
Proceedings of NAACL-HLT 2019, pages 2902–2912
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

2902

A Richer-but-Smarter Shortest Dependency Path
with Attentive Augmentation for Relation Extraction

Duy-Cat Can1, Hoang-Quynh Le1∗, Quang-Thuy Ha1 and Nigel Collier2

1Faculty of Information Technology, VNU University of Engineering and Technology,

Hanoi, Vietnam
2Department of Theoretical and Applied Linguistics, University of Cambridge, UK

{catcd,lhquynh,thuyhq}@vnu.edu.vn, nhc30@cam.ac.uk

Abstract

To extract the relationship between two enti-

ties in a sentence, two common approaches

are (1) using their shortest dependency path

(SDP) and (2) using an attention model to cap-

ture a context-based representation of the sen-

tence. Each approach suffers from its own dis-

advantage of either missing or redundant in-

formation. In this work, we propose a novel

model that combines the advantages of these

two approaches. This is based on the basic in-

formation in the SDP enhanced with informa-

tion selected by several attention mechanisms

with kernel filters, namely RbSP (Richer-but-

Smarter SDP). To exploit the representation

behind the RbSP structure effectively, we de-

velop a combined deep neural model with

a LSTM network on word sequences and a

CNN on RbSP. Experimental results on the

SemEval-2010 dataset demonstrate improved

performance over competitive baselines. The

data and source code are available at https:

//github.com/catcd/RbSP.

1 Introduction

One of the most fundamental tasks in natural lan-

guage processing, as well as in information extrac-

tion, is Relation Extraction (RE), i.e., determining

the semantic relation between pairs of named enti-

ties or nominals in a sentence or a paragraph. Take

the following sentences from the SemEval-2010

task 8 dataset (Hendrickx et al., 2009) as exam-

ples:

(i) We put the soured [cream]e1 in the butter

[churn]e2 and started stirring it.

(ii) The agitating [students]e1 also put up a

[barricade]e2 on the Dhaka-Mymensingh highway.

Here the nominals ‘cream’ and

‘churn’ in sentence (i) are of relation

∗∗Corresponding author

Entity-Destination(e1,e2) while nom-

inals ‘students’ and ‘barricade’ in sentence (ii) are

of relations Product-Producer(e2,e1).

The research history of RE has witnessed the

development as well as the competition of a vari-

ety of RE methodologies. All of them are proven

to be effective and have different strengths by

leveraging different types of linguistic knowledge,

however, also suffer from their own limitations.

Some early studies stated that the shortest de-

pendency path (SDP) in dependency tree is usu-

ally concise and contains essential information for

RE (Bunescu and Mooney, 2005; Fundel et al.,

2006). By 2016, this approach became dominant

with many studies demonstrating that using SDP

brings better experimental results than previous

approaches that used the whole sentence (Xu et al.,

2015a,b; Mehryary et al., 2016; Cai et al., 2016;

Le et al., 2018). However, using the SDP may

lead to the omission of useful information (i.e.,

negation, adverbs, prepositions, etc.). Recogniz-

ing this disadvantage, some studies have sought to

improve SDP approaches, such as adding the in-

formation from the sub-tree attached to each node

in the SDP (Liu et al., 2015) or applying a graph

convolution over pruned dependency trees (Zhang

et al., 2018b).

Another approach to extract the relation be-

tween two entities is using whole sentence in

which both are mentioned. This approach seems

to be slightly weaker than using the SDP since not

all words in a sentence contribute equally to clas-

sify relations and this leads to unexpected noises

(Nguyen and Grishman, 2015). However, the

emergence and development of attention mecha-

nism (Bahdanau et al., 2015) has re-vitalized this

approach. For RE, the attention mechanism is ca-

pable of picking out the relevant words concern-

ing target entities/relations, and then we can find

critical words which determine primary useful se-

https://github.com/catcd/RbSP
https://github.com/catcd/RbSP
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mantic information (Zhou et al., 2016; Verga et al.,

2018). We therefore need to determine the object

of attention, i.e., nominals themselves, their entity

types or relation label. However, conventional at-

tention mechanism on sequence of words cannot

make use of structural information on dependency

tree. Moreover, it is hard for machines to learn the

attention weights from a long sequence of input

text.

In this work we propose an enhanced represen-

tation for relations that combines the advantages

of the above approaches. Basically, we focus on

condensed semantic and syntactic information on

the SDP. Compensating for the limitations of the

SDP may still lead to missing information so we

enhance this with syntactic information from the

full dependency parse tree. Our idea is based on

fundamental notion that the syntactic structure of a

sentence consists of binary asymmetrical relations

between words (Nivre, 2005). Since these depen-

dency relations hold between a head word (parent,

predicate) and a dependent word (children, argu-

ment), we try to use all child nodes of a word in the

dependency tree to augment its information. De-

pending on a specific set of relations, it will turn

out that not all children are useful to enhance the

parent node; we select relevant children by apply-

ing several attention mechanisms with kernel fil-

ters. This new representation of relation is named

Richer-but-Smarter SDP (RbSP).

Recently, deep neural networks (DNNs) have

been effectively used to learn robust syntactic and

semantic representations behind complex struc-

tures. Thus, we propose a novel DNN frame-

work which combines Long Short-Term Memory

(LSTM) (Hochreiter and Schmidhuber, 1997) and

Convolutional Neural Networks (CNN) (LeCun

et al., 1989) with a multi-attention layer.

Our work has three main contributions:

• We proposed a novel representation of rela-

tion based on attentive augmented SDP that

overcomes the disadvantages of traditional

SDP.

• We improved the attention mechanism with

kernel filters to capture the features from con-

text vectors.

• We proposed an advanced DNN architecture

that utilizes the proposed Richer-but-Smarter

Shortest Dependency Path (RbSP) and other

types of linguistic and architectural features.

2 Related Work

RE has been widely studied in NLP commu-

nity for many years. Unsupervised (Hasegawa

et al., 2004; Yan et al., 2009; Quan et al., 2014),

semi-supervised (Chen et al., 2006; Carlson et al.,

2010; Ammar et al., 2017) and distant supervision

(Verga et al., 2018; Ji et al., 2017) methods have

been proven effective for the task of detecting re-

lations from unstructured text. However, in this

paper, we mainly focus on supervised approaches,

which usually have higher accuracy. In earlier RE

studies, researchers focused on extracting various

kinds of linguistic features, including both syn-

tactic features and semantic cues (Chan and Roth,

2010; Nguyen and Grishman, 2014). However, all

the feature-based methods depend strongly on the

quality of designed features from an explicit lin-

guistic pre-processing step.

Based on the idea that SDPs contain the es-

sential information for RE, many studies exploit

it with several refinements. Typical refinements

include negative sampling (Xu et al., 2015a) and

BRCNN (Cai et al., 2016) which model the di-

rected shortest path. Liu et al. (2015) suggested

incorporating additional network architectures to

further improve the performance of SDP-based

methods, which uses a recursive neural network

to model the sub-tree. Some works utilized infor-

mation over the whole dependency tree, such as

Li et al. (2017) used dynamic extended tree con-

ditioned LSTM for RE and Panyam et al. (2018)

exploited whole dependency graph for relation ex-

traction in biomedical text.

Recently, with the introduction and develop-

ment of attention mechanism, many works tend

to use whole sentence or paragraph and focus on

the most relevant information using attention tech-

nique. Some studies apply a single attention layer,

that focus on the word itself (Shen and Huang,

2016; Zhang et al., 2018a); word position (Zhang

et al., 2017) and global relation embedding (Su

et al., 2018). Other works apply several attention

layers, such as word, relation and pooling attention

(Wang et al., 2016), multi-head attention (Verga

et al., 2018) and word- and entity-based attention

(Jat et al., 2017). Luo et al. (2018) used a bidirec-

tional Long Short-Term Memory architecture with

an attention layer and a tensor layer for organizing

the context information and detecting the connec-

tions between two nominals.
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cream put churn 

the soured We the butter 

dobj prep:in 

det amod nsubj comp det 

students put barricade 

The agitating a highway 

nsubj dobj 

det amod prep:on det 

also up 

advmod prt 

Figure 1: Examples of SDPs and attached child nodes.

3 Richer-but-Smarter SDP

As previously mentioned, we utilize the con-

densed information in the SDP to learn the relation

between two nominals. The simple structure of

the SDP is one of its weaknesses since there exists

some useful information in dependency tree that

does not appear in the SDP. This information can

be leveraged to represent the relation more pre-

cisely. Two examples in Figure 1 belong to dif-

ferent relation types, but the paths between two

nominals in these examples contain only one token

(“put”). However, the meaning of token “put” in

two SDPs are completely different. In this situa-

tion, it is difficult for the machine to distinguish

the two shortest dependency paths from these in-

stances.

We notice that the child nodes attached to the

shortest dependency paths and their dependency

relation from their parent can provide supplemen-

tal information for relation classification. In the

previous examples, the sub-structure “−prt→ up”

provides semantic information about token ‘put”

in the specific sentence to make it discriminated

from the stand-alone one. Based on similar ob-

servations, we propose the idea of combining sub-

tree information with original SDP to form a more

precise structure for classifying relations. In this

RbSP structure each token t is represented by it-

self and its attached children on the dependency

tree.

4 Proposed Model

The overall architecture of our proposed model

is shown in Figure 2. Given a sentence and

its dependency tree, we build our model on the

SDP between two nominals and its directed chil-

dren on the tree. Here, we mainly focus on the

SDP representation, which is composed of de-
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Figure 2: The architecture of RbSP model for relation

classification. A CNN model is applied to the output of

the SDP representation. Our proposed model takes the

Augmented SDP between two nominals that includes

dependencies, tokens and their children as input.

pendency embeddings, token embeddings, and to-

ken’s augmented information. After SDP repre-

sentation phase, each token and dependency rela-

tion is transformed into a vector. This sequence of

vectors is then fed to a convolutional neural net-

work to capture the convolved features that can be

used to determine which relation two nominals are

of.

4.1 SDP Representation

The goal of this phase is to represent each compo-

nent on the shortest path (dependency relation and

token) by a corresponding vector. We concatenate

the dependency type and dependency direction to

form the embedding for a dependency relation, a

non-linear transformer is followed to produce the

final D-dimensional representation di ∈ R
D of

i-th dependency relation as follow:

di = tanh
([

d
typ
i ⊕ ddir

i

]

Wd + bd

)

(1)

where dtyp ∈ R
dimtyp and ddir ∈ R

dimdir

are dependency type and direction respectively;

Wd ∈ R
(dimtyp+dimdir)×D and bd ∈ R

D are

trainable parameters of the network.
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For token representation, as mentioned above,

we assume that each token should be interpreted

by itself and its children. Then, the word informa-

tion ti of each token on the SDP is concatenated

with its attentive augmented information ai based

on the attached children (which is calculated by

Multi-layer attention with Kernel filters, see Sec-

tion 4.2). In this work, we utilize four types of

embeddings to represent the word information of

each token, including:

• Pre-trained fastText embeddings (Bo-

janowski et al., 2017): which learned the

word representation based on its external

context.

• Character-based embeddings: we use an in-

ternal LSTM to learn the information about

word morphology (like the prefix or suffix).

• POS tag embeddings: we embed the token’s

grammatical tag using a randomly initialized

look-up table and update this parameter on

model learning phase.

• WordNet embeddings: which is in form of

a sparse vector that figure out which basic

WordNet synsets the token belongs to.

To take advantage of the original sentence se-

quence information, we use a recurrent neural net-

work with LSTM units to pick up the information

along the sentence S = {ti}
n
i=1 as follow:

H =
←−−−−→
biLSTM(S) = {hi}

n
i=1 (2)

Each token ti is then augmented by the cor-

responding hidden state hi from H. Finally,

this concatenation is transformed into an X-

dimensional vector to form the representation xi ∈
R
X of the token. I.e.,

xi = tanh ([ti ⊕ ai ⊕ hi]Wx + bx) (3)

where Wx and bx are trainable parameters of

the network.

4.2 Multi-layer attention with Kernel filters

To capture the appropriate augmented information

from the child nodes of each token, we propose a

novel multi-layer attention with kernel filters ar-

chitecture. As illustrated in Figure 3, we employ

two sequential attention layers on the children of
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Figure 3: The multi-layer attention architecture to ex-

tract the augmented information from the children of

a token on SDP.
⊕

denotes the concatenation of com-

ponents.
⊗

denotes the scalar multiplication. Kernel

filters are applied on context vectors to capture the fea-

tures by convolution operation.

a token to produce children context vectors. Af-

terward, to utilize all informative child nodes and

preserve the integrity of the word information, we

capture the token’s augmented information using

kernel filters instead of using the average of con-

text vectors weighted by multi-layer attention.

Given a token t and their child nodes, we first

represent every token by a real-valued vector to

provide lexical semantic features. Token t is trans-

formed into a token embedding vector t ∈ R
dim

which is the concatenation of its word embedding

and part-of-speech (POS) tag embedding. To uti-

lize all the information in the sub-structure of to-

ken’s children, we form a child node not only by

its token embedding as in parent node but also by

the dependency relation from its direct ancestor on

the sentence’s parse tree. Suppose t has a set C of

M children, i.e., C = {c1, c2, ..., cM}. Our model

represents each child in C with a real-valued vec-

tor ci ∈ R
dim+dimdep . To additionally capture in-

formation about the child node to the target token,

we incorporate the position embeddings di to re-

flect the relative distances between the i-th child’s

token to the target token on the original sentence.

We then apply a simple self-attentive network

to child nodes {ci}
M
i=1 where the attention weights
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are calculated based on the concatenation of them-

selves with parent information and distance from

parent, as follow:

C̄ =
{

ci ⊕ t⊕ diwd

}M

i=1
=

{

c̄i
}M

i=1

e =
{

c̄iWe + be
}M

i=1
=

{

ei
}M

i=1

αs
i =

exp(ei)
∑M

k=1 exp(ek)

(4)

where ⊕ denotes the concatenation operation;

wd ∈ R
dimd is the base distance embedding;

We ∈ R
(2dim+dimdep+dimd)×1 and be ∈ R are

weight and bias term. The self-attentive context

vector as of the target token is the weighted sum

of the self-attentive children context vectors based

on the weights as follows:

csi = αs
ici

as =
∑

i

csi
(5)

We observe that the importance of a child node

to the parent node depends on the distance be-

tween them on the original sentence. Therefore,

we apply a heuristic attentive layer on the self-

attentive children context vectors based on the dis-

tances d1, d2, ..., dM to keep track of how close

each child is to the target token. We heuristically

choose the activation function for the distances

d1, d2, ..., dM as f(d) = βd2 with β = −0.03,

and a softmax layer is followed to calculate the

heuristic attention weight. I.e.,

αh
i =

exp(βd2i )
∑N

k=1 exp(βd
2
k)

chi = αh
i ci

ah =
∑

i

chi

(6)

The multi-attentive context vector ah is a syn-

thetic representation of all child nodes with the tar-

get token node taken into account. Since the child

nodes are usually distinct from each other, an aver-

age vector is not suitable to represent the children

information. We propose to use the kernel filters

to capture the relevant and important information

from the output of the multi-attention layer. K

kernel filters are applied to each child’s attentive

vector to produce K features from each child. I.e.,

F =
{

ReLU
(

chi Wf + bf

)}M

i=1
(7)

where Wf ∈ R
(2dim+dimdep+dimd)×K is the

weight of K kernel filters; and bf ∈ R
K is bias

term. Finally, to produce the final augmented in-

formation a, we apply a max-pooling (Boureau

et al., 2010) layer to the feature matrix F and se-

lect the most important features as follow:

a =
{

max
(

F
⊺

k

)}K

k=1
(8)

4.3 CNN on RbSP

After SDP representation layer, the input SDP is

transformed into:

SDP =
[

x1,
←−
d1,x2, ...,xN−1,

−−−→
dN−1,xN

]

(9)

where the over arrow on di denotes the direc-

tion of the dependency relation. We build the CNN

model on this SDP; our model is similar to the

model of Xu et al. (2015a). In general, let us de-

fine the vector xi:i+j as the concatenation of j to-

kens and j−1 dependency relation between them.

I.e.,

xi:i+j = xi ⊕ di ⊕ xi+1 ⊕ ...⊕ di+j−2 ⊕ xi+j−1

(10)

The convolution operation with region size r

applies k filters to all possible window of r suc-

cessive tokens to produce convolved feature map.

We then gather the most important features by ap-

plying a max pooling (Boureau et al., 2010) layer

over the entire feature map. I.e., the convolutional

layer computes the i-th element of the convolved

feature vector f as follows:

fi = max
0≤j≤N−r+1

[xj:j+rWc + bc]i (11)

where Wc ∈ R
(rX+(r−1)D)×k and bc ∈ R

k

are the weight matrix and bias vector of the con-

volutional layer. The output f of the convolutional

layer is then fed to a softmax classifier to predict a

(K + 1)-class distribution over labels ŷ:

ŷ = softmax (fWy + by) (12)

where Wy and by are parameter of the network

to be learned.
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4.4 Model Training

The proposed model can be stated as a parameter

tuple θ = (W,b). To compute the model param-

eters θ, we define the training objective for a data

sample as:

L(θ) = −

K
∑

i=0

yi log ŷi + λ ‖θ‖2 (13)

where y ∈ {0, 1}(K+1) indicating the one-hot

vector represented ground truth; and λ is a reg-

ularization coefficient. By minimizing L(θ) us-

ing mini-batch gradient descent (GD) with Adam

optimizer (Kingma and Ba, 2014), θ is updated

through neural network structures.

4.5 Additional techniques

For this paper, we directly utilize the pre-trained

fastText word embeddings model (Bojanowski

et al., 2017) which is trained on Wikipedia data.

The look-up tables for dependency embeddings,

word characters, POS tags are randomly con-

structed using the Glorot initializer (Glorot and

Bengio, 2010) and are treated as the parameters

to be learned during the training phase.

Since the CNN model takes the fixed size ma-

trix as input, we pad the inputs in each batch of

data dynamically to the longest input length of

the batch. We further use the batch normalization

(Ioffe and Szegedy, 2015) which is able to enable

higher learning rates and reduces over-fitting.

During the training phase, we make use of sev-

eral techniques, including: clipping the gradients

if their norm exceeds a given threshold (Goldberg,

2017); applying dropout (Srivastava et al., 2014)

with the probability of 0.5 on embeddings layer,

CNN hidden states, and penultimate layer; and us-

ing early stopping (Caruana et al., 2001) by vali-

dation loss.

Further, to reduce the impact of random effects

on our model, we employ the ensemble mecha-

nism (Krogh and Sollich, 1997). For this study,

we run the model for 20 times and uses the strict

majority vote to obtain the final results.

5 Experimental Evaluation

5.1 Dataset

Our model was evaluated on SemEval-2010 Task

8 dataset (Hendrickx et al., 2009), which contains

10, 717 annotated relation classification examples

and is separated into two subsets: 8, 000 instances

for training and 2, 717 for testing. We randomly

split 10 percents of the training data for validation.

There are 9 directed relations and one undirected

Other class.

We conduct the training-testing process 20
times and calculate the averaged results. For eval-

uation, the predicted labels were compared to the

golden annotated data using standard precision

(P), recall (R), and F1 score metrics.

5.2 Performance of the RbSP Model

Table 1 summarizes the performance of our model

and comparative models. For a fair comparison

with other researches, we implemented a base-

line model, in which we remove all the pro-

posed augmented information (multi-layer atten-

tion with kernel filters and LSTM on original

sentence). This baseline model is similar to the

model of Xu et al. (2015a) with some technical im-

provements and additional information sources. It

yields higher F1 than competitors which are based

on SDP without any data augmentation methods.

This result is also comparative when is placed next

to the result of basic Attention-CNN model.

The results also demonstrate the effectiveness

of our proposed methods that brings an improve-

ment of 1.5% in F1, compared to the baseline

result. Our RbSP model yields an F1-score

of 86.3%, outperforms other comparative mod-

els, except Multi-Att-CNN model of Wang et al.

(2016) with multi-level attention CNN. However,

we have tried to re-implement the Multi-Att-CNN,

but we failed to reproduce the positive result in

the original paper. The performance of our re-

implementation is about 84.9% of F1. This result

has a high consensus with Luo et al. (2018) since

they also tried to re-build this model, and their re-

implemented result is not much different from us,

as 85.5%.

It is worth to note that when comparing with

another augmented method of Liu et al. (2015),

our multi-layer attention with kernel filters ar-

chitecture brings more significant improvement.

Relatively, in comparison of efficiency of aug-

mented methods on the baseline model, the full-

tree augmentation only brings 1% improvement of

F1 while our attentive augmentation boosts up to

1.5%. Unlike the method of using the whole sub-

tree to supplement information for the target node,

our method only uses the most relevant nodes that

are direct children to represent augmented infor-



2908

Model Source of information F1

depLCNN

(Xu et al., 2015a)

Word embeddings, SDP, CNN 81.9

+ WordNet, word around nominals 83.7

+ Negative sampling 85.6

BRCNN

(Cai et al., 2016)

Word embeddings, SDP, LSTM, CNN 85.4

+ POS, NER, WordNet embeddings, inverse SDP 86.3

DepNN

(Liu et al., 2015)

200-d Gigaword embeddings, SDP, CNN 81.8

+ Augmented sub-tree, Recursive Neural Network 82.8

+ NER 83.6

Attention-CNN

(Shen and Huang, 2016)

Sentence convolution, Attention-based context 84.3

+ WordNet, Words around nominals 85.9

AT-BLSTM

(Luo et al., 2018)
Word embeddings, Sentence attention features, Tensor feature 86.3

Multi-Att-CNN

(Wang et al., 2016)
Multi-Level Attention CNNs, Attention pooling

88.0†

85.5‡

Baseline Word embeddings, POS tag, WordNet 84.8

RbSP

(our model)

Baseline + Augmented Information 86.3

+ ensemble 86.7

Table 1: The comparison of our RbSP model with other comparative models on SemEval-2010 task 8 dataset.

The reported results are macro-averaged F1 scores of (9+1)-way evaluation with directionality taken into account.

Since the comparative models did not report the precision (P) and recall (R), we also report the F1 score only. †:

We failed to reproduce good result with the Multi-Att-CNN model, the performance of our implementation is just

about 84.9. ‡: Another re-implemented result of Multi-Att-CNN model reported by Luo et al. (2018).

mation. In addition, our method further focuses

on the most important children through two atten-

tion layers.

We also observe that during many training-

testing processes, the results may vary. The stan-

dard deviation of 20 runs is about 0.27. We per-

form the ensemble strategy by majority voting on

the results of 20 runs, and it drives our model to

achieve a better result of 86.7%. This result is out-

performed other comparative models.

5.3 Contribution of different components

Figure 4 shows the changes in F1 when removing

each proposed component from the RbSP model.

The F1 reductions illustrate the contributions of all

proposals to the final result. However, the impact

levels vary with different components. Between

two proposed component, the multi-layer attention

with kernel filters (augmented information) plays

a vital role when contributing 1.22% to the final

performance while the contribution of the LSTM

on the original sentence is 0.33%.

An interesting observation comes from the inte-

rior of the multi-layer attention with kernel filters.

The impact of removing the whole augmented in-

formation is much higher than the total impact

of removing multi-layer attention or kernel filters

(1.22 vs. 0.42+0.18 = 0.6). These results demon-

strate that the combination of constituent parts is

thoroughly utilized by our sequential augmented

architecture.

Another experiment is on investigating the

meaning of each attention component. The result

lightly reduces when we remove the self-attention

or heuristic attention component. The results also

prove that our proposed heuristic attention method

is simple but effective. Its improvement is equiva-

lent to the self-attention which is a complex atten-

tion mechanism. Among the input of multi-layer

attention, the word embedding has a great influ-

ence on the model performance. However, chil-

dren POS tag and relation to parent are also essen-

tial components to have the good results.

5.4 Results Analysis

We studied model outputs to analyze system errors

in the cases of using the baseline model and using

the proposed model with RbSP representation.

In Figure 5, we considered four types of errors:

If the model makes a wrong decision and labels

an Other relation (negative) as an actual relation

(positive), it indicates 1 FP (False Positive) error.
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0.33

0.66

0.26

0.33

0.09

0.12

0.18

0.42

1.22

sLSTM

Aword

APOS

Arel

SAtt

HAtt

MAtt

KF

Ainfo

F1 reduction (%)

Figure 4: Comparing the contribution of proposed

components by removing these components from

the model: self-attention (SAtt), heuristic attention

(HAtt), multi-layer attention (MAtt), kernel filers (KF),

augmented information (Ainfo), augmentation using

word embedding (Aword), augmentation using POS

tag (APOS), augmentation using dependency relation

(Arel), and LSTM on original sentence (sLSTM). F1

reduction is calculated by the average result of 20 runs.

Vice versa, if it labels an actual relation as Other,

it brings 1 FN (False Negative). In the case that

model confused between two types of relations,

the model will be penalized twice, with 1 FP and

1 FN. Direction error, i.e., the model predicts the

relation correctly but its direction wrongly, also

brings 1 FP and 1 FN. The proportions of the left

and the right of Figure 5 are quite consistent. In

which, RbSP seems to have the most impact on

determining whether an instance is positive or neg-

ative. RbSP also changes the decision of the rela-

tion type in quite many cases. It also influences

the decision-making about relation’s directional-

ity, but not much.

Totally, the use of RbSP helps to correct more

than 150 errors of the baseline model. However,

it also yields some new errors (about 70 errors).

Therefore, the difference of F1 between the base-

line model and our RbSP model is only 1.5%, as

stated in table 1.

Table 2 gives some realistic examples of

different results when using the RbSP and not.

We observed that the baseline model seems

to be stuck in over-fitting problem, for ex-

amples, it classified all SDP with prep:with

as Instrument-Agency and all SDP with

prep:in as Member-Collection (exam-

44%

19%

31%

6%

RbSP Improvements

Removing wrong relations

Finding new relations

Fixing relation type

Fixing relation direction

39%

18%

40%

3%

RbSP Breakdowns

New wrong relations

Missing relations

Wrong relation type

Wrong relation direction

Figure 5: Comparing the effects of using RbSP in two

aspects, (i) RbSP improved performance and (ii) RbSP

yielded some additional wrong results. Four types of

errors are analyzed, note that actual relations are con-

sidered as positive relations while Other is considered

as negative: Labelling an Other relation as an actual

relation; labelling an actual relation as Other; Confu-

sion between types of relations; Direction errors.

ples 1 − 2). RbSP is really useful for solving

these cases partly since it uses attentive aug-

mentation information to distinguish the same

SDP or the same preposition with different

meanings. RbSP is also proven to be stronger

in examples 3 − 4 to find new results and

examples 5 − 7 to fix wrong results. In our

statistic, the use of RbSP bring the big advan-

tage for the relations Component-Whole,

Message-Topic, Entity-Destination,

Product-Producer and Instrument-

Agency. The results are almost constant for

Member-Collection relations. Vice versa,

we regret to state that using RbSb brings some

worse results (examples 8 − 11), especially for

Cause-Effect and Content-Container

relations.

Many errors seem attributable to the parser or

our model’s limitations that still cannot be over-

come by using the RbSP (Examples 12− 13). We

listed here some highlight problems to prioritize

future researches (a) information on the SDP and

its child nodes is still insufficient or redundant to

make the correct prediction, (b) the direction of

relations is still challenging since some errors ap-

peared because we predict the relation correctly

but its direction wrongly (c) the over-fitting prob-

lem (leading to wrong prediction - FP) and (d)

lacking in generality (cannot predict new relation

- FN).
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# SID† SDP
Label∗

Golden RbSP Baseline

1 8652 Heating prep:with wood Other Other IA-21

2 10402 officer prep:of college Other Other MC-12

3 9728 news acl crashed nsubj plane MT-12 MT-12 Other

4 8421 lane prep:on road CW-12 CW-12 Other

5 9092 hurts prep:from memories EO-12 EO-12 CE-21

6 8081 bar prep:of seats CW-12 CW-12 MC-21

7 10457 show nsubj offers dobj discussion MT-12 MT-12 MT-21

8 10567 stand prep:against violence Other MT-12 Other

9 10296 fear prep:from robbers CE-21 Other CE-21

10 9496 casket nsubjpass placed prep:inside casket CC-12 ED-12 CC-12

11 9734 documents acl discussed prep:at meeting MT-21 MT-12 MT-21

12 9692 rhyme prep:by thing PP-12 Other Other

13 10562 profits prep:from inflation Other CE-21 CE-21

Table 2: The examples of error from RbSP and Baseline models. The predicted labels are from the best runs.
†SIDs are sentence IDs in the testing dataset. ∗Abbreviation of relations: CC (Content-Container), CE

(Cause-Effect), CW (Component-Whole), ED (Entity-Destination), EO (Entity-Origin),

IA (Instrument-Agency), MC (Member-Collection), MT (Message-Topic), PP

(Product-Producer). ∗Abbreviation of relation directions: 12 (e1,e2), 21 (e2,e1).

6 Conclusions

In this paper, we have presented RbSP, a novel rep-

resentation of relation between two nominals in a

sentence that overcomes the disadvantages of tra-

ditional SDP. Our RbSP is created by using multi-

layer attention to choose relevant information to

augment a token in SDP from its child nodes. We

also improved the attention mechanisms with ker-

nel filters to capture the features on the context

vector. We evaluated our model on SemEval-2010

task 8 dataset, then compared the results with very

recent state-of-the-art models. Experiments were

also constructed to verify the rationality and effec-

tiveness of each of the model’s components and

information sources. The results demonstrated

the advantage and robustness of our model, in-

cludes the LSTM on the original sentence, combi-

nation of self-attention and heuristic mechanisms

and several augmentation inputs as well. The anal-

ysis of the results still points our some weaknesses

of the model. We aim to address them and fur-

ther extensions of our model in future works. We

released our source code and data on the public

repository to support the re-producibility of our

work and facilitate other related studies.
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