiffeners with any deviation 
angle to the coordinate axis. The calculations of oblique stiffeners 
are much more complicated than ones of orthogonal stiffeners. The 
new contribution of our paper is that we established the general 
formulation of the force and moment resultants from the stress 
components of the sandwich shell, which is reinforced by oblique 
stiffeners with any inclinations. The basic equations are established 
based on the improved Donnell shell theory. The expressions of 
buckling critical load and the post-buckling curves are determined 
by using the Galerkin method. In the numerical results, the effect 
of the oblique stiffeners, type of distribution, elastic foundations, 
temperature increment and geometrical parameters on the buck-
ling and post-buckling of the sandwich shell are analyzed in de-
tails.

2. Eccentrically oblique stiffened functionally graded sandwich 
double curved shallow shells

Consider an eccentrically oblique stiffened sandwich function-
ally graded double curved shallow shell of radii of curvature Rx , 
R y , length of edges a, b and uniform thickness h resting on elastic 
foundations. A coordinate system (x, y, z) is established in which 
(x, y) plane on the middle surface of the shell and z on thickness 
direction (−h/2 ≤ z ≤ h/2) as shown in Fig. 1.

The functionally graded sandwich double curved shallow shell 
consists of a homogeneous core of thickness hc and two func-
tionally graded face sheets of thickness ht and hb that are per-
fectly bonded on its top and bottom surfaces. The functionally 
graded face sheet is made from a mixture of ceramic and metal 
in which the effective properties are assumed to vary continuously 
and smoothly in the thickness direction. Two material types of 
functionally graded sandwich double curved shallow shell are con-
sidered as Fig. 2. For type 1A, the homogeneous core is made of 
metal and for type 1B, the homogeneous core is made of ceramic.
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Fig. 2. Two material types of the functionally graded sandwich double curved shal-
low shells.

In order to ensure the continuity of materials, the effective 
properties such as the elastic modulus E , the thermal expansion 
coefficient α and the mass density ρ of the sandwich double 
curved shallow shells are assumed to vary in the thickness direc-
tion according to the Sigmoid law distribution as

[Esh,αsh,ρsh] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Ei,αi,ρi] + [Ekl,αkl,ρkl]( 2z+h
2hi

)kt ,

−h/2 ≤ z ≤ −h/2 + ht,

[E j,α j,ρ j],
−h/2 + ht ≤ z ≤ h/2 − hb,

[Ei,αi,ρi] + [Ekl,αkl,ρkl](−2z+h
2hb

)kb ,

h/2 − hb ≤ z ≤ h/2,

(1)

where kt , kb are volume fraction indexes of functionally graded 
face sheets on the top and bottom surfaces, respectively (0 ≤ kt ,

kb < ∞); subscripts kl, i and j stand for the constituents of the 
sandwich shells. For type A, i = c, j = m, kl = mc and i = m, j = c, 
kl = cm for type B with subscripts m and c denote the metal and 
ceramic constituents of the functionally graded face sheets, respec-
tively and

Emc(T ) = Em(T ) − Ec(T ), αmc(T ) = αm(T ) − αc(T ),

ρmc(T ) = ρm(T ) − ρc(T ), ρcm(T ) = ρc(T ) − ρm(T ),

Ecm(T ) = Ec(T ) − Em(T ), αcm(T ) = αc(T ) − αm(T ),

(2)

Poisson’s ratio ν is assumed to be constant.
The shell is reinforced by eccentrically oblique stiffeners with 

any inclination as Fig. 3. Stiffeners are arranged along two inter-
secting directions with the deviation angles between the direc-
tion of stiffeners and x axis are γx, γy , respectively. The width 
and thickness of stiffeners are denoted by ex, hx and e y, hy re-
spectively; sx, sy are the spacing of the stiffeners. Ax, A y are the 
cross-section areas of stiffeners and Ix, I y are the second moments 
of cross-section areas of stiffeners.

The oblique stiffeners are also assumed to be functionally 
graded materials. The effective properties of oblique stiffeners are 
given by the power law distribution as

[Esx,αsx,ρsx] = [Ei,αi,ρi] + [Ekl,αkl,ρkl]
(

2z − h

2hx

)kx

,

h/2 ≤ z ≤ h/2 + hx,

[Esy,αsy,ρsy] = [Ei,αi,ρi] + [Ekl,αkl,ρkl]
(

2z − h

2hy

)ky

,

h/2 ≤ z ≤ h/2 + hy,

(3)

with kx, ky are the volume fraction index of stiffeners (0 ≤ kx, ky <

∞).
The sandwich double curved shallow shell is assumed to rest 

on elastic foundations of Pasternak model. The interaction between 
elastic foundations and the sandwich shell is described as
Fig. 3. Configuration of eccentrically oblique stiffeners of sandwich functionally 
graded double curved shallow shells.

qe = k1 w − k2∇2 w, (4)

in which w is the deflection of the sandwich shell, k1 (Pa/m) is 
Winkler foundation modulus and k2 (Pa m) is the shear layer foun-
dation stiffness of Pasternak model.

3. Theoretical formulation

According to the improved Donnell shell theory, the strains at 
the middle surface ε0

x , ε0
y, γ 0

xy and the curvatures χx, χy, χxy are 
expressed to the displacement components u, v, w in the x, y, z
coordinate directions as [30]

εo
x = ∂u

∂x
− w

Rx
+ 1

2

(
∂ w

∂x

)2

, ε0
y = ∂v

∂ y
− w

R y
+ 1

2

(
∂ w

∂ y

)2

,

γ 0
xy = ∂v

∂x
+ ∂u

∂ y
+ ∂ w

∂x

∂ w

∂ y
, χx = 1

Rx

∂u

∂x
+ ∂2 w

∂x2
,

χy = 1

R y

∂v

∂ y
+ ∂2 w

∂ y2
, χxy = 1

2Rx

∂u

∂ y
+ 1

2R y

∂v

∂x
+ ∂2 w

∂x∂ y
.

(5)

The strain components across the shell thickness at a distance 
z from the mid-plane are
⎛
⎝

εx

εx

εx

⎞
⎠ =

⎛
⎜⎝

ε0
x − zχx

ε0
x − zχy

ε0
x − 2zχxy

⎞
⎟⎠ . (6)

Hooke law for a functionally graded sandwich double curved 
shallow shell, taking into account the thermal effect, is defined as

(σx,σy) = E(z)

1 − ν2

[
(εx, εy) + v(εx, εy) − (1 + v)α
T (1,1)

]
,

σxy = E(z)

2(1 + v)
γxy.

(7)

Because stiffeners are assumed to be thin and the distance be-
tween stiffeners is small, thermal stress in the stiffeners is ignored. 
Therefore, the stress-strain relations of the oblique stiffeners are 
given as follows

σ s
γ = E0(z)εγ , (8)

where E0 is Young’s modulus of oblique stiffeners.
The force and moment resultants of the eccentrically oblique 

stiffened functionally graded sandwich double curved shallow shell 
are determined by Lekhnitskii’s smeared technique [29] as
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Nx

N y

Nxy

Mx

M y

Mxy

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε0
x

ε0
y

γ 0
xy

χx

χy

2χxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�0/(1 − v)

�0/(1 − v)

0

�1/(1 − v)

�1/(1 − v)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(9)

in which the detail of coefficients Aij, Bij, Dij (i j = 11, 12, 16, 22,

26, 66), �0, �1 may be found in Appendix A.
The nonlinear equilibrium equations of eccentrically oblique 

stiffened functionally graded double curved shallow shells based 
on the improved Donnell shell theory are [30]

Nx,x + Nxy,y − 1

Rx
(Mxy,y + Mx,x) = 0,

N y,y + Nxy,x − 1

R y
(Mxy,x + M y,y) = 0,

Mx,xx + 2M,xyxy + M y,yy + Nx

Rx
+ N y

R y
+ ∂

∂x
(Nx w,x + Nxy w,y)

+ ∂

∂ y
(N y w,y + Nxy w,x) − P xhw,xx + q − k1 w + k2∇2 w = 0,

(10)

where P x is axial compressive loads and q is an external pressure 
uniformly distributed on the surface of the shell.

Substitution of Eq. (5) into Eq. (9) yields the constitutive rela-
tions as

Nx = F11
∂u

∂x
+ F12

∂v

∂ y
+ F13

∂u

∂ y
+ F14

∂v

∂x
− F15 w

+ 1

2
A11

(
∂ w

∂x

)2

+ 1

2
A12

(
∂ w

∂ y

)2

+ A16
∂ w

∂x

∂ w

∂ y

+ B11
∂2 w

∂x2
+ B12

∂2 w

∂ y2
+ 2B16

∂2 w

∂x∂ y
− �o

1 − ν
,

N y = F21
∂u

∂x
+ F22

∂v

∂ y
+ F23

∂u

∂ y
+ F24

∂v

∂x
− F25 w

+ 1

2
A21

(
∂ w

∂x

)2

+ 1

2
A22

(
∂ w

∂ y

)2

+ A26
∂ w

∂x

∂ w

∂ y

+ B21
∂2 w

∂x2
+ B22

∂2 w

∂ y2
+ 2B26

∂2 w

∂x∂ y
− �o

1 − ν
,

Nxy = F31
∂u

∂x
+ F32

∂v

∂ y
+ F33

∂u

∂ y
+ F34

∂v

∂x
− F35 w

+ 1

2
A61

(
∂ w

∂x

)2

+ 1

2
A62

(
∂ w

∂ y

)2

+ A66
∂ w

∂x

∂ w

∂ y

+ B61
∂2 w

∂x2
+ B62

∂2 w

∂ y2
+ 2B66

∂2 w

∂x∂ y
,

Mx = F41
∂u

∂x
+ F42

∂v

∂ y
+ F43

∂u

∂ y
+ F44

∂v

∂x
− F45 w

+ 1
B11

(
∂ w

)2

+ 1
B12

(
∂ w

)2

+ B16
∂ w ∂ w
2 ∂x 2 ∂ y ∂x ∂ y
+ D11
∂2 w

∂x2
+ D12

∂2 w

∂ y2
+ 2D16

∂2 w

∂x∂ y
− �1

1 − ν
,

M y = F51
∂u

∂x
+ F52

∂v

∂ y
+ F53

∂u

∂ y
+ F54

∂v

∂x
− F55 w

+ 1

2
B21

(
∂ w

∂x

)2

+ 1

2
B22

(
∂ w

∂ y

)2

+ B26
∂ w

∂x

∂ w

∂ y

+ D21
∂2 w

∂x2
+ D22

∂2 w

∂ y2
+ 2D26

∂2 w

∂x∂ y
− �1

1 − ν
,

Mxy = F61
∂u

∂x
+ F62

∂v

∂ y
+ F63

∂u

∂ y
+ F64

∂v

∂x
− F65 w

+ 1

2
B61

(
∂ w

∂x

)2

+ 1

2
B62

(
∂ w

∂ y

)2

+ B66
∂ w

∂x

∂ w

∂ y

+ D16
∂2 w

∂x2
+ D26

∂2 w

∂ y2
+ 2D66

∂2 w

∂x∂ y
, (11)

with the detail of coefficients Fij (i = 1 ÷ 6, j= 1 ÷ 6) are given in 
Appendix B.

Introducing Eq. (11) into Eq. (10), the system of equilibrium 
equations of eccentrically oblique stiffened functionally graded 
sandwich double curved shallow shells are rewritten in terms of 
displacement components u, v, w as

L11(u) + L12(v) + L13(w) + P1(w) = 0,

L21(u) + L22(v) + L23(w) + P2(w) = 0,

L31(u) + L32(u) + L33(w) + P3(w) + Q 3(u, v) + R3(v, w)

− P xhw,xx − k1 w + k2∇2 w = 0,

(12)

with

L11(u) = I11u,xx + I12u,yy + I13u,xy,

L12(v) = I21 v,xx + I22 v,yy + I23 v,xy,

L13(w) = −I31 w,x − I32 w,y + I33(w,xx w,y + w,x w,xy)

+ I34(w,xy w,y + w,x w,yy) + I35 w,xxx

+ I36 w,yyy + I37 w,xyy + I38 w,xxy,

P1(w) = I41
(

w2
,x

)
,y + I42

(
w2

,y

)
,y + (

w2
x

)
,x + I44

(
w2

y

)
,x,

L21(u) = I51u,xx + I52u,yy + I53u,xy,

L22(v) = I61 v,xx + I62 v,yy + I63 v,xy,

P2(w) = I71
(

w2
,x

)
,y + I72

(
w2

y

)
,y + I73

(
w2

,x

)
,x + I74

(
w2

,y

)
,x,

L23(w) = −I81 w,y + I82 w,xxy + I83 w,yyy + I84 w,xyy

− I85 w,x + I86 w,xxx + I87(w,xy w,y + w,x w,yy)

+ I88(w,xx w,y + w,x w,xy),

L31(u) = I91u,xxx + I92u,yyy + I93u,xxy + I94u,xyy

+ I95u,x + I96u,y,

L32(v) = I110 v,xxx + I111 v,yyy + I112 v,xyy + I113 v,xxy

+ I114 v,y + I115 v,x,

L33(w) = −I120 w,xx − 2I121 w,xy − I122 w,yy − I123 w

− w,xx
�0

1 − v
+ D11 w,xxxx + I124 w,xxyy + I125 w,xxxy

+ I126 w,xyyy + D22 w,yyyy + I127 w,xx + I128 w,yy

+ I129 w,xy − w,yy
�0

1 − v
,

P3(w) = I130(w,x)
2 + I131(w,y)

2 + 1

2
B11

(
w2

,x

)
,xx

+ 1

2
B12

(
w2

,y

)
,xx + 1

2
B21

(
w2

,x

)
,yy + 1

2
B22

(
w2

,y

)
,yy

+ B61
(

w2
,x

) + B62
(

w2
,y

) + 2B66(w,x w,y),xy
,xy ,xy
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+ B16(w,x w,y),xx + B26(w,x w,y),yy + I132 w,x w,y

− w2
,x I133 − w w,xx I134 + 1

2
A11

(
w3

,x

)
,x

+ 1

2
A12

(
w2

,y

)
,x w,x + 1

2
A12 w2

,y w,xx + A16 w2
,x w,xy

+ A16
(

w2
,x

)
,x w,y + B11 w,xxx w,x + B11 w2

,xx

+ B12 w,xx w,yy + B12 w,x w,xyy + 2B16 w,xx w,xy

+ 2B16 w,x w,xxy + 2B66 w,xyy w,x + 1

2
A61

(
w2

,x

)
,x w,y
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,yy + 2B26 w,xyy w,y

+ 2B26 w,xy w,yy − w,y w,x I139 − w w,xy I∗139
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2
A61

(
w3

,x

)
,y + 1

2
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2
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(
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)
,y + A66

(
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2
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(
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)
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)
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− w,x w,y I135 − w w,xy I136 + B61 w,xxx w,y
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2
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(
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,x

)
,y w,y + 1

2
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+ 1

2
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(
w3
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,y + A26 w,xy w2

,y + A26 w,x
(

w2
,y

)
,y

+ B21 w,xxy w,y + B21 w,xx w,yy (13)

in which Ii j (i = 1 ÷ 9, j = 1 ÷ 6), I1kl , (k = 1 ÷ 3, l = 0 ÷ 9) and 
Q 3(u, v), R3(u, v) are shown Appendix C.

Eq. (13) is the nonlinear equations in terms of variables u, v
and w and they are used to investigate the nonlinear buckling and 
post-buckling of eccentrically oblique stiffened sandwich double 
curved shallow shell on elastic foundations in thermal environ-
ments.

4. Stability analysis

In the present study, four edges of the eccentrically oblique 
stiffened sandwich double curved shallow shell are assumed to be 
simply supported and immovable. The boundary conditions in this 
case are

w = w,xx = v = u,x = 0 at x = 0,a,

w = w,yy = v = u,y = 0 at y = 0,b.
(14)

The approximate solutions of the system Eq. (12) satisfying the 
boundary conditions (14) may be assumed as [14,20,27]

u = U cosλmx sin δn y,

v = V sinλmx cos δn y,

w = W sin λmx sin δn y,

(15)

where λm = mπ/a, δn = nπ/b; m, n are odd natural numbers rep-
resenting the number of half waves in the x and y directions and 
U , V , W are the amplitudes of displacements.

Substitution of Eq. (15) into Eq. (12) and then using Galerkin 
procedure for the resulting equations yields
l11U + l12 V + l13W + l14W 2 = 0,

l21U + l22 V + l23W + l24W 2 = 0,

l31U + l32 V + l33W + l34W 2 + l35W 3 + l36U W + l37 V W

+ q
4

λmδn
− �0

1 − ν

4

λmδn

(
1

Rx
+ 1

R y

)
+ ab

4
P xhλ2
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(16)

in which
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(
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,
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4

9
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9
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2
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,
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(
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128 A12δ

2
nλ2
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− ab
64 A66δ

2
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128δ4
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A11 + B11

1

Rx
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λ2

m

δn
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(
A21 + B21

1

Rx

)
δn

−
(

A66 + B66
1

Rx
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δn

]
,

l37 = 8

9

[(
A22 + B22

1

R y

)
δ2

n

λm
+

(
A12 + B12

1

R y

)
λm

−
(

A66 + B66
1

R y

)
λm

]
. (17)

Solving the first two equations of Eq. (16) for U and V yields

V = − (l13l21 − l11l23)

(l12l21 − l11l22)
W − (l14l21 − l11l24)

(l12l21 − l11l22)
W 2,

U = − (l13l22 − l12l23)

l11l22 − l12l21
W − (l14l22 − l12l24)

l11l22 − l12l21
W 2.

(18)

Inserting Eq. (18) into the third equation of Eq. (16) we obtain 
the equation for determining nonlinear buckling and post-buckling 
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of eccentrically oblique stiffened functionally graded sandwich 
double curved shallow shell on elastic foundations in thermal en-
vironments as

m1W + m2W 2 + m3W 3 + P xhλ2
m

ab

4
W + q

4

λmδn

− �0

1 − ν

4

λmδn

(
1

Rx
+ 1

R y

)
= 0,

(19)

with

m1 =
(

−l31
(l13l22 − l12l23)

l11l22 − l12l21
− l32

(l13l21 − l11l23)

(l12l21 − l11l22)
+ l33

)
,

m2 =
⎛
⎝ −l31
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− l32
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+ l34

−l36
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⎞
⎠ ,

m3 =
(
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− l37
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(l12l21 − l11l22)

)
.

(20)

4.1. Eccentrically oblique stiffened functionally graded sandwich double 
curved shallow shell under uniform external pressure

Consider an eccentrically oblique stiffened functionally graded 
sandwich double curved shallow shell with immovable edges and 
subjected to uniform external pressure on the upper surface of the 
shell. In this case, Eq. (19) leads to

q = m1W + m2W
2 + m3W

3 + �0

1 − ν

(
1

Rx
+ 1

R y

)

− P xhλ3
mδn

ab

16
W ,

(21)

with

m1 = a1

(
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+ l32

(l13l21 − l11l23)

(l12l21 − l11l22)
− l33

)
,

m2 = a2

⎛
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)
,

(22)

and

a1 = λmδn

4
h, a2 = λmδn

4
h2,

a3 = λmδn

4
h3, W = W /h.

(23)

Eq. (21) is used to express post-buckling load – deflection 
curves of eccentrically oblique stiffened functionally graded dou-
ble curved shallow shell resting on elastic foundations subjected 
to uniform external pressure.

4.2. Eccentrically oblique stiffened functionally graded sandwich double 
curved shallow shell under axial compressive loads

An immovable edges eccentrically oblique stiffened functionally 
graded double curved shallow shell subjected to axial compressive 
loads P x uniformly distributed at two curved edges x = 0, a in the 
absence of external pressure is considered. From Eq. (19) we have

P x = m∗
1 + m∗

2W + m∗
3W

2
, (24)

in which
Fig. 4. Comparison on the post-buckling behaviors of eccentrically stiffened func-
tionally graded plates subjected to axial compression.

Fig. 5. Comparison of bending analysis of sandwich plates with functionally graded 
face sheets.

m∗
1 = 16m1

abhλ3
mδn

, m∗
2 = 16m2

abhλ3
mδn

, m∗
3 = 16m3

abhλ3
mδn

. (25)

Eq. (24) is used to determine the post-buckling load – de-
flection curves of the eccentrically oblique stiffened functionally 
graded sandwich double curved shallow shell subjected to axial 
compressive loads.

The critical buckling compressive load of the sandwich shell 
may be obtained with W → 0 as

P xupper = m∗
1. (26)

5. Results and discussion

5.1. Validation

To validate the accuracy of the present results, comparisons are 
carried out for nonlinear post-buckling behaviors of eccentrically 
stiffened thin functionally graded plates subjected to axial com-
pression in Fig. 4 and nonlinear bending analysis of thick sandwich 
plates with functionally graded face sheets resting on elastic foun-
dations in thermal environments in Fig. 5 in this paper with results 
of Duc and Cong [20] based on the classical plate theory and Wang 
and Shen [7] using the higher order shear deformation plate the-
ory, respectively. Obviously, good agreements are obtained between 
the present and existing predictions. The small differences could be 
explained by the differences in theories.



T.Q. Quan et al. / Aerospace Science and Technology 90 (2019) 169–180 175
Table 1
Effects of deviation angle of oblique stiffeners (γx, γy) on the critical buckling com-
pressive loads Pxcr (GPa) of functionally graded sandwich double curved shallow 
shells.

(γx, γy ) ( π
4 , π

4 ) ( π
6 , π

6 ) ( π
2 ,0)

1A 11.53 6.302 4.66
1B 15.67 10.07 7.646

Fig. 6. Effects of deviation angle of oblique stiffeners γx on the post-buckling behav-
iors of eccentrically oblique stiffened sandwich functionally graded double curved 
shallow shells subjected to external pressure.

5.2. Critical buckling loads and nonlinear post-buckling curves

In this section, we consider functionally graded sandwich dou-
ble curved shallow shell that consists of aluminum (metal) and 
alumina (ceramic) to investigate the influences of deviation angle 
of stiffeners, types of sandwich shells, elastic foundations, tem-
perature increment and geometrical parameters on the critical 
buckling load and nonlinear post-buckling curves of the sandwich 
shells. The material properties of the constituents are Em = 70 GPa, 
αm = 23 × 10−6 K−1, Ec = 380 GPa, αc = 7.4 × 10−6 K−1 whereas 
Poisson’s ratio is chosen to be 0.3. The geometrical parameters 
of the oblique stiffeners are hx = hy = 0.003 m, sx = sy = 0.1 m, 
ex = e y = 0.02 m.

Problem 1: Influences of deviation angle of oblique stiffeners

Table 1 considers the effects of deviation angle of oblique stiff-
eners (γx, γy) on the critical buckling loads P xcr of functionally 
graded sandwich double curved shallow shells subjected to ax-
ial compression. Three cases of deviation angle are considered. As 
expected, the critical buckling compressive load of the sandwich 
shell which is reinforced by oblique stiffeners with deviation angle 
(γx, γy) = ( π

4 , π4 ) is highest and the critical buckling compressive 
load of the sandwich shell which is reinforced by oblique stiffeners 
with deviation angle (γx, γy) = ( π

2 , 0) is lowest of all. The compar-
ison of the critical buckling compressive load between two types 
of sandwich shells 1A and 1B is also shown in Table 1. It is easy to 
see that the critical buckling load of the sandwich shell with type 
1B is higher than one of the sandwich shell with type 1A.

Figs. 6 and 7 show the effect of deviation angle γx on the 
nonlinear post-buckling behaviors of eccentrically oblique stiffened 
sandwich functionally graded double curved shallow shells in case 
of type 1B subjected to external pressure and axial compression, 
respectively. As can be observed, the load carrying capacity of the 
sandwich shell with the deviation angle γx = π/2 is the lowest 
and the load carrying capacity of the sandwich shell with the de-
viation angle γx = π/4 is the highest of all. In other words, the 
Fig. 7. Effects of deviation angle of oblique stiffeners γx on the post-buckling behav-
iors of eccentrically oblique stiffened sandwich functionally graded double curved 
shallow shells subjected to axial compression.

Fig. 8. Nonlinear post-buckling behaviors of eccentrically oblique stiffened sandwich 
functionally graded double curved shallow shells subjected to external pressure in 
two cases of types 1A and 1B.

oblique stiffeners enhance the mechanical properties of the sand-
wich shells more than the orthogonal stiffeners.

Problem 2: Influences of types of functionally graded sandwich dou-
ble curved shallow shells

Figs. 8 and 9 compare the nonlinear post-buckling behaviors of 
eccentrically oblique stiffened sandwich functionally graded dou-
ble curved shallow shells subjected to external pressure and axial 
compression between two types 1A and 1B, respectively. The re-
sults show that the load carrying capacity of the sandwich shell 
with type 1B is higher than one of the sandwich shell with type 
1A.

Problem 3: Influences of elastic foundations

Table 2 indicates the effects of elastic foundations on the criti-
cal buckling compressive loads of the functionally graded sandwich 
double curved shallow shells in case of type 1B. The deviation 
angles of oblique stiffeners are chosen as (γx, γy) = ( π

6 ; π6 ), the 
geometrical parameters are a/Rx = a/R y = 1/5, ht = h/4 and the 
temperature increment is 
T = 300 K. The results from this ta-
ble show that the elastic foundations have positive influences on 
the critical buckling load of the sandwich shells. The critical buck-
ling compressive load of the functionally graded sandwich shell 
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Fig. 9. Nonlinear post-buckling behaviors of eccentrically oblique stiffened sandwich 
functionally graded double curved shallow shells subjected to axial compression in 
two cases of types 1A and 1B.

Table 2
Effects of elastic foundations on the critical buckling compressive loads Pxcr (GPa) 
of functionally graded sandwich double curved shallow shells.

(m,n)
k1 (GPa/m), k2 (GPa m)

0, 0 0.1, 0 0.1, 0.01

(1,1) 7.424 9.066 10.07
(3,3) 5.415 8.512 9.787
(1,5) 4.121 7.059 9.102
(3,7) 3.954 6.623 8.832

Fig. 10. Effect of the Winkler foundation on the post-buckling behaviors of eccen-
trically oblique stiffened sandwich functionally graded double curved shallow shells 
subjected to external pressure.

rises considerably when increasing the coefficients k1 and k2 of 
elastic foundations. The effect of modes (m, n) on the critical buck-
ling load of the sandwich shells is also given in Table 2. It is seen 
that the sandwich shell with modes (m, n) = (1, 1) has the highest 
value of the critical buckling load.

Figs. 10 and 11 illustrate the effects of the Winkler foundation 
modulus k1 and the shear layer foundation stiffness of Pasternak 
model k2 on the nonlinear post-buckling behaviors of eccentri-
cally oblique stiffened sandwich functionally graded double curved 
shallow shells subjected to external pressure, respectively. Clearly, 
post-buckling load carrying capacity of the sandwich shallow shells 
increases significantly due to the support of elastic foundations. 
Furthermore, the effect of Pasternak foundation with coefficient k2
Fig. 11. Effect of the Pasternak foundation on the post-buckling behaviors of eccen-
trically oblique stiffened sandwich functionally graded double curved shallow shells 
subjected to external pressure.

Fig. 12. Effects of temperature increment on the post-buckling behaviors of eccen-
trically oblique stiffened sandwich functionally graded double curved shallow shells.

on the load carrying capacity of the sandwich shell is stronger than 
one of Winkler foundation with coefficient k1.

Problem 4: Influences of temperature increment and pre-loaded axial 
compression

Fig. 12 illustrates the effects of temperature increment 
T on 
the nonlinear post-buckling behaviors of eccentrically oblique stiff-
ened sandwich functionally graded double curved shallow shells 
under axial compression with a/h = 90, a/b = 1, m = n = 1, a/Rx =
a/R y = 0.5. As can be observed, the temperature increment has a 
negative influence on the load carrying capacity of the sandwich 
shell in post-buckling state. Specifically, the load carrying capacity 
of the sandwich shell decreases along with the increase of temper-
ature increment.

Fig. 13 describes the effects of pre-loaded axial compression 
P x on the post-buckling behaviors of eccentrically oblique stiff-
ened sandwich functionally graded double curved shallow shells 
subjected to uniformly external pressure in two cases of distri-
bution of functionally graded face sheets and homogeneous core. 
Although the effect of P x is quite weak, it can be seen that the 
load carrying capacity of the sandwich shell reduces when P x in-
creases. Again, the results from Fig. 13 also show that the load 
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Fig. 13. Effects of pre-loaded axial compression on the post-buckling behaviors of 
eccentrically oblique stiffened sandwich functionally graded double curved shallow 
shells.

Fig. 14. Effects of ratio a/Rx on the post-buckling behaviors of eccentrically oblique 
stiffened sandwich functionally graded double curved shallow shells.

carrying capacity of the sandwich shells with type 1B is higher 
than one of the sandwich shells with type 1A.

Problem 5: Influences of geometrical parameters

The effect of a/Rx ratio on the post-buckling behaviors of ec-
centrically oblique stiffened sandwich functionally graded double 
curved shallow shells subjected to uniformly external pressure is 
shown in Fig. 14. Clearly, the higher the ratio a/Rx is, the higher 
the loading capacity of the sandwich shells is. This conclusion 
is easy to explain because an increase of a/Rx ratio makes the 
sandwich shells become shallower. Consequently, the load carrying 
capacity of the shells rises significantly.

Fig. 15 presents the effect of a/b ratio on the post-buckling 
curves of eccentrically oblique stiffened sandwich functionally 
graded double curved shallow shells subjected to uniformly ex-
ternal pressure. There cases of a/b ratio: 1, 1.5, 2 are considered. 
As can be seen, the load carrying capacity of the sandwich shells 
increase when reducing a/b ratio.

6. Conclusion remarks

This paper presents an analytical approach to study the nonlin-
ear buckling and post-buckling of eccentrically oblique stiffened 
Fig. 15. Effects of a/b ratio on the post-buckling behaviors of eccentrically oblique 
stiffened sandwich functionally graded double curved shallow shells.

sandwich functionally graded double curved shallow shells sub-
jected to axial compressive load, uniform external pressure and 
thermal loads. The shell is reinforced by different oblique stiffeners 
with any deviation angle to the coordinate axis. The basic equa-
tions are established based on improved Donnell shell theory and 
Lekhnitskii’s smeared stiffener technique then solved by Galerkin 
method. The effects of geometrical parameters, oblique stiffeners, 
temperature increment, elastic foundations and types of distribu-
tion on the critical loads and loads – deflection curves of the shells 
are examined. The following conclusions are obtained from numer-
ical results:

• The effect of oblique stiffeners on the load carrying capac-
ity and the critical buckling load of the eccentrically oblique 
stiffened sandwich functionally graded double curved shallow 
shells is stronger than orthogonal stiffeners. Specifically, the 
shell with the deviation angle (γx, γy) = (π/4, π/4) has the 
best load carrying capacity and critical buckling load.

• The sandwich functionally graded shell with type of distribu-
tion 1A (functionally graded face sheets and metal core) is 
better than the sandwich functionally graded shell with type 
of distribution 1B (functionally graded face sheets and ceramic 
core). The critical buckling load and the load carrying capac-
ity of the shell with type 1A are higher than ones of the shell 
with type 1B.

• The elastic foundations have positive effect on the buck-
ling and post-buckling behaviors of the eccentrically oblique 
stiffened sandwich functionally graded double curved shal-
low shells. Furthermore, the effect of Pasternak foundation is 
stronger than Winkler one.

• The critical buckling load and the load carrying capacity of the 
sandwich shell decrease significantly by the presence of tem-
perature.

• The geometrical parameters have considerable influences on 
the nonlinear buckling and post-buckling behaviors of func-
tionally graded sandwich shell.
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Appendix A
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and

A11 = A22 = E1

1 − v2
, A12 = v A11, A66 = E1

2(1 + v)
,

B11 = B11 = E2

1 − v2
, B12 = v B11, B66 = E2

2(1 + v)
,
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1, z, z2)Esh(z)dz,
−h/2
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Appendix B
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