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This paper presents a semi-analytical approach to investigate the nonlinear dynamic response and vibration of
eccentrically oblique stiffened functionally graded plate resting on elastic foundation. The Lekhnitskii's smeared
stiffener technique is improved by using a transformation technique for oblique stiffeners. Governing equations
are solved by classical shell theory, Galerkin method, stress function with temperature-dependent material ef-
fects. The results show the influences of geometrical parameters, material properties, imperfection, the elastic

foundations, eccentrically oblique stiffeners, mechanical loads and temperature on the nonlinear dynamic re-
sponse and nonlinear vibration of plates. The numerical results in this paper are compared with the results

reported in other reports.

1. Introduction

Eccentrically stiffened functionally graded (FGM) plate and shell are
very important structures in engineering design of aircraft, missile and
aerospace industries. In recent years, many investigations have been
carried out on static and dynamic response of FGM plate and shell with
and without stiffeners.

Reddy et al. [1-4] studied analytical static and dynamic application
of the plate. By using the extended finite element method and the first
order shear deformation theory [2-4] and high order shear deformation
plate theory [1,3] to analysis of stress and deflection of plates and cy-
lindrical shells. Arciniega and Reddy [5] researched large deformation
analysis of FGM shells, by using the first order shear deformation
theory. To study nonlinear bending and post buckling of circular plate
under mechanical and thermal loadings, Ma and Wang [6] used high
order shear deformation plate theory and shooting method. Matsunaga
et al. [7] studied deflection and stress behavior of FGM rectangles
subject to mechanical and thermal loads. In this paper, the author has
used the high order shear deformation theory and the susceptible
moving principles to derive basic equations and then solution by using
the power series.

For static stability analysis of FGM plate problems, Eslami et al.
[8-14] researched buckling behavior of FGM plates under in-plane

compressive loading [8] and thermal buckling of FGM plates [9] by
using the classical plate theory. And then they extended research to
thick plates and used higher-order shear deformation theory [10,11]
and included the imperfections of plate to obtain the critical loads
[12-14]. Lanhe [15] studied thermal buckling of thick plate, by using
the first order shear deformation theory. Ebrahimi et al. [16] re-
searched a theoretical analysis of smart moderately thick shear de-
formable annular FGM plates. Taczala et al. [17] presented the non-
linear finite element method for studying the nonlinear stability of FGM
plates with reinforced by stiffness for mechanical and thermal loads.
For dynamic stability and vibration analysis of FGM plates, Wang
and Jean [18] presented the nonlinear steady-state responses of long-
itudinally traveling FGM plates in contact with liquid. They [19,20]
also studied the nonlinear dynamic thermoelastic response of rectan-
gular FGM plates with longitudinal velocity based on the D'Alembert's
principle and large-amplitude vibration of sigmoid FGM thin plates
with porosities with decomposed results were authenticated numeri-
cally with the flexible step-size fourth-order Runge-Kutta approach.
Wang et al. [21] developed the nonlinear dynamics of a translational
FGM plate with strong mode interaction and electro-mechanical vi-
bration analysis of FGM piezoelectric porous plates in the translation
state [22]. Wang and Jean [23] also investigated the porosity-depen-
dent nonlinear forced vibration analysis of FGM piezoelectric smart
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material plates by using both diagnostic and numerical methods and
considered vibration behaviors of FGM rectangular plates with poros-
ities and moving in thermal environment [24], the geometric non-
linearity was calculated by using von Kdrman nonlinear plate theory.
Wang et al. [25] studied the nonlinear vibrations of moving FGM plates
containing porosities and contacting with liquid: internal resonance.
Effects of various parameters on the frequency response of the forma-
tion were investigated. Based on the classical plate theory, stress
function and Lekhnitskii's smeared stiffeners technique with motion
equations with temperature-dependent material properties, Bich et al.
[26] considered nonlinear dynamical buckling and vibration of stif-
fened FGM cylindrical panels. Duc et al. [27,28] studied static buckling
and dynamic response of S-FGM circular and elliptic cylindrical shell
with three layers of metal - ceramic - metal surrounded by elastic
foundation in thermal environment. Duc et al. [29] solved nonlinear
thermal stability of eccentrically stiffened FGM truncated conical shells
surrounded by elastic foundations and also studied nonlinear vibration
and dynamic response of imperfect eccentrically stiffened shear de-
formable FGM plate in thermal environment in Ref. [30]. Alijani et al.
[31] investigated nonlinear vibrations of FGM doubly curved shallow
shells. Kolahchi et al. considered dynamic stability analysis of tem-
perature-dependent functionally graded CNT-reinforced visco-plates
resting on orthotropic elastomeric medium in Ref. [32], agglomeration
effects on the dynamic buckling of viscoelastic microplates reinforced
with SWCNTs using Bolotin method in Ref. [33] and comparative study
on the bending, vibration and buckling of viscoelastic sandwich nano-
plates based on different nonlocal theories using DC, HDQ and DQ
methods in Ref. [34]. The nonlinear vibrations of rotating, laminated
composite circular cylindrical shells subjected to radial harmonic ex-
citation in the neighborhood of the lowest resonances were investigated
by Wang [35] by using the Galerkin and harmonic balance methods.
Wang et al. [36] studied the nonlinear vibration of metal foam cy-
lindrical shells reinforced with graphene platelets by using the im-
proved Donnell nonlinear shell theory and different types of porosity
and graphene platelet distribution were taken into account. Wang et al.
[37] investigated the nonlinear dynamic characteristics of FGM sand-
wich thin nanoshells conveying fluid incorporating surface stress in-
fluence. The velocity potential and Bernoulli's equation were applied to
describe the fluid pressure.

To the best knowledge of authors, there are no publications on the
vibration and nonlinear dynamic response of the eccentrically oblique
stiffened thin FGM plates. This paper presents a semi-analytical ap-
proach of nonlinear buckling and vibration of FGM plates reinforced by
oblique stiffener system. An improved Lekhnitskii's smeared stiffener
technique for oblique stiffeners and Galerkin method are applied to
obtain the time-dependent nonlinear equation of motion of plates.
Solving this equation is mathematically difficult, therefore, a numerical
approach is applied by using the fourth-order Runge-Kutta method to
obtain the dynamic response of plates.

2. Eccentrically oblique stiffened thin FGM plate rested on elastic
foundations

2.1. Geometrical and material properties

Consider a ceramic-metal eccentrically stiffened thin FGM plate of
length a, width b, and thickness h resting on elastic foundations. A
coordinate system (x, y, z) is established in which (x, y) plane is on
the middle surface of the plate and z is the thickness di-
rection(—h/2 < z < h/2), as shown in Fig. 1. The width and thickness of
longitudinal and transversal stiffeners are denoted by d,, h, and
dy, h, respectively; sy, s, are the spacing of the longitudinal and
transversal stiffeners. The quantities A,, A, are the cross-section areas
of stiffeners and I, I,, e, e, are the second moments of cross-section
areas and the eccentricities of stiffeners with respect to the middle
surface of plate, respectively. E,, o, are Young's modulus and the
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thermal expansion coefficient of eccentrically stiffeners, respectively.
FGM in this paper is assumed to be made from a mixture of ceramic
and metal with the volume-fractions given by a power law

N
) V@ =1 - V),

22+ h
vm(z)=( L

@
whereN is volume fraction index (0 < N < o), the subscripts m and ¢
refer to the metal and ceramic constituents, respectively. According to

the mentioned law, Young's modulus and thermal expansion coefficient
can be expressed in the form
)N

(2

22+ h
2h

[EGT). a( )] =[ET). a)]+ Ean(T). aon <T)](

and the Poisson's ratio v is assumed to be a constant and
En = Ec — B,

It is assumed that the effective properties Pr,; of FGM plate, such as
the elastic modulus E, the mass densityp and the thermal expansion
coefficient «, vary in the thickness direction z are determined by linear

rule of mixture as

Aem = Ae — Ay

Prejf(z) = Prch(Z) + Pl‘me(Z), 3)
in which Pr denotes a material property.

The reaction — deflection relation of Pasternak foundations is given
by
q=kw-kVw 4
where V2 = 3%/0x? + 3%/3y?, w is the deflection of the plate, k is
Winkler foundation modulus, and k, is the shear layer foundation
stiffness of Pasternak model.

2.2. Governing equations

In this study, the classical plate theory is used to derive basic
equations to investigate the nonlinear dynamic response and vibration
of eccentrically stiffened FGM plate on elastic foundations in thermal
environments.

The geometrical compatibility equation for an imperfect FGM plate
is written as

*

0 0 _ .0 _ 2 _ —w*
Eoyy F &y = Vg = w ) W Wy + 2W W, Wi W,y

(5)

*
vaxW’yy

in which imperfection function w*(x,y) denotes initial small im-
perfection of FGM plate.
The nonlinear equilibrium equations of FGM plate are

Nyx + Ny, =0,

Ny.x + Ny =0,

My + 2My sy + My + NeW e + 2NgWw o + Nyw g,
—kw+ kW +wyy) + g =Lw, + 2hw, (6)
in which k is Winkler foundation modulus, k, is the shear layer foun-
dation stiffness of Pasternak model, q is an external pressure uniformly
distributed on the surface of the plate, ¢ is the viscous damping coef-
ficient and

L=),

=1k

hi
p(z)dz.

The normal strains in the middle surface of the plate taking into
account the Von Karman nonlinear terms are given by Ref. [38].
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Fig. 1. Geometry and coordinate system of an eccentrically oblique stiffened FGM plate resting on elastic foundations.
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in which u, v, w are displacement components corresponding to the
coordinates(x, y, z),

The strains across the shell thickness at a distance z from the middle
surface are

o 0w
E = Ex Zﬁ,
o Ow
& =& — ZW,
*w
=y -2 .
Yo =Ty T Zasy @)

Hooke's law for a plate is defined as follows

oy E (& +ve, E
=—— — (1 +aaT, (%)= ——(Yy),
(Uy) 1- vZ(zy + vsx) @ +v) ©) 20+ ©
and for the stiffeners is
oy = Eogy, (10)

In this paper, we considered that all elastic moduli of the FGM plate
and stiffeners are temperature-dependent. Improved Lekhnitskii's
smeared stiffeners technique is obtained by using a transformation
technique for stiffeners, force and moment resultants are obtained

Ne An A A Bu B Bis & $/(1 =)
N, Ap Ay Ay Bia By B E}? ¢/(1 =)
No | _ |46 As A Bis B Bes | ],0 0
M. |~ | Bu B Bis Du D1, Dy —Xnyx ¢,/ -v)|
M, Biz By By D1z Dz Dy _W:yy /A =)
M,, Bis B Bes Dis D Des) [—w,, 0
an

with the detail of coefficients A;, B
(1,2,6), ¢,, ¢, are given in Appendix A.

From the constitutive relations (11), one can write

ij» By Dy, 1 =1(1,2,6), j=

€0 = ALN; + ALN, + Al Ny + BiW o + Biwy + Bigw sy + Afy 2
€0 = ALN, + ALN, + Aj Ny + BAw e + Bhw,y + Bigwy + A -2
0 %o

Yy = AaNe + ANy + AgsNy + Baw o + Bow yy + BeWoy + Agr 5

12)

in which the detail of coefficients Ai}‘, Bi}‘ N
given in Appendix A.
By substituting Eq. (12) into Eq. (11) leads to

i=(,26), j=(1,26,7) are

Ny
s s s N, T
M, X1 X X Xn X X Ny M,
My b=0 % X X X X Xgopi Y p-iMyp
M,y Xo1 Xeo Xeo X3 X& Xi _w'xx ML
>y et
Wy 13)
with
MT = 2L (BLAY, + BiAl + BigAl)-2
x =15, (BuAy; + BiaAy; + Big 67)]7‘,9
M! = 1~ BLAf + BpAly + ByAd) 2,
M, = —(BisAl; + BasAs; + B66A;7)%- (14)
and the Airy's stress function ¢(x, y, t) is defined as
92 92 9%
N=22 N=22 N, =-2F
dy? ox? oxdy (15)

By substituting Egs. (12), (13) and (15) into Eq. (6) leads to

XW oo + (X + 2X5)W oy + Xz + X351 + 2X56)W gy
+ (X6 + 2X5)W gy
+ X0W gy = Xi2Pn — ez = X16)Prny — it + X2 — 2X66) P,
= (261 = Xo6) By — X1@y — Py Woex + 20, W — G Wy
_ 2w ow
+hklw—lkWo+wy) —q= _I"F - 25103
(16)

For an imperfect FGM plate, Eq. (16) may be transformed to the
form as

X W o + (Xis + 2X0)W o0y + (XT3 + X51 + 2X66)W gy

+ (X6 + 2X52)W gy
+ X5W = XioPre — X6z — Xi6)Pry — K1 + X2 — 2X66) Py
= (o1 = Xo6)bryyy = X1y = By W + W) + 26, (W + W]y)

32w

" E
— Wy +wi)+hw—loWy +wy) —q= —IO? - 28103—":

in which
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Xu = BuAf) + BuAj + BigAg, Xi1 = Du — (BuBfi + B12Bj) + BieBgy)
Xi2 = BuAys + BiaA3, + BisAg,

Xi3 = D1 — (BuB{; + B12B3; + BisBg))

X6 = BuiAjg + BioAjs + BisAgss

Xis = D16 — (BuBis + Bi2B3s + BisBge)

Xo1 = BuAjj + BnAji + BysAg,

X31 = D1 — (Bi2Biy + B»Bj) + BasBgy)

Xp = BuAj; + BnAy + BaAg,
X5, = Dy — (B12By5 + BuBj, + ByBg,)
Xo6 = BaiAjy + BaAjs + BasAls,
X6 = Das — (Bi2Big + BnBjs + BasBgs)
Xe1 = Ba1Ay; + Bsr Ay + BgsAdys
X6 = Dis — (BisBy1 + B26B31 + BesBg1)
Xe2 = BaAly + BaaAszy + BesAgy,
Xg, = Das — (BisBi; + Bag B3, + BesBgy)

= Ba1Afs + BsaAzs + BesAgs,
Xés = Des — (BisBis + BasBjs + BesBgs)
(18)

Introduction of Eq. (12), the Airy's stress function ¢ (x, y, t) into Eq.
(5) gives the compatibility equation of the imperfect FGM plate as

Al @y — (Als + APy, + (A + AJ) + Age) Py, — (Azs + Agy)
Py + A;Z%oooc

+ BW yyy + (Bl — Be)W ayyy + (Biy + B3, — Bgg)W xyy + (B3 — Bgy)
W g + B W o

— (W) = WaaWyy + 2W W, — W W), — Whw ] = 0.

19

3. Boundary conditions and analytical solutions

An imperfect oblique stiffened FGM plate considered in this paper is
assumed to be simply supported and subjected to uniformly distributed
pressure of axial compression of intensities P, respectively, at its cross
section.

w=M; =Ny =0, Ne =Ny, x=0,0a
w=M,=Ny,=0, N,=Ny, y=0,b. (20)

The approximate solutions of equations (17) and (19) satisfying the
mentioned conditions in equation (20) are chosen in the following from

w(x, y, t)=W(t)sind,x sind,y, 21)

mm
5

where 1, = p 6, = %, m, n = 1_234.. are the natural numbers of
half waves inthe corresponding direction x, y. W (t) is the time-de-
pendent total amplitude.

Concerning with the initial imperfection w* we introduce an as-

sumption, it has the form like the plate deflection, i.e.
w*(x, y) = uhsind,x sind,y, 22)

in which u is imperfection parameter of the plate.
Introducing Egs. 21 and 22 into the compatibility equation (19) and
solving obtained equation for unknown ¢ leads to

Py = A1 COS 2AmX + Ay cos 28,y + Az sin A, x sin 6,y

1 2 1 2
+ A4 cOSAy,Xx cosS,y + 2Nxoy + 2Nyox . (23)

with
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_ & _
A = 32A2*2/I%W(W +2uh), A, = 32A1*153W(W + 2uh),

— (QQ3-0Q2Q4) — (Q=0Q2Q3)
A = Q2-Q3? W, As Q-3 v, 24)
and
Q1 = [A}L 8, + (A + ASy + A4S, + A,
Q2 = [(Afs + AdD b, + (A5 + AS) A58,
Q = | B - BALS, — Bid + (242 + 382) - By

5t = (Biy + B — Biaist |,

Qi = (Bfs — Bi)AmS;. (25)

Replacing Egs. 21-23 into Eq. (17) and then applying Galerkin
method to the resulting equations yields

luW + (NxOAr%[ + Nyoay%)(W + Mh) + 112W(W + M”l) + l]gW(W + 2[1]1)
+ LaW (W + gh)(W + 2uh) + nsq = L2 + 2612
(26)

3.1. Nonlinear vibration analysis

Nonlinear vibration behavior of plate is investigated by using
Runge-Kutta method. Consider a perfect eccentrically oblique stiffened
FGM plates (u = 0), Eq. (26) will be obtained as:

oW o + 2elo0W ; + (hy + b)) W + bsW?2 + [, W3 = —lisq, 27)

where [ = (i = 1,j = 1 + 5) is showed in Appendix.

If the vibration of FGM plates is free and linear, Eq. (27) can be
rewritten:
LW+ @+ h)W=0 (28)

The equation of nonlinear free vibration of a perfect plate can be
obtained from Eq. (28)

Wy = \/—(111 + by) )

Ip (29)

3.2. Nonlinear dynamic buckling analysis

Assume that the FGM plate is subjected to axial compressive loads F,
uniformly distributed at two curved edges x = 0, a, in which

Ny = —Bh (30)
By substituting Eq. (30) into Eq. (26) leads to

PW + PB,(W + uh) + W (W + uh) + BW (W + 2uh)

+ BW (W + uh)(W + 2uh) + Bg = oy + 2¢1,% 31)

in which the detail of coefficients B, i = (1,2,3,4,5,6), are given in Ap-
pendix.

The nonlinear dynamic response of the eccentrically oblique stif-
fened FGM plates subjected to uniformly distributed transverse load
q = Qo sin Qt (Qy is the amplitude of uniformly excited load, Q is the
frequency of the load) could be obtained by solving Eq. (31) using
fourth order Runge-Kutta method with the initial conditions are chosen
as W(0) = 0 and dd—v:/(o) = 0. The dynamic critical load is determined by
applying Budiansky—-Roth dynamic buckling criterion when external
pressure loads varying as linear functions of time, g = Ct (C - a loading
speed).
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Table 1
Comparisons of dimensionless frequency parameter @ = Wmnh,/0,/E. for the
FGM plates with the results of Bich et al. [26] and Alijani et al. [31].

N Present Bich et al. [26] Alijani et al. [31]
0 0.0582 0.0597 0.0597
0.5 0.0532 0.0506 0.0506
1 0.0437 0.0456 0.0456
0.0393 0.0396 0.0396
10 0.0359 0.0381 0.0380

4. Numerical results and discussions
4.1. Comparison studies

To estimate the accuracy of the method used in this paper, we carry
out a comparison with the results of Bich et al. [26] and Alijani et al.
[31] for the case of FGM plates as shown in Table 1. As can be observed
in Table 1, it is clearly that the result errors are very small so the
method in this work is correct and acceptable. Comparison of dynamic
critical buckling load of orthogonal stiffened FGM plates with Bich et al.
[26] is presented in Table 2. It is also found that the present results
agree very well with those of Bich et al. [26].

4.2. Nonlinear vibration results

In the section, the components of the material are Al/ALO;. The
material properties are E, =70GPa, E,=380G
Pa, p, =2702kg/m3, p, = 3800 kg/m?3. The Poisson ratio is assumed
to be v = 0.3.

Geometric parameters of plate and stiffeners are chosen as
(a/b=1), b/h = 90, 8¢ = 8, = 0.15(m),zx = z, = 0.03(m),0,, =
2702 kg/m?,0, = 3800 kg/m?, h = h] = 0.02m.d} = d] =0.008m.

It can be observed in Table 3, when the elastic foundations para-
meters increase the natural frequency of plate increases. Table 3 also
shows the natural frequencies of the eccentrically stiffened oblique
FGM plates are strongly influenced by vibration mode(m, n). The ob-
tained fundamental modes are basic mode (m,n)=(1,1) in all in-
vestigated results.

Fig. 2 shows the effect of stiffener angle (y; ) on the vibration
amplitude of FGM plates in 3 cases. Clearly, vibration amplitude of
oblique stiffened plates is smaller than one of orthogonal stiffened
plates. In case stiffener angle (y, = w/4, y, = —m/4), the vibration am-
plitude of FGM plates are smallest.

The influences of the geometrical properties (a/b and b/h ratios) on
the dynamic response of the eccentrically oblique stiffened FGM plates
are shown in Figs. 3 and 4. It is obvious that, the ratio a/b or ratio b/h
increase the vibration amplitude of eccentrically oblique stiffened FGM
plate increases.

Fig. 5 illustrates effect of power law indexes N = (1,3,5) on the of
deflection - time curves of the eccentrically oblique stiffened FGM
plates with different values(N). The obtained results show that when
the power law index increases, the nonlinear vibration amplitude of the

Table 2
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Table 3

Effect of vibration modes (m, n) and elastic foundations parameters on the
natural frequencies (rad/s) of the eccentrically oblique stiffened FGM plates
(AT = 0K, h = 001, a/h =90, a/b=1).

Without elastic

k;=0.3 (GPa/m);

k;=0.6 (GPa/m);

foundation k2=0.3 (GPa.m); k>=0.6 (GPa.m)
(m,n)= (1,1) 2.8370e+03 1.5561e+ 04 2.3137e+04
(m,n)= (1,2) 3.5056e+03 2.4160e +04 3.6049e +04
(mn)= (1,3) 4.9813e+03 3.4036e + 04 5.0775e +04
(m,n)= (2,1) 3.5056e+03 2.4160e +04 3.6049e + 04
(m,n)= (2,2) 6.3301e+03 3.0803e+04 4.5675e +04
(mn)= (2,3) 8.0894e+03 3.9197e+04 5.8114e+04
(mn)= (3,1) 4.9813e+03 3.4036e + 04 5.0775e +04
(m,n)= (3,2) 8.0894e+03 3.9197e+04 5.8114e+04
(mn)= (3,3) 1.094le+04 4.6399¢ + 04 6.8524e +04
0.01 T
0008 | —_— 'yl=1r/2,'yz=0 — 'yl=1r/4,'yz=—1r/4 —_— 71=1r/12,72=-/pl/12
0.006

0.004

0.002

W(m)
e

-0.002

-0.004

-0.006 - h=0.01 m, b=a, a=90h , k1:k2:0e9 GPa,

(m/2,0):eccentrically stiffened
AT=0Km=1, n=1, p=0.1,

-0.008 (m/4,-m/4):stiffened obliques -~
q=50000sin(500t); (m/12,-m/12):stiffened obliques
-0.01 | | i 1 | | h
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
t(s)

Fig. 2. Effect of stiffener angle y;, y, on the dynamic response of the eccen-
trically oblique stiffened FGM plates.

x103

——a/b=0.5 =-=-a/b=1 ——a/b=1.5

1=0.01m, a=80h, k,=k,=0 GPa, m=n=1Y AT= 400K, .
£=0.1, g=50000sin(500t);

1 ! !

0 0005 001 0015 0.02 0.025
t(s)

Fig. 3. Effect of ratio a/b on the on the deflection - time curves of the eccen-
trically oblique stiffened FGM plates.

0.03 0.035 0.04 0.045 0.05

Comparison of dynamic critical buckling load of orthogonal stiffened FGM plates.

N Bich et al. [26]

Present

Static (m,n)

Dynamic (m,n)

Static (m,n)

Dynamic (m,n)

c=15x10° c=2x10° c=15x10° c=2x10°

0.2 1.350(1,1) 1.841(1,1) 1.977(1,1) 1.350(1,1) 1.852(1,1) 1.989(1,1)
1 1.155(1,1) 1.656(1,1) 1.774(1,1) 1.155(1,1) 1.669(1,1) 1.787(1,1)
1.031(1,1) 1.532(1,1) 1.669(1,1) 1.031(1,1) 1.538(1,1) 1.675(1,1)

10 1.024(1,1) 1.526(1,1) 1.661(1,1) 1.024(1,1) 1.536(1,1) 1.672(1,1)
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6 ——b/h=70 ===-b/h=80 ——b/h=90

h=0.01 m,b=a, k1= k2=0c9 GPa, 4=0.1, m=n=1,
6} AT=0K,q=50000sin(500t); N
| | . | .

0 0.005 0.01 0.015 0.02 0.025 0.03
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Fig. 4. Effect of ratio b/h on the on the deflection - time curves of the eccen-
trically oblique stiffened FGM plates.
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s h=0.01 m, b=a, a=90h, k1=k2= 0e9 GPa, 1=0.1, m=1, n=1, il
AT=0K, g=50000sin(500t)
) 0 0.005 0.01 0.015  0.02 0.025 0.03 0.035 0.04 0.045 0.05
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Fig. 5. Effect of volume fraction index N on the deflection - time curves of the
eccentrically oblique stiffened FGM plates.

eccentrically oblique stiffened FGM plates increases.

Fig. 6 shows the influence of temperature field
(AT =0, AT = 100K, AT = 200K) on the deflection - time curves of
the eccentrically stiffened oblique FGM plates. From Fig. 6, can see
vibration amplitude of FGM plates increases when we increase value
temperature.

Fig. 7 shows the effect of external pressure on the deflection-time
curves of the eccentrically oblique stiffened FGM plates with
Q = 30000(N/m?), Q = 40000 (N/m?) and Q = 50000 (N/m?). As can be
observed, when the amplitude of external pressure increases, the vi-
bration amplitude of the eccentrically stiffened oblique FGM plates

0.01

0.008
0.006
0.004
0.002

‘W(m)
=]

-0.002
-0.004
-0.006
-0.008
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6r ‘ —— Q30000 N/m? ===-= Q40000 N/m? — Q,=50000 N/m?

‘W(m)

h=0.01 m, b=a, a=90h, k1=k2= 0e9 GPa, u=0.1, m=1, n=1,

-6 - ) ‘ [AT=0KI,N=1, q|=50000§in(500|t) ) ) B
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
(s)

Fig. 7. Effect of the external pressure Q, on the deflection - time curves of the
eccentrically oblique stiffened FGM plates.

%1073

‘W(m)

3 h=0.01 m,b=a, a=90h, k = k,=0e9 GPa,, m=n=1, AT=200K, g
) ) quOOOOinn(SOOQ ) ) )
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
t(s)

Fig. 8. Effect of imperfection u on the deflection - time curves of the eccen-
trically oblique stiffened FGM plates.

strongly increases.

The influence of initial imperfection with
amplitudeu = (0.1, 0.2, 0.3) on the deflection - time curves of the ec-
centrically oblique stiffened FGM plates is presented in Fig. 8. As ex-
pected, the reduction of amplitude of initial imperfection makes the
amplitudes of nonlinear vibration of the eccentrically oblique stiffened
FGM plate decreases.

4.3. Nonlinear dynamic results

Table 4 shows the effects of temperatures change on the nonlinear
dynamic response of the eccentrically oblique stiffened FGM plates.
Clearly, the critical loads decrease when the temperature change AT
increases.

Nonlinear dynamic responses of the eccentrically oblique stiffened
FGM plate with different loads are shown in Table 5. As can be seen, the
critical loads decrease when the pre-external loads g increases. The

001 P=0.01'm,a=b, a=90h, u=0.1, k,=k,=0e9 GPa, g=50000sin(6000);
1 1 | . 1 1 | 1 |
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
t(s)

Fig. 6. Effect of the temperature field on the deflection - time curves of the
eccentrically oblique stiffened FGM plates.

Table 4
Effect of temperature change on dynamic critical buckling loads of FGM plate.
AT
100K 200K 400K 500K 700K 900K
P, =3.5x 10t 5.236 5.019 4.578 4.379 3.948 3.511
P, =5.0 x 101t 5.490 5.285 4.834 4.641 4.213 3.775
P = 7.5 x 101t 5.894 5.678 5.237 5.028 4.609 4.170
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Table 5
Dynamic critical buckling of the eccentrically oblique stiffened FGM plate with

different loads.

q

10° 3x 105 5x10° 7x10° 9x10° 2x10°
P =35x101 4781 4757 4.718 4.690 4.666 4.596
P =50x 10 5040  5.000 4.966 4.939 4.914 4.828
B =75x10 5431 5415 5.353 5.315 5.294 5.177

25 : : ; . .
(m,n)= (1,1), h=0.01, a= 80h, a/b=1, N=1,
k,=0.01 GPam, C=7.5¢" Pa/s, AT=300K,
20 01,y =6, = -l6, = 0.1, g=0.
15
Py
E
2
1 =
0.5 N - k,=0.1 GPa/m
] - -k=03 GPa/m
—k,;=0.5GPa/m
" ) o e .
0 0.002  0.004  0.006  0.008 0.01 0012  0.014
t(s)

Fig. 9. Effect of the linear Winkler foundation on the nonlinear vibration and
dynamic response of eccentrically oblique stiffened FGM plate.

dynamic buckling load increase when loading speed increases.

Figs. 9 and 10 show the effects of elastic foundations on the non-
linear dynamic stability of the eccentrically oblique stiffened FGM plate
with immovable edges under uniform external pressure. Obviously, the
dynamic critical buckling loads of the plate become considerably higher
due to the support of elastic foundations. In addition, the beneficial
effect of the Pasternak foundation on the buckling of the eccentrically
oblique stiffened FGM plate is better than the Winkler one.

Fig. 11 analyzes the effects of geometrical parameters on the non-
linear static and dynamic stability of eccentrically oblique stiffened
FGM plate. Specifically, Fig. 11 illustrates the effect of ratio b/a on the
nonlinear static stability eccentrically oblique stiffened FGM plate with

2 T T T T T

=

18-  (mn)=(1,1), h=0.01, a= 80h, a/b=1, N=I,
k,=0.3 GPa/m, C=7.5¢'" Pa/s, AT=300K,
L6r =01, =6, 7,= /6, p=0.1,q=0.

1.2+

W (m)

0.8

0.6 -

i P e k,~0.01 GPam
- —k,~0.015 GPam
—k,~0.02 GPam

02

0 .

0 0.002 0.014

0.006 0.008 0.01 0.012

t(s)

Fig. 10. Effect of the Pasternak foundation on the nonlinear vibration and
dynamic response of eccentrically oblique stiffened FGM plate.
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Fig. 11. Effect of ratio b/a on the nonlinear vibration and dynamic response of
eccentrically oblique stiffened FGM plate.

3 . . . . .
(m,n)=(1,1), b=0.01, a= 80h, a/b= 1, k,= 0.3 GPa/m,
257 k=001 GPam,C= 7.5¢'! Pass, AT=300 K,
e=0.1, Y =7/6, 'yy= -7/6, u= 0.1, g=0.
2 -
8 st
3
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05
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0 0.002  0.004 0006 0008 001 0012 0014 0016
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Fig. 12. Effect of volume fraction index N on the nonlinear vibration and dy-
namic response of eccentrically oblique stiffened FGM plate.

movable edges under uniform external pressure. Furthermore, the dy-
namic critical load of the FGM plate increases when the ratio b/a de-
creases.

Fig. 12 presents the effect of volume fraction index N on the non-
linear dynamic response of eccentrically oblique stiffened FGM plate
with AT = 300K, a.b=1, u=01, y =mn/6, y,=—-m/6. It can be
seen that the dynamic critical load of the nonlinear dynamic response of
eccentrically stiffened FGM plate increases when increasing the volume
fraction index N.

Fig. 13 illustrates the effect of initial imperfection on the nonlinear
vibration and dynamic response of eccentrically oblique stiffened FGM
plate. Obviously, the dynamic critical load will decrease and loses the
stability if the initial imperfection increases. As can be seen, the im-
perfect coefficient has a significant effect on the dynamic response of
the eccentrically oblique stiffened FGM plate.

Figs. 14-15 indicate the effects of stiffener angle on the nonlinear
dynamic response of eccentrically oblique stiffened FGM plate. Ob-
viously, the dynamic critical load maximum value when y, = /4.

Fig. 16 describes the nonlinear dynamic responses of the eccen-
trically oblique stiffened FGM plate with different loads. We can see
that the dynamic critical load will decrease and if the initial im-
perfection increases.
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Fig. 13. Effect of initial imperfection on the nonlinear vibration and dynamic
response of eccentrically oblique stiffened FGM plate.
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Fig. 14. Effect of stiffeners angle on the nonlinear dynamic response of ec-
centrically oblique stiffened FGM plate.
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Fig. 15. Comparison critical dynamic load between eccentrically orthogonal
stiffened and eccentrically oblique stiffened.
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Fig. 16. Nonlinear dynamic responses of the eccentrically oblique stiffened
FGM plate with different loads.
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Fig. 17. Effect of the loading speed C on the nonlinear dynamic response of
eccentrically oblique stiffened FGM plate.

Fig. 17. Shows the effects of the loading speed C on the dynamic
response of eccentrically oblique stiffened FGM plate. The results show
that the value of the critical load increases when the loading speed
increases.

5. Conclusions

This is the paper presents a semi-analytical approach to investigate
the nonlinear vibration and dynamic buckling of eccentrically oblique
stiffened FGM plate resting on elastic foundation in thermal environ-
ment by using of the classical plate theory. Numerical results for dy-
namic response of the eccentrically oblique stiffened thin FGM plates
are obtained by Galerkin method, stress function and improved
Lekhnitskii's smeared stiffeners technique. From the obtained results in
this paper, we can conclude that

e The initial imperfection has a significant influence on the nonlinear
vibration and dynamic response of eccentrically oblique stiffened
FGM plate.

e The oblique stiffener system strongly enhances the load-carrying
capacity of the eccentrically stiffened thin FGM plates in comparison
with orthogonal stiffener.



S.-E. Kim, et al.

e The pre-loaded axial compressions strongly influence on the critical
dynamic response of the stiffened plate.

o The elastic foundations and temperature have a strong effect on the
nonlinear dynamic response of the thin FGM plates and the ben-
eficial effect of the Pasternak foundation is better than the Winkler
one, and the critical dynamic load of the plate decreases when the
temperature increases.
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Appendix

EoAl . . .
By = S)Z* e (sin’y, cosy, + sin’y, cosy,),
Bgg = T(smz % cos’y, + sin’y, cos® yy)
Dy, =Dy 40 y (cos“yx +cos'y,), Dy =Dy + 2 " (sin®y, cos’y, + sin?y, cos’y,),
D, =Dy, + B y (sm"y +sin*y,), Dis = cos’y, + siny, cos’y,),

EoAl . .
Dy = S;.y (sm3y)C cosy, + sin’y, cosy,),
Dgs = Dgs 40 y (sin®y, cos’y, + sin’y, cos*y,),

y

_— E — o = E — B m— _ — T E
An =Ap = ﬁ, A = VA, As = 2(1—11;)’ Dy =Dy = ﬁ, Dy, =vD11, Des = 2(1—43rw’
— Y e — E
By =By = ﬁ, By =VBy1, Bg = 2(1711))’

A = AnApAes — AndyAer — AsAnAa
(A22A66 — A26A462) (A16A62 — A12A66) (A12A26 — A16A22)

Al = 2 VAL = 2 L Als = 2 ’

Ay = Af} + Ay, Bji = A(1Bn + A3Ba + AfgBie,

B3 = A\1Bi, + A3By; + AfsBea, Bis = Af1Bis + A3 Bos + Afs Bees

(A16421 — A11426)

>

A =
Ay = A5 + A3y, B3y = A7 Bn + A By + AjgBie,
By, = Ay Bz + A3 By + Ay Bea, Bsg = A5y Bis 4+ Ay Bas + Ay Bees

(A26A61 — A21466) A = (A11466 — A16461) AE =
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_ A1A»n —AnnAx £ _ qx *
= 2 » Ag7 = Ag + Agas

Bg, = Bi1Ag + BnAg + BaAls, B = BioAd + BnAdb + BeaAls, Bis = BisAdi + BasAdy + BesAds-

E; = Eph + Egph/(k + 1), E; = Eh2[1/(k + 2) — 1/2k + 2)],
E; = E,,h*/12 + E,,h*[1/(k + 3) — 1/(k + 2) + 1/(4k + 4)],

&, ¢)) = 72 [E +Ecm(2“h)k][ocm+occm(2“h) ]AT(l 2)dz.

—h/2

K Am + X358 — G + 2X5) 408, + (X5 + X5 + 2Xe) A6,

—[Xi2Ay + X187 + X1 + X — Mﬁa)ﬂéaﬁw
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I, = 32mn (Q1Q3-Q2Q4)
27 e Q2-Q2
2 /13A* (@X1225) Ak 58 16
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P = —ly, Py=—(=Phl} + msé)),

Py=—(mé; + ko), Bi=—hs, P=—-(ms; + ha),

B = —ns.
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