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Abstract—One of the major topics in photogrammetry is
the automated extraction of building from data acquired by
airborne sensors. What makes this task challenging is the very
heterogeneous appearance and dense distribution of buildings in
urban areas. While many dataset have been established, none
of them pay attention to developing cities where buildings are
not well planned. To complement the development of building
extraction algorithms, a dataset of high resolution satellite image
is constructed in this paper covering Cau Giay district, Hanoi,
Vietnam. The dataset consists of 2100 images of size 1024×1024
pixels extracted from Google Earth. Shape, size, and construction
material differ greatly from building to building, thus make it
challenging for state-of-the-art algorithm to accurately extract
building location. Some baselines are provided using Convolu-
tional Neural Networks (CNNs). Experimental results show that
U-Net model trained with Mean Square Error loss is able to
achieve comparable results (OA = 92.04).

Index Terms—building extraction, semantic segmentation,
open source

I. INTRODUCTION

Recently, with the advantages of large scale monitoring and
fast-updated, high resolution satellite image has been widely
used for building extraction. The established building maps
has many applications in infrastructure monitoring and man-
agement, urban planing, as well as city understanding. Since
high resolution satellite image has become more accessible and
affordable [1], many dataset for building extraction have been
established, providing high quality images with high spatial
resolution of less than 1 meter and rich spectral information.
However, there remains limitation in establishing a more
diversity dataset for building extraction. Most of available
dataset such as ISPRS Vaihingen [2], ISPRS Postdam [3],
SpaceNet [4], and Microsoft US Building Footprint [5] pay
their interest in developed cities where buildings are well
planned. Meanwhile, cities in developing countries where
rapid urbanization are happening without restricted planning
receive less focus. A dataset of highly dense and complex
structure of buildings in these areas may benefit state-of-the-
art algorithms for better generalization.

One of the main problem for constructing dataset in devel-
oped cities is that they can not afford the price for high reso-
lution satellite image at scale. Thus, obtaining these data from
free and open source might be considered. Recently, satellite
image extracted from Google Earth received a lot of attention

for various applications (e.g. scattered shrub detection [6]; ship
detection [7]) including rooftop and road extraction [8]. While
these images are freely available for research purpose [9], the
image quality are nowhere comparable to established dataset.
Thus, it requires further analysis and investigation to develop
more sophisticated model for building extraction.

Recent developments in deep convolutional neural networks
(CNNs) provide an unique opportunity to achieve remarkable
building extraction performance in the remote sensing society
[1]. Building extraction can be formulated as semantic seg-
mentation task where there are only two label building and
non-building. Since then, many works have been proposed
based on the architecture of well-known semantic segmen-
tation networks such as U-Net [14], FCN [12], Convolutional
and Deconvolutional Networks [13].

Based on discussions above, a dataset for very dense
building rooftop extraction is constructed with image from
Google Earth. Specifically, it contains 2100 images of size
1024× 1024 pixels cover Cau Giay district, Hanoi, Vietnam.
Our contributions are as follows:

• A dataset for very dense building rooftop extraction is
constructed. Unlike other dataset which focus on de-
veloped cities with sparse and well planned buildings,
our dataset covers very dense building area with high
variation in term of building rooftop shape and size. The
detailed data information will be presented in Section II.

• Second, some results based on U-Net, a widely used CNN
architecture for semantic segmentation, are provided as
baselines.

This paper is organized as follows. Section II presents the
details of the dataset. Section III contains the brief descriptions
of baseline methods. Finally, section IV and Section V present
the experimental results and conclusions, respectively.

II. GOOGLE EARTH DATASET

A. Study Area

The dataset covers the administrative boundaries of Cau
Giay district, Hanoi, Vietnam (see Fig. 1) with the area
of 12.03km2 and the population density of 20, 931 people
per square kilometer as of 2017 [10]. It’s ten times higher
than average population density of Hanoi (2, 239 people per



Fig. 1: The administrative boundaries of Cau Giay district,
Hanoi, Vietnam.

square kilometer), and 73 times higher than average population
density of Vietnam (286 people per square kilometer) [11]. As
such, this area is one of the densest urban area in Vietnam.

Due to high population density, tube-house is the most
common architecture in this area with the narrow-shaped
facade and great length. Meanwhile, roof shapes and roof
materials differ greatly from building to building. In total, nine
roof types have been observed (see Fig. 2).

B. Dataset Description

The images are extracted from Google Earth at zoom level
of 22, and come as 24-bit files in Red-Green-Blue (RGB)
format. Since Google Earth imagery are mosaic-ed from
various sources, we can not guarantee as much in terms of
quality or appearance. Many images are affected by a variety
of artifacts such as cloud shadow, blurring effect, or non-ortho
view (see Fig. 3).

Buildings rooftop in each image have been manually anno-
tated and the ground truth data (label images) are provided
together with Google Earth image (see Fig. 4). Occasionally,
parts of some buildings are highly ambiguous (be covered by
shadow or may be distorted in the original image). They are
included as long as the annotator is reasonably sure the pixels

(a) Arch roof (b) Copula roof

(c) Flat roof (d) Gable roof

(e) Hipped roof (f) Pavilion roof

(g) Saw-tooth roof (h) Combination

Fig. 2: Nine different roof types in Cau Giay area.

belong to the buildings. Besides, the side-wall of buildings
may appear in the image since many of them have non-ortho
view. In this dataset, only building rooftop is considered, while
the side-wall is ignored.

The area is manually divided into training, validation, and
testing regions. The Google Earth image were subdivided into
patches of size 1024 × 1024 pixels and were automatically
assigned as training, validation, and testing set according to
its corresponding region. The patches in training set cannot
overlap with other patches in validation and test set, and
vice versa. However, two patches in the same set can be
overlapped. This helps increase the volume of dataset which
is pre-requisite for deep learning model to learn. In total, the
data set contains 2100 patches of size 1024 × 1024 pixels in
which 1260 patches are used for training, 140 patches are used
for validation, and 700 patches are used for testing

To this end, some properties of our dataset that make it
challenging for building extraction algorithms are that:

• The diversity in shape, size and construction material of



(a) (b)

Fig. 3: Visualization quality of extracted images. (a) Good
quality image with near-ortho view and high resolution (b)
Bad quality image with non-ortho view and is affected by
cloud shadow.

(a) (b)

Fig. 4: Example patch of Cau Giay dataset (a) Google Earth
image (b) Ground truth.

roof top.
• The variation in resolution, incident angle, and quality of

the Google Earth image.
• The high density of buildings.

III. BASELINE METHODS

Currently, there are many semantic segmentation methods
in deep learning for building footprints extraction such as
Fully Convolutional Network (FCN) [12], Convolutional and
Deconvolutional Networks [13], U-Net [14]. These models
often composed of two linked parts. The first part is a
encoder network which computes feature maps at different
depth layers. The second part is a decoder network which
up-sampling the feature maps and then generating a map of
pixel-wise probabilities at original resolution. In this paper,
U-Net with ResNet backbone was used as our baselines.

A. U-Net with ResNet backbone

1) ResNet: ResNet is a Convolutional Neural Network
(CNN) architecture, made up of series of residual blocks
(ResBlocks) with skip connections [15]. Fig. 5 represents the
architecture of a ResBlock. Let Hi−1 denotes the output of
i− 1th block, fi(.) represents a series of convolutions, batch
normalisation and linear functions in ith block, we obtain:

Fig. 5: The architecture of ResBlock (image from [15]).

Hi = ReLU(fi(Hi−1) + id(Hi−1)) (1)

where id(.) is identity transformation, and we assume a ReLU
[16] activation function.

2) U-Net: U-Net was first developed for medial image
segmentation [14]. It consists of an encoder part and a decoder
part. The encoder part follows the typical architecture of
a convolutional network (ResNet-50 in this case) which is
used to learn the image features. The decoder part uses
transposed convolutions to up-sampling the learned features
map to original resolution. At the final layer a 1x1 convolution
is used to map each feature vector to the desired number of
classes (building or non-building).

B. Loss Functions

Mean Squared Error Loss (MSE) and Cross Entropy Loss
(CE) are widely used for training semantic segmentation
model. In this work, we trained two identical U-Net models
with MSE and CE loss as baselines.

1) Cross Entropy Loss: Let P (Y = 0) = p and P (Y =
1) = 1p. The predictions are given by the logistic/sigmoid
function P (Ŷ = 0) = 1 − 1

1+e−x = p̂ and P (Ŷ = 1) =

1 − 1
1+e−x = 1 − p̂. Then cross entropy (CE) can be defined

as follows:

CE(p, p̂) = −(p log p̂+ (1− p) log 1− p̂) (2)

2) Mean Squared Error Loss: Let N is the number of
pixels, yi is the ground truth (0 or 1), and ŷi is predicted
probability. MSE loss is defined as:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (3)

IV. RESULTS FOR BASELINES

A. Training Details

Both U-Net models with CE and MSE loss are trained
using stochastic gradient descent (SGD) optimizer. Weights
are randomly initialized and updated with the learning rate set
by 0.05, momentum parameter set by 0.9, and weight decay set
by 0.001. Learning rate is reduced by a factor of 0.05 every ten
epochs. During training, image patches are augmented using
randomly flip horizontal and flip vertical.



TABLE I: Results comparison.

Method Precision Recall F1 score OA
U-Net + CE Loss 82.97 85.67 84.30 91.48
U-Net + MSE Loss 83.39 87.67 85.48 92.04

B. Evaluation Metrics

F1-score and Overal Accuracy (OA) are used as evaluation
metric, and is defined as follows:

precision =
tp

tp+ fp
(4)

recall =
tp

tp+ fn
(5)

F1 = 2× precision× recall

precision+ recall
(6)

OA =
tp+ tn

tp+ fp+ tn+ fn
(7)

where tp is the number of true positives, tn is the number of
true negatives, fp is the number of false positives, and fn the
number of false negatives.

C. Experimental Results

We compare U-Net models with CE and MSE loss. Quan-
titative comparisons are summarized in Table I. Both CNN
models achieved comparative results. Model trained with MSE
loss is slightly better than CE loss with F1 score of 85.48 and
OA score of 92.04.

We give in Fig. 6 the final building extraction results for
all models in some test images. Most of building rooftops can
be mapped by both models trained with CE and MSE loss.
Although the difference in mapping accuracy is insignificance,
the model trained with MSE loss is much better than CE loss in
term of detection rate. Besides, it’s interesting to see that, both
models are able to distinguish between building rooftop and
side-wall and are able to work with degraded quality image
(see the first and third row of Fig. 6).

V. CONCLUSIONS

In this study, we introduce a new dataset dedicated to
building rooftop extraction from open-source Google Earth
imagery. The buildings in this dataset have numerous types
of rooftop with various shape and size. Besides, it’s the first
dataset to tackle the rooftop extraction within very dense
building area. Besides, we provide some baselines using U-
Net model in which different loss functions were evaluated.
The experiment results showed that the models trained on
these data are able to detect building rooftops with comparable
accuracy and recall rate regardless of the image quality. We
believe this dataset will contribute to the diversity of aerial
dataset for building rooftop and building footprint extraction.
Our future work would focus on the extraction of individual
buildings from image.
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Fig. 6: Result visualization


