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ABSTRACT
Closeness centrality is an substantial metric used in large-scale net-
work analysis, in particular social networks. Determining closeness
centrality from a vertex to all other vertices in the graph is a high
complexity problem. Prior work has a strong focuses on the algo-
rithmic aspect of the problem, and little attention has been paid to
the definition of the data structure supporting the implementation
of the algorithm. Thus, we present in this paper an efficient algo-
rithm to compute the closeness centrality of all nodes in a social
network. Our algorithm is based on (i) an appropriate data structure
for increasing the cache hit rate, and then reducing amount of time
accessing the main memory for the graph data, and (ii) an efficient
and parallel complete BFS search to reduce the execution time. We
tested performance of our algorithm, namely BigGraph, with five
different real-world social networks and compare the performance
to that of current approaches including TeexGraph and NetworKit.
Experiment results show that BigGraph is faster than TeexGraph
and NetworKit 1.27-2.12 and 14.78-68.21 times, respectively.
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1 INTRODUCTION
Social networks are omnipresent for all country and they become a
significant way in order to connect people in our networked society.
Facebook, Twitter, YouTube and WhatsApp are notable ones in our
modern life. As the statistic provided by The Statistics Portal in
July 2018, the number of active users of Facebook is 2.196 billions;
Youtube is 1.9 billion and WhatsApp surpassed 1.5 billion [19].

In the trend of developing e-government, management and ex-
ploitation of social networks is an important task that enables the
promotion of citizen participation in government. In addition, social
networks can be seen as the effective means of interacting between
citizens and state agencies [10],[4].

Graph theory has been considered as a proper methodology for
modeling social networks. A member of a social network is gener-
ally modeled by a vertex, and the direct relationship between two
members is represented by an edge. In order to manage the social
network, many social network analysis (SNA) methods have been
proposed and exploited in practice. SNA is defined as the process
of investigating social structures through the use of networks and
graph theory [15]. Thus, it is now considered as a key technique in
modern sociology.

One of the most important things that we have considered to
perform a network analysis is determining the centrality of a node
within a social network. In other words, for a SNA, we should figure
out which node has the most effect on the others [14]. Thus, the
centrality of a node allows us to identify the most important users
within a network [5]. One of the most widely used indicators is
closeness centrality and we focus only this indicator in our work.

Computing the closeness centrality of a node in a social network
requires solving the all pairs shortest path problem. Thus, it needs
to perform a complete breadth-first search (BFS) for an unweighted
network or a complete run of Dijkstra’s algorithm for a weighted
network. The computational effort for this task is often impractical
for very large real-world social networks [16].

In this paper, we propose a method to improve the performance
of computing the closeness centrality indicator on unweighted
social networks. To gain this purpose, we propose an appropriate
data structure for modeling the network and a strategy to parallelize
the execution of complete BFS search.

https://doi.org/10.1145/_4
https://doi.org/10.1145/_4
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The rest of this paper is organized as follows. Section 2 presents
preliminaries and relatedwork. Section 3 details our efficientmethod
for improving the performance of both updating and computing
operations. In Section 4, we summarize our experiments to verify
and benchmark our approach. Finally, the last section provides
some conclusions and future works.

2 PRELIMINARIES AND RELATEDWORK
2.1 Notations
In this article, we focus only on undirected and unweighted social
networks. A undirected and unweighted network can be repre-
sented as a graphG(V ,E)whereV is the set of all members (vertices)
and E = {(vi ,vj )|vi ,vj ∈ V } represents the set of all relationships
(edges) (vi and vj are connected with a single unweighted link).
Note that in such graph, (vi ,vj ) ≡ (vj ,vi ). The total number of
edges to (incoming) and from (outgoing) a vertex vi is called the
degree of vi and is represented as deд(vi ).

Two nodes u,v ∈ V are connected if there exists a path between
u and v . If all vertex pairs in G are connected we say that G is con-
nected. Otherwise, it is disconnected and each maximal connected
subgraph of G is a connected component, or a component, of G.

In our work, we use dst(u,v) to denote the length of the shortest
path between two vertices u,v in a graphG . If u and v are identical
then dst(u,v) = 0. Moreover, if u and v are disconnected then
dst(u,v) = ∞.

In social network analysis, the centrality of a node allows identi-
fying the most important users within a network. Centrality con-
cepts are also applied in other problems such as key infrastructure
nodes in the Internet and super-spreaders of disease. There are four
indicators of centrality defined as follows:

Definition 2.1. Degree Centrality is defined as the number of
links incident upon a node. It is measured by the following formula:

CD(v) = deд(v) : v ∈ V (1)

Definition 2.2. Closeness Centrality is the indicator computed
by the average length of the shortest path between the node and
all other nodes in the network.Thus the more central a node is, the
closer it is to all of other nodes. Closeness Centrality is computed
by the following formula:

CC(v) =
1∑

u dst(u,v)
: n ∈ V , (2)

where dst(u,v) is the shortest distance between node u and node v .
In this paper, in order to avoid the value∞ when compute the

shortest distance of a disconnected graphG, we will compute the
CC of a node v for the largest-component ΓG of G. Moreover, if a
node u cannot reach any other node in G, then CC(u) = 0.

Definition 2.3. Betweenness Centrality is defined as a central-
ity measure of a node within a network that quantifies the number
of times a node acts as a bridge along the shortest path between
two other nodes. It was introduced as a measure for quantifying
the control of a human on the communication between other hu-
mans in a social network by Linton Freeman [6]. In his conception,
vertices that have a high probability to occur on a randomly chosen
shortest path between two randomly chosen vertices have a high

betweenness. Betweenness Centrality is computed by the following
formula:

BC(v) =
∑

s,v,t ∈V

σst (v)

σst
, (3)

where σst is total number of shortest distances from node s to node
t and σst (v) is the number of those paths that pass through v .

Definition 2.4. Eigenvector Centrality is an indicator to mea-
sure the influence of a respective node in a social network. This in-
dicator allows to assign a relative score to all influence nodes based
on the concept of connection to high scoring participating nodes
whose contribution is more to the score of the node in question
than equality [11]. Examples of variants of Eigenvector Centrality
are Katz Centrality and Google’s Page Rank.

The adjacency matrix is used to compute the Eigenvector Cen-
trality. Let A = (au,v ) be the adjacency matrix of G: au,v = 1 if
node u is linked to nodev and au,v = 0 otherwise. The Eigenvector
Centrality x of node v can be defined as:

xv =
1
λ

∑
t ∈M (v)

xt =
1
λ

∑
t ∈G

av,txt , (4)

where M(v) is a set of the neighbors of v and λ is a constant. In
matrix form we have: λx = xA.

2.2 Related Work
Closeness is a traditional definition of centrality, and consequently it
was not designed with scalability in mind [9]. Moreover, computing
the closeness centrality in large-scale networks is incapable due to
the computational complexity [2]. One of the simplest solutions
considered was to define different measures that might be related
to closeness centrality [9].

Parallelization of Algorithm 1 is one of the most effective ways to
improve the performance of CC computation in a real-world social
networks. This approach exploits the multicore/multichip comput-
ers and presented in a lot of works [1],[8], [20],[21]. However, these
works were not considered the memory hierarchic organization
in computer: if we have a good data structure, we can reduce the
cache misss rate and increase the cache hit rate. Thus, due of the
CPU cache organization, when a process needs to handle a big data,
the consecutive item list is the best way to allow having the highest
cache hit rate [3].

There are tools and libraries that can feasibly be used to perform
the manipulation on the social networks. NetworkX, for instance, is
a Python language software package for the creation, manipulation,
and study of the structure, dynamics, and functions of complex
networks and graph [8]. SNAP C++ library [13] is very popular
for a general purpose, high-performance system for analysis and
manipulation of large networks. These tools also support methods
to compute the closeness centrality indicator. However, they are
not optimized in order to exploit the multicore/multichip offers in
the current computer architecture.

For processing large-scale graphs in distributed and parallel
computation, GraphLab [22] and PowerGraph [7] are remarkable
systems. They are efficient for general purposes in case of having a
dominant computing platform such as clusters and supercomputers
[22]. Nevertheless, they are not adequate for the closeness centrality
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computation for the real-world networks in the context of medium
computing platforms, similar to NetworkX and SNAP C++.

NetworKit [20], TeexGraph [21] and GraphLab [22] are notable
for processing the large social networks in parallel computation.
We will use these tools to evaluate and analyze our solution and
compare to them.

3 A FAST ALGORITHM OF CLOSENESS
CENTRALITY COMPUTATION

3.1 Overview
Since the major of real-world social networks have the mutual
unweighted relationship between two members, we focus only
on the Closeness Centrality indicator CC in a unweighted and
undirected real-world social network G.

The pseudo-code is described in Algorithm 1. The later uses the
breadth-first search (BFS) from each node v of V and accumulates
to computed CC[v].

Algorithm 1: Basic Closeness Centrality Computation
Data: G = (V ,E)
Result: CC[.] for all v ∈ V
CC[v] ← 0,∀v ∈ V ;
Sum[v] ← 0,∀v ∈ V ;
foreach s ∈ V do

FC[s] ← 0;
Q ← empty queue;
Q .push(s);
dst[s] ← 0;
CC[s] ← 0;
dst[v] ← −1,∀v ∈ V s;
while Q is not empty do

v ← Q .pop();
forall w ∈ ΓG (v) do

if dis[w] = ∞ then
Q .push(w);
dst[w] ← dst[v] + 1;
Sum[v] ← dst[w];

end
end

end
CC[s] ← 1/Sum[s] ;

end
returnCC[.];

The complexity of Algorithm 1 is O(|V | ∗ (|V | + |E |)). For the
large networks such a Facebook, Youtube, the execution time to
compute the closeness centrality for all nodes is also very high:
for a small dataset collected from ground-truth communities of
Youtube, computing the closeness centrality for all 1,134,890 nodes,
2,987,624 edges consumes 147924.4 seconds (see Table 1).

Our solution to compute the closeness centrality is based on
both (i) an appropriate data structure for increasing the cache hit
rate and reducing amount of time accessing the main memory for

the graph data, and (ii) parallelization of the closeness centrality
computation in order to exploit all capability of CPU.

3.2 Appropriate Data Structure
We encode the vertices from 0 to |V | − 1. For the graph edges, there
are three main structure types: (i) edge lists, (ii) adjacency matrices
and (iii) adjacency lists. In large scale graphs, the adjacencymatrices
representation cannot be used because of the limit of main memory
size. The edge list structure is simple, but the operations on the
graph, such as insertion and deletion, are difficult. The appropriate
way to represent the large-scale edges of the graph is the adjacency
list structure [3].

For managing big data, the consecutive item list is the best way
to achieve the highest cache hit rate [17]. Moreover, in this research,
we mainly examine large social networks which have no more than
four billion members. Therefore, each member is identified by a
32-bit integer.

From the above ideas, the graph data is represented by the adja-
cency lists described as follows: (i) each node/vertice is represented
by a 4-byte integer; (ii) all outgoing nodes of a node u are stored in
a sorted vector. Thus, a graph can be represented by a vector arrays
Edдes[u]∀u ∈ V .

3.3 Efficient Parallel Algorithm
To perform the BFS search from a node u, we use a bitmap array,
namelyMaps , for remarking traveled nodes. We also use a specific
queue in order to store also the distance from current node to the
node in queue.

To exploit profit of multicore/multichip CPUs, the computation
of closeness centralitywill be executed in parallel.Wewill use global
queues and maps pre-allocated for all threads in the computing
system. Cilk Plus is used for performing queries in parallel1. We
implemented our solution based on multi-threaded programming
paradigms including OpenMP2, Pthread3 and note that the Cilk
Plus is the most efficient one and achieve outstanding performance.

Our new proposed algorithm is presented in Algorithm 2. The
complexity of this algorithm is alsoO(|V | ∗ (|V | + |E |)) as the basic
closeness centrality computation.

4 EXPERIMENT AND EVALUATION
In this section, we perform different tests of our algorithm on several
real social networks. All the networks data in our tests is collected
from the SNAP (https://snap.stanford.edu/data/index.html) and the
AMiner (https://aminer.org/data-sna).

Based on the proposed method, we built and implemented our
solution, namely BigGraph, in C++ language. The experiments
were performed in a machine having 2 x Intel(R) Xeon(R) CPU
E5-2697 v4 @ 2.30GHz (45MB Cache, 18-cores per CPU), 128GB for
the main memory, CentOS Linux release 7.4.1708, gcc 7.2.0. This
computing system was configured with maximum 36-threads in
parallel without hyperthreading.

1https://www.cilkplus.org/cilk-documentation-full
2http://openmp.org/wp/
3https://computing.llnl.gov/tutorials/pthreads/

https://snap.stanford.edu/data/index.html
https://aminer.org/data-sna
https://www.cilkplus.org/cilk-documentation-full
http://openmp.org/wp/
https://computing.llnl.gov/tutorials/pthreads/
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Algorithm 2: Fast Closeness Centrality Computation
Data: G = (V ,E) represented by Edges
Result: CC[.] for all v ∈ V
CC[v] ← 0, Sum[v] ← 0,Maps[v] ← 0∀v ∈ V ;
// Perform in parallel the queries by Cilk Plus method
for s = 1 to Edдes .size() do

Q ← empty queue; Q .push(s);
// We mark s was visited in Maps buffer
SetBit(s,Maps);
CC[s] ← 0; FC[s] ← 0; dst ← 0;
while Q is not empty do

dst ← dst + 1;
// We scan all nodes moved in the queue Q in same
level/distance from s

while Q is not empty do
v ← Q .pop();
// We scan all nodes connected directly to s
forall w ∈ Edдes[s] do

// if this node is not visited
if !TestBit(w) then

//we save also the distance from v tow
Q .push(w,dst);
// we markw was visited
SetBit(w, Maps);

end
end

end
// We move to the next level
Q .nextLevel() ;

end
if Sum[s] , 0 then

CC[s] ← 1/Sum[s] ;
end

end
returnCC[.];

4.1 Datasets
To validate our method for computing the closeness centrality on a
network, five datasets from the Stanford Large Network Dataset
Collection [12] and one from Aminer Datasets for Social Network
Analysis [23] are selected to evaluate the results.
• gemsec-Facebook: These datasets contain eight networks
built to represent blue verified Facebook page networks. Face-
book pages those are represented by nodes and edges are
mutual likes among them. Due to time constraint, we choose
only two big dataset in gemsec-Facebook for our experiment:
Potician and Artist.
• ego-Facebook: This dataset is built from the ’friends lists’
of Facebook, collected from survey participants using this
Facebook app.
• com-DBLP : This dataset represent the DBLP co-authorship
network.
• com-Youtube: This dataset is collected from the ground-truth
communities in Youtube social network.

• Flickr : This dataset represents a popular photo-sharing net-
work allowing users to upload and share photos.

Among these datasets, Flickr is a disconnected graph and the oth-
ers are connected graphs. Descriptions of the datasets are showed
in Table 1:

Table 1: Graph Collection Statistics

Dataset Edges Nodes Diameter
gemsec-Facebook Politician 41,729 5,908 14

ego-Facebook 88,234 4,039 8
gemsec-Facebook Artist 819,306 50,515 11

DBLP 1,049,866 317,080 23
Youtube 2,987,624 1,134,890 24
Flickr 9,114,557 215,495 10

4.2 Results and Evaluation
Based on work of P. H. Du et al. [18], we implemeted our method
in C++ language using the Cilk Plus parallel library and published
both source codes and test results on the GitHub at: https://github.
com/hanhdp/parallel_closeness_centrality/.

To evaluate our solution, several recent network analysis tools
presented at Section 2 were chosen to compare the performance
with BigGraph: TeexGraph and NetworKit. We implemented these
tools and BigGraph in the platform mentioned above.

To analyze the parallel speed up, we firstly evaluate our solution
BigGraph, with different number of parallel threads varied from 1
to maximum number of threads 36-threads in our testing machine.
For each dataset, we perform computing the closeness centrality
10-times. For the big datasets such as Youtube, DBLP and Flickr,
their execution times for computing the closeness centrality are
very high (as illustrated by the Table 3). Thus, we focus on the
first three datasets: gemsec-Facebook Politician named DS1, ego-
Facebook named DS2 and gemsec-Facebook Artist named DS3. The
experiment results we obtained are synthesis by computing the
average of testing execution times and illustrated by the following
table:

Table 2: Time (in second) and Speedup of BigGraph

NumOfThread DS1 DS1 Speedup DS2 DS2 Speedup DS3 DS3 Speedup
1 1.546 1.00 1.031 1.00 195.276 1.00
2 0.819 1.89 0.552 1.87 97.527 2.00
4 0.415 3.72 0.306 3.37 49.136 3.97
6 0.285 5.43 0.223 4.63 34.475 5.66
8 0.223 6.95 0.169 6.11 26.418 7.39
10 0.181 8.56 0.130 7.93 21.406 9.12
12 0.160 9.66 0.120 8.57 18.716 10.43
14 0.155 9.98 0.100 10.33 16.731 11.67
16 0.129 12.03 0.095 10.82 14.491 13.48
18 0.111 13.88 0.086 11.95 13.263 14.72
20 0.101 15.33 0.074 13.92 11.784 16.57
22 0.091 16.97 0.067 15.40 10.856 17.99
24 0.088 17.52 0.062 16.54 9.884 19.76
26 0.084 18.37 0.061 16.79 9.116 21.42
28 0.077 20.03 0.057 18.16 8.775 22.25
30 0.075 20.61 0.054 18.94 8.063 24.22
32 0.069 22.48 0.054 19.07 7.481 26.10
34 0.066 23.43 0.053 19.45 7.041 27.74
36 0.060 25.96 0.052 19.89 6.648 29.37

https://github.com/hanhdp/parallel_closeness_centrality/
https://github.com/hanhdp/parallel_closeness_centrality/
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The following figure shows more clearly the speedup of Big-
Graph as the number of parallel threads changes.

Figure 1: BigGraph Execution Time (in second)

Figure 2: BigGraph Parellel Speedup Evaluation

As illustrated in Figure 2, the more parallel threads we use, the
shorter computation time of closeness centrality is. Therefore, we
decided to set to 36-threads in parallel for all three tools: NetworKit,
TeexGraph and BigGraph.

The following table illustrates the execution times we obtained
for all three tools. Note that they are the average runtime of 10
different tests.

Table 3: Execution Time (in second)

Dataset Networkit Teexgraph BigGraph
gemsec-Facebook Politician 1.192 0.071 0.056

ego-Facebook 0.468 0.052 0.032
gemsec-Facebook Artist 182.890 9.808 6.405

DBLP 3363.286 326.659 153.753
Youtube 147924.400 4418.191 2168.677
Flickr 540.944 309.058

In this table, due of Flickr is disconnected, NetworKit cannot
compute the closeness centrality. Other tools can exactly perform
computing the closeness centrality for all datasets.

Figure 3: Experiment Runtime

The results obtained from experiment allow to validate our solu-
tion of computing the closeness centrality in a social network. Its
performance is outstanding in comparison with the others. Table
4 illustrates the speedup factor between BigGraph and the others
tools for all 5 datasets: BigGraph is faster than TeexGraph and
NetworKit from 1.27-2.12 and 14.78-68.21 times.

Table 4: BigGraph Speedup

Dataset Teexgraph/BigGraph Networkit/BigGraph
gemsec-Facebook Politician 1.27 21.23

ego-Facebook 1.66 14.78
gemsec-Facebook Artist 1.53 28.56

DBLP 2.12 21.87
Youtube 2.04 68.21
Flickr 1.75

For all datasets, the BigGraph solution performs the closeness
centrality in shortest time. Moreover, based on the appropriate data
structure (for reducing amount of time accessing the main memory
for the graph data by increasing the cache hit rate), the method for
parallelizing BFS algorithm, the performance of BigGraph is clearly
improved compared to both TeexGraph and NetworKit.

5 CONCLUSION
Computing the closeness centrality for all node in a real-world
social network have been a huge challenge today. We proposed
in this paper an efficient algorithm with (i) the appropriate data
structure for reducing amount of time accessing the main memory
for the graph data by increasing the cache hit rate, (ii) optimization
and parallelization of complete BFS search to reduce the execution
time. The experiment results confirmed that BigGraph is the most
efficient tool in comparison with other social network analysis
libraries such as TeexGraph and NetworKit. It obtained the good
performance in comparison with the two libraries for computing
the closeness centrality of five different network datasets:BigGraph
is faster than TeexGraph and NetworKit from 1.27-2.12 and 14.78-
68.21 times. The execution time is also reduced proportionally with
the number of real parallel threads.

For future works, we aim to extend our method for performing
more complex operations on social networks such as computing the
others indicators of centrality like node Betweenness, Eigenvector
Centrality.
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