
On Implementation of the Improved Assume-Guarantee
Verification Method for Timed Systems∗

Hoang-Viet Tran
15028003@vnu.edu.vn

Faculty of Information Technology
VNU University of Engineering and

Technology
Hanoi, Vietnam

Quang-Trung Nguyen
trungnq@vcu.edu.vn

Vietnam University of Commerce
Hanoi, Vietnam

Pham Ngoc Hung
hungpn@vnu.edu.vn

Faculty of Information Technology
VNU University of Engineering and

Technology
Hanoi, Vietnam

ABSTRACT

The two-phase assume-guarantee verification method for timed
systems using TL∗ algorithm implemented in the learner has been
known as a potential method to solve the problem of state space
explosion in model checking thanks to its divide and conquer strat-
egy. This paper presents three improvements to the verification
method. First, we remove the untimed verification phase from the
verification process. This removal reduces the time complexity of
the verification process because of the great time complexity of this
phase. Second, we introduce amaxbound to the equivalence queries
answering algorithm implemented in the teacher which acts as a
method for the teacher to return “don’t know” results to the learner
to prevent the verification process from many endless scenarios.
Finally, we introduce a technique to analyze the counterexample
received from the teacher and another one implemented in the
equivalence queries answering algorithm which helps the teacher
not return a counterexample that has been returned to the learner.
This technique keeps the verification process from running forever
in several circumstances. We give primitive experimental results for
both two-phase assumption generation method and the improved
one with some discussions in the paper.

CCS CONCEPTS

• Software and its engineering → Formal software verifica-

tion.

KEYWORDS

Software verfication, timed systems, assume-guarantee verification,
component-based software

ACM Reference Format:

Hoang-Viet Tran, Quang-Trung Nguyen, and Pham Ngoc Hung. 2019. On
Implementation of the Improved Assume-Guarantee Verification Method
for Timed Systems. In Soict ’19: The Tenth International Symposium on

Information and Communication Technology, December 4 – 6, 2019, Hanoi -

∗This paper is an extension of the paper [25] presented at KSE’10.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Soict ’19, December 4 – 6, 2019, Hanoi - Ha Long Bay, Vietnam

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7245-9/19/12. . . $15.00
https://doi.org/10.1145/3368926.3369659

Ha Long Bay, Vietnam. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3368926.3369659

1 INTRODUCTION

In modern software development, quality assurance in general
and correctness verification in particular play an important role,
especially for the timed systems correctness verification since these
systems havemuch higher complexity than that of untimed ones. As
a result, reducing time complexity of existing verification methods
for timed systems emerges as a big challenge for software industry.
Among verification methods, model checking [4, 5, 23] has gained
a lot of attention as the most promising approach thanks to its
fully automatic basis. However, one well known issue of model
checking is the state space explosion problem [4, 23] when checking
large-scale systems. Assume-guarantee reasoning (AGR) [3, 12, 22]
is a method developed to solve the state space explosion problem of
model checking. Despite its potential application in verifying large-
scale software, the method has not been used much in software
industry due to its high time complexity. This fact becomes clearer
when doing verification of not only untimed systems but also timed
ones due to the truth that the state space of timed systems is much
bigger than that of untimed ones.

To our knowledge, Lin et al. is the first one who proposes a
method to apply AGR for timed systems in a fully automatic man-
ner [19]. The method contains two phases of learning assumption
in which the first one is to generate untimed assumption while the
second one generates the required timed assumption. If an untimed
assumption can be generated in the first phase, it will be used as
the input of the second phase to generate the required timed as-
sumption. However, this method (hereafter called the two-phase
assumption generation method) has some limitations as follows.
The first one is that both phases of the learning process have high
time complexity. This makes the method have great time complex-
ity. The second one is that dividing the learning process into two
phases does not help the method cover all the cases where an as-
sumption can be generated. This problem exists because of the
fact that there are two types of assume-guarantee reasoning rule
which are used in software verification: circular assume-guarantee
rule (CIRC-AG) which is sound and complete; non-circular assume-
guarantee rule (NC-AG) which is not complete [14]. When apply-
ing the NC-AG rule, most of the proposed algorithms return either
YES+assumption orNO+counterexample [2, 6, 11, 19]. Apparently,
these algorithms implicitly assume that the required assumption
exists and the teacher knows the assumption when solving member-
ship queries and equivalence queries from the learner. However, in

Soict ’19, December 4 – 6, 2019, Hanoi - Ha Long Bay, Vietnam Hoang-Viet Tran, et al.

general, there exists an area where the teacher does not know if the
assumption exists. In a typical scenario where a given systemM sat-
isfies a predefined safety property p, but the teacher does not know
if the assumption which satisfies NC-AG rule exists. As a result,
the learning process introduced in [2, 6, 11, 19] can run endlessly.
Consequently, we need to add a guide for the teacher to return
“don’t know” result so that the learner can stop the learning process.
We realize this idea by adding a kind of bound called maxbound to
the equivalence queries answering algorithm implemented in the
teacher. The learning process can be presented as shown in Figure 1.
Consider one of the “don’t know” scenarios where the two-phase

assumption
generation

Don’t know

No+cex

Yes+A

Figure 1: The general NC-AG verification.

assumption generation method proposed by Lin et al. [19] does
not cover. Given a timed systemM with two componentsM1 and
M2 (i.e., M = M1 ‖ M2) and a safety property p. Assume that the
assumption which satisfies the NC-AG rule exists but the teacher
does not know about this. Therefore, we have a case where the
untimed assumption generated by untimed learning phase leads
the timed learning phase to the conclusion of “don’t know”. In this
scenario, the untimed learning phase appears to be redundant in
spite of its high time complexity. On the other hand, there exist
chances where we can prevent the learning process from wrong
direction by starting the learning process from the beginning (i.e.,
from λ). Consequently, a number of “don’t know” scenarios from
the two-phase assumption generation method can be covered. In
addition, the removal of the untimed learning phase also improves
the speed of the learning process thanks to its high time complexity.

From the above analysis, this paper presents three improvements
to the two-phase assumption generation method. The key idea of
the first improvement is to remove the untimed learning phase from
the learning process to get an improved algorithm which contains
only the timed learning phase (hereafter called one-phase assump-
tion generation method). This removal reduces time complexity of
the verification process and makes the process cover some “don’t
know” cases where the two-phase assumption generation method
does not. The second improvement adds a maxbound to the equiv-
alence queries answering algorithm which acts as a guide for the
teacher to return “don’t know” result to the learner. The learner,
in its turn, will stop the learning process when receiving a “don’t
know” result from the teacher. The last improvement is a technique
to analyze the counterexample received from the teacher for find-
ing a better assumption candidate for the next learning iteration.
This improvement also includes a technique implemented in the
equivalence queries answering algorithm which helps the teacher
not return a counterexample that has already been returned to the
learner. The two techniques implemented in both the learner and
the teacher prevent the learning process from several endless sce-
narios. Another result of this improvement is that the teacher can
find and return a new “don’t know” case where it does not know if

the assumption exists or not. This is the case where no more coun-
terexample can be found to return to the leaner for generating a
better assumption candidate. Our initial experimental results show
that the one-phase assumption generation method outperforms the
two-phase one in term of time and in most of the test scenarios. We
give discussions about the experiment results in the paper.

The rest of the paper is structured as follows. Section 2 shows our
motivations for doing the research. Section 3 shows the one-phase
assumption generation method which contains the technique to
analyze the counterexample returned from the teacher. A variant of
the equivalence queries answering algorithm is shown in Section 4
which contains the idea not to return a counterexample which has
already returned to the learner. We give experimental results and
discussions in Section 5. Related researches to this paper is shown
in Section 6. The paper is concluded in Section 7.

2 MOTIVATION

The two-phase assumption generation method was introduced by
Lin et al. [19] in 2014. This section gives discussions about “don’t
know” coverage of the two-phase assumption generation method.
Although the two-phase assumption generation method can nicely
generate the required assumption in general, it does not cover all
the cases. There are many scenarios whereM |= p but the teacher
does not know if returning a new counterexample can help the
learning process to generate the needed assumption. This can re-
sult in an endless learning process as the one shown in Section 3.1.
Consequently, we need a kind of maxbound to help the teacher to
return “don’t know” result so that the learner can stop the learning
process. This maxbound is integrated into the equivalence queries
answering algorithm implemented in the teacher as shown in Algo-
rithm 2.

DFA0 DFA1 DFAn

ERA0 ERA1 ERAp ERAm

M1||M2 satisfies p

DFAn ERAq ERAr

Phase 1

Phase 2

M1
ut||M2

ut satisfies p ut

“don’t know”

Figure 2:Mut
1 ‖ Mut

2 |= put , but phase 2 result is “don’t know”.

Consider an example shown in Figure 2 where a given system
M = M1 ‖ M2 satisfies a predefined safety property p (i.e.,M |= p).
Although M |= p and phase 1 successfully generate untimed as-
sumption at step n (i.e.,Mut

1 ‖ Mut
2 |= put), phase 2 ends up with

a “don’t know” situation. However, if we try to learn from the be-
ginning without having to learn untimed assumption (i.e., learning
from an empty string (λ) or from ERA0), the result may be different
(i.e., “M |= p” is returned). This is because we have some other

On Implementation of the Improved Assume-Guarantee Verification Method for Timed Systems Soict ’19, December 4 – 6, 2019, Hanoi - Ha Long Bay, Vietnam

chances to follow a correct direction during the learning process.
In this scenario, the result of untimed learning phase can lead the
learning process to a direction where the teacher does not know
what counterexample for the learner to generate a better assump-
tion candidate in the next learning iteration. Moreover, this learning
phase has a high time complexity. Therefore, in our opinion, this
phase should be removed from the learning process.

From this observation, we propose an algorithm that learns an
assumption from the beginning (from λ) in only one phase by
removing the untimed learning phase. This not only saves the
running time of the untimed phase, but also lets the learning process
have some other chances of going to a correct learning direction.
This makes the proposed learning algorithm cover some of the
“don’t know” scenarios where the two-phase learning algorithm
does not.

3 ONE-PHASE ASSUMPTION GENERATION

For more information about the background concepts, please refer
to Lin et al.’s paper [19]. Hereafter, we use the following NC-AG
rule in whichM ,M1,M2, and p are represented by event-recording
automata (ERA).

Definition 3.1. (The NC-AG Rule). Given a timed system M =
M1 ‖ M2 and a predefined property p, if M1 satisfies p under an
assumption A andM2 guarantees A, thenM |= p.

M1 ‖ A |= p
M2 |= A

M1 ‖ M2 |= p

When implementing the one-phase assumption generationmethod
proposed in the paper [25], we saw that if we simply implement
the equivalence queries answering algorithm proposed in teacher,
there are several scenarios where the learning process can run end-
lessly. Furthermore, both the two-phase and one-phase assumption
generation methods [19, 25] did not describe in details how to get
a suffix t from a given counterexample cex to generate a better
assumption candidate. This section shows an example of an end-
less learning process and a variant of the one-phase assumption
learning algorithm that contains a technique to find the suffix t .

3.1 Example for an Endless Learning Process

Consider a motivation example where the verification goes end-
lessly with the current algorithms [19, 25] implemented in the
learner and teacher. This is why we need some improvements in
both sides so that the learning process can go further when doing
verification. Consider a flexible manufacturing system (FSM) [7]
which consists of five components: one conveyor, one mill, two
robots, and one assembly station. The property requires that the
system must have output after the input within three units of time.
We divided the system into two components ofM1 andM2 using a
heuristic where only components containing behaviors included in
the property are considered. The result systemM = M1 ‖ M2 and
its property p are shown in Figure 3.

B1_in
C1

C0

M1=Conveyor

C2

I_B1_C1
[cB1_in <= 1]

O_B1_R1

R0

R1

R2 R3

R4

R5

I_B1_C1

B1_OUT
[cI_B1_C1<=1]

O_B1_R1

B3_IN_R1

I_B3_R1

O_B3_M

M2=Robot-1

l0 l1

B1_IN

B1_OUT[cB1_IN<=3]

p=spec

Figure 3: An example for an endless learning process.

Table 1: One observation table in verification process ofM

(λ,true)
S (λ,true) 1
S (B1_OUT,true) 0
SA (I_B1_C1,cB1_IN>1) 1
SA (I_B1_C1,cB1_IN<=1) 1
SA (O_B1_R1,true) 1
SA (B1_OUT,true) 0

When learning, the observation table as shown in Table 1
is created. The corresponding assumption is shown in Figure 4.
However, when asking the teacher an equivalence query with
that assumption candidate, the teacher returns a counterexample
cex=(I_B1_C1,cB1_IN<=1)(O_B1_R1,true)(I_B1_C1,cB1_IN<=1). After
analyzing cex , no suffix t can help the learner to generate a better
candidate. As a result, the same candidate as shown in Figure 4 is

1
O_B1_R1,

I_B1_C1 [cB1_IN>1],
I_B1_C1 [cB1_IN<=1]

Figure 4: The corresponding assumption candidate.

used to ask a new equivalence query to the teacher. With no change
in the equivalence queries answering algorithm implemented in
the teacher as proposed by Lin et al. [19], the same counterexample
cex will be returned. Consequently, the learning process will run
forever. If the equivalence queries answering algorithm proposed
by us [25] is implemented, the learning process can be stopped
when maxbound is reached. Nevertheless, that is not the best we
can do to implement the verification method. In sections below,
we present variants of both one-phase assumption learning and
equivalence queries answering algorithms that make the learning
process go further to reach a decisive result.

Soict ’19, December 4 – 6, 2019, Hanoi - Ha Long Bay, Vietnam Hoang-Viet Tran, et al.

3.2 A Variant of the One-Phase Assumption
Learning Algorithm

As mentioned in Section 3.1, both the two-phase and one-phase
learning algorithms do not give detailed steps of finding a suffix
t to generate a better assumption candidate. We present a variant
of the one-phase learning algorithm that includes a technique to
find t . This technique shares the same idea of the one proposed by
Le et al. [15]. However, the idea is now applied to the one-phase
assumption generation method. Details of the variant algorithm
is shown in Algorithm 1. The algorithm starts by initializing the
observation table (S, E,T) with S = E = {(λ, true)} (line 2). The
learning process goes to the main iteration from line 3 to 39. Then, it
updates (S, E,T) by using timed membership queries (line 4). While
(S, E,T) is not closed, the algorithm tries to make (S, E,T) closed
by using timed membership queries (lines 5 to 8). When (S, E,T) is
closed, the algorithm constructs an assumption candidateC (line 9),
asks the teacher an equivalence query, and stores the result in
EQResult (line 10). If EQResult is yes , the algorithm returns C as
the needed assumption and reports “M = M1 ‖ M2 |= p” (line 12).
In case EQResult is (continue, cex), the algorithm needs to update
(S, E,T) using cex in order to have a better assumption candidate
(from line 13 to 33). Let cex = (a1,д1)(a2,д2)...(an,дn) (line 14).
With each timed action (ai ,дi) in cex , if there exists another timed
action (ai ,д) that is a substring of s ∈ S ∪S .ΣT or e ∈ E and [[дi]] ⊂
[[д]] (line 16), then we will split the timed action (ai ,д) as follows.
Let G = {д̂1, д̂2, ..., ˆдm } be the set of constraints that contains the
result of the constraints subtraction of [[д]] − [[дi]] (line 17). The
timed actions set of ΣT is then updated by replacing {(ai ,д)} by
{(ai ,дi), (ai , д̂1), (ai , д̂2), ..., (ai , ˆдm)} (line 18). Then, with s ∈ S ∪

S .ΣT , s is split into {ŝ0, ŝ1, ŝ2, ..., ˆsm } where (ai ,дi) is a substring
of ŝ0, (ai , д̂j) is a substring of ŝj , ∀j ∈ {1, 2, ...,m} (line 19). With
e ∈ E, e is split into {ê0, ê1, ê2, ..., ˆem } where (ai ,дi) is a substring
of ê0, (ei , д̂j) is a substring of êj , ∀j ∈ {1, 2, ...,m} (line 20). (S, E,T)
is then updated for the newly added cells (line 21). Let count be the
number of timed actions in cex (line 24). To find a suitable suffix t ,
the algorithm considers every suffix t of cex that has the number
of timed actions k from 1 to count (line 25 to 33). With each t , the
algorithm tries, with a copyOT of (S, E,T) (line 26), adding t toOT ’s
E and updating OT (line 28). If the updated OT is closed, meaning
that adding t to E does not result in a better assumption candidate,
we need to consider another suffix. Otherwise, the updated OT is
not closed, meaning that adding t to E results in a better assumption
candidate for the learning process, the loop of finding t is stopped
and t will be added to the suffixes set E of (S, E,T) (line 29 to 32).
After adding t to E (line 30), the current loop of finding t is stopped
(line 31) and the learning process comes back to step 4 to find
a better assumption candidate. In case EQResult is “don’t know”,
the algorithm stops and reports “don’t know” (line 35). The last
case is when EQResult is (no, cex), the algorithm stops and report
“M = M1 ‖ M2 � |= p” + cex (line 37).

In regards to the correctness of Algorithm 1, please refer to our
previous paper [25]. In this section, we only discuss about the steps
of finding t from line 24 to 33. Although these steps cannot always
find out the suitable suffix t to be added to E, they give a feasible
method to the implementation of the learning process. Moreover,
when t cannot be found from these steps, because Algorithm 1 will

be used together with the teacher which is implemented using a
variant of the equivalence queries answering algorithm presented
in Section 4, the learning process can go further in comparison
with the learning process that uses either the one-phase [25] or the
two-phase learning algorithm [19].

4 EQUIVALENCE QUERIES ANALYSIS

For the technique presented in Section 3.2 to be used effectively,
we need a variant of the equivalence queries answering algorithm
which does not return counterexample that has already been re-
turned to the learner. The equivalence queries answering algorithm
was originally proposed by Lin et al. [19] and later improved by
us [25]. The variant algorithm is shown in Algorithm 2. For the pur-
pose of managing counterexamples that have already been returned
to the learner, the algorithmmaintains a list calledReturnedCexList
which contains those counterexamples. When the algorithm has
found a counterexample cex to be returned to the learner, it checks
if cex is in ReturnedCexList . If yes, the algorithm continues finding
if there exists another cex to return to the learner. Otherwise, cex is
returned to the learner for learning a better assumption candidate.
The algorithm accepts an assumption candidate C as input and re-
turns either yes (i.e., C satisfies NC-AG rule) or (continue, cex) (i.e.,
C does not satisfy NC-AG rule, but the learner can use the returned
cex to learn a better assumption candidate) or (no, cex) (i.e.,C does
not satisfy NC-AG rule but the learner cannot learn another better
candidate from cex becauseM1 ‖ M2 � |= p) or “don′t know” (i.e., C
does not satisfy NC-AG rule and the teacher does not know if con-
tinuing the learning process can reach a decisive result or not). The
algorithm starts by checking if L(M1 ‖ C ‖ p) = ∅ (line 2). If yes (i.e.,
M1 ‖ C |= p), the algorithm continues checking if L(M2 ‖ C) = ∅

(line 3). If yes (i.e.,M2 |= C), the algorithm returnsyes to the learner.
If M2 � |= C , let cex be one trace in L(M2 ‖ C) (line 6) and its pro-
jected word cex ′ over Σ has never been returned to the learner

(i.e., cex ′ = cex↓Σ � ReturnedCexList) (line 6). If such cex does not

exist (line 7), meaning that all traces in L(M2 ‖ C) have already
been returned to the learner but no better assumption candidate
can be found. The teacher does not know how to find another
needed counterexample. The teacher returns “don’t know” to stop
the learning process (line 8). If such cex exists, the algorithm adds
cex ′ to ReturnedCexList (line 10). Then, the algorithm analyzes if
cex belongs to L(M1 ‖ p) (line 11). If yes (i.e., M1 | |M2 � |= p), the
algorithm returns (no, cex ′) (line 12). In case cex � L(M1 ‖ p), the
algorithm increases the number of equivalence queries processed
QcNum by 1 (line 14) and checks if QcNum reaches maxbound
(line 15). If yes, the algorithm returns “don’t know” to the learner
(line 16). Otherwise, the algorithm gets cex ′ = cex↓Σ and returns
the result (continue, cex ′) to the leaner (line 18 to 19). In case
L(M1 ‖ C ‖ p � ∅), let cex be one trace in L(M1 ‖ C ‖ p) and
cex ′ = cex↓Σ � ReturnedCexList (line 23). The same as the above
case, if such cex does not exist, the algorithm returns “don’t know”
to the learner to stop the learning process (line 25). If such cex exists,
the algorithm adds cex ′ = cex↓Σ toReturnedCexList (line 27). Then,
the algorithm checks if cex ∈ L(M2). If yes (i.e.,M1 ‖ M2 � |= p), the
algorithm returns (no, cex ′) to learner (line 29). In case cex � L(M2),
the algorithm increasesQcNum by 1 (line 31) and checks ifQcNum
reaches maxbound. If maxbound is reached (line 32), the teacher

On Implementation of the Improved Assume-Guarantee Verification Method for Timed Systems Soict ’19, December 4 – 6, 2019, Hanoi - Ha Long Bay, Vietnam

Algorithm 1: One-Phase assumption Learning Algorithm

1 begin

2 Initialize (S, E,T) with S = E = {(λ, true)}.

3 while true do

4 Update (S, E,T) using Qm queries.

5 while ∃(s .a)| row(s .a) � row(s ′), ∀s ′ ∈ S,a ∈ ΣT do

6 S ← S ∪ {(s .a)}.

7 Update (S, E,T) by using Qm ((s .a).b .e) ∀b ∈ ΣT and e ∈ E.

8 end

9 Construct an ERA assumption candidate C from (S, E,T).

10 EQResult ← Ask an equivalence query for C

11 if EQResult = yes then
12 return C as needed assumption and report “M = M1 ‖ M2 |= p”.

13 else if EQResult = continue then
14 Let cex = (a1,д1)(a2,д2)...(an,дn) ← the counterexample from Teacher .

15 foreach (ai ,дi), i ∈ {1, 2, ...n} do
16 if (ai ,д) is a substring of s ∈ S ∪ (S .ΣT) or e ∈ E such that [[дi]] ⊂ [[д]] then
17 G = {д̂1, д̂2, ..., ˆдm } ← [[д]] − [[дi]].

18 ΣT = ΣT \{(ai ,д)} ∪ {(ai ,дi), (ai , д̂1), (ai , д̂2), ..., (ai , ˆдm)}.

19 Split s into {ŝ0, ŝ1, ŝ2, ..., ˆsm }, where (ai ,дi) is a substring of ŝ0, (ai , д̂j) is a substring of ŝj , ∀j ∈ {1, 2, ...,m}.

20 Split e into {ê0, ê1, ê2, ..., ˆem }, where (ai ,дi) is a substring of ê0, (ei , д̂j) is a substring of êj , ∀j ∈ {1, 2, ...,m}.

21 Update (S, E,T) for newly added cells using Qm .

22 end

23 end

24 count ← number of timed actions in cex .

25 for k = 1 to count do
26 OT ← A copy of (S, E,T).

27 t ← A suffix of k timed actions in cex .

28 Add t to OT ’s E; Update OT using timed membership queries.

29 if OT is not closed then

30 Add t to (S, E,T)’s E.

31 break.

32 end

33 end

34 else if EQResult = “don′t know” then
35 return “don′t know” and stop.

36 else

37 return “M = M1 ‖ M2 � |= p” + cex and stop. // Teacher returns (no + cex)

38 end

39 end

40 end

returns “don’t know” to the learner to stop the learning process
(line 33). Otherwise, the algorithm gets cex ′ = cex↓Σ (line 35) and
returns (continue, cex ′) to the learner (line 36).
Correctness discussion The correctness of the original proposed
algorithm has been proved in the paper [25]. In the limited scope of
this paper, we give discussions about the main differences between
Algorithm 1, 2 and those proposed by us [25]. The differences reside
in both Algorithm 1 and 2. In Algorithm 1, the difference is included
in steps from line 24 to line 33. Although these are simple steps,
the algorithm gives a technique in details to the implementation
of finding a suitable suffix t to be added to the suffixes set E. The

suffix t must be the one that when being added to (S, E,T), a better
assumption candidate can be generated for the next learning iter-
ation. If such t cannot be found, the learning algorithm relies on
the teacher to have another counterexample cex to find a suitable
t . When teacher processes equivalence queries in Algorithm 2, in
its turn, in case the same candidate is received, if a certain coun-
terexample cex ′ which has already been returned to the learner

(i.e., cex ′ ∈ ReturnedCexList), the algorithm tries to find another
one (lines 6 to 10 or lines 23 to line 27). With this method of im-
plementation, the combination of Algorithm 1 and 2 makes the
learning process go further toward a decisive result. Another result

Soict ’19, December 4 – 6, 2019, Hanoi - Ha Long Bay, Vietnam Hoang-Viet Tran, et al.

Algorithm 2: A variant of the equivalence queries answer-
ing algorithm Qc (C)

Input: C: the ERA assumption candidate;maxbound :
the maximum number of candidate queries Teacher will
answer
Output: yes/(continue, cex)/(no, cex)/don′t know

1 begin

2 if L(M1 ‖ C ‖ p = ∅) then

3 if L(M2 ‖ C) = ∅ then

4 return yes .

5 else

6 Let cex ∈ L(M2 ‖ C) where
cex ′ = cex↓Σ � ReturnedCexList .

7 if cex does not exist then

8 return “don′t know” .

9 end

10 ReturnedCexList ← ReturnedCexList ∪ {cex ′}.

11 if cex ∈ L(M1 ‖ p) then
12 return (no, cex ′).

13 else

14 QcNum ← QcNum + 1.

15 if QcNum =maxbound then

16 return “don′t know".

17 end

18 cex ′ ← cex↓Σ and cex ′ = (a1,д1)...(am,дm).

19 return (continue, cex ′).

20 end

21 end

22 else

23 Let cex ∈ L(M1 ‖ p ‖ C) where
cex ′ = cex↓Σ � ReturnedCexList .

24 if cex does not exist then

25 return “don′t know” .

26 end

27 ReturnedCexList ← ReturnedCexList ∪ {cex ′}.

28 if cex ∈ L(M2) then

29 return (no, cex ′).

30 else

31 QcNum ← QcNum + 1.

32 if QcNum =maxbound then

33 return “don′t know".

34 end

35 cex ′ ← cex↓Σ and cex ′ = (a1,д1)...(am,дm).

36 return (continue, cex ′)

37 end

38 end

39 end

of this combination is that the “don’t know” situation appears to be
clearer to the implementation. Now, we have two scenarios where
“don’t know” result is returned to the learner. First, themaxbound is
reached when processing equivalence queries (line 16 or 33). Sec-
ond, the teacher does not know what counterexample should be

returned to the learner for learning a better assumption candidate
(line 8 or 25). A minor different point in Algorithm 2 in compari-
son with the one proposed in our previous paper [25] is that we
returned cex ′ right after projecting cex over Σ (line 18 to 36). This
keeps the implementation simple but maintains its correctness as
cex ′ is still the required correct counterexample.

5 EXPERIMENTS

We have implemented both two-phase [19] and one-phase (i.e., Al-
gorithm 1) assumption generation methods in a tool called Timed
systems verification tool (Tivet) to have assessments for both meth-
ods. Algorithm 2 is used as the equivalence queries answering algo-
rithm for both cases. We have tested the tool with some common
test data used in the research community listed below.

• Client-server. A client-server system [21] contains three
components: one server and two clients. We have modified
the system written by Magee and Kramer by adding timed
constraints that each client must be released within two units
of time being served and that it must send request after being
released within two units of time. In the meantime, server
must grant access to a client after receiving its request within
one unit of time. The property requires that two clients must
be served in order.

• FMS. A flexible manufacturing system (FMS) [7] is a system
which produces blocks in which one block contains a cylin-
drical painted pin from raw blocks and pegs. We tested only
the simplest version of FMS called FMS-1which contains one
conveyor, one mill, two robots, and one assembly station. We
tested this FMS-1 with three properties called spec1, spec2,
and spec3.

• GSS. A gas station system [13] is a combination of five com-
ponents: one operator, one queue, one pump, and two cus-
tomers. The station accepts these two customers for filling
gas. Tested properties require that customers must be served
in order and each of them must be able to start filling gas
within three units of time after his payment. Those proper-
ties are modeled as spec1, spec2, and spec3.

• Master-slave.Amaster-slave system [21] contains two com-
ponents: one master and one slave. We have modified the
models so that the slave must be synchronized by the server
within one unit of time after it starts and the master must be
back to its own work after synchronizing the slave within
two units of time. The property requires that the server must
be back to its own work within three units of time after the
slave starts.

• Simple communication channel (ComChannel).A sim-
ple communication channel which is proposed by Cobleigh
et al. [6] and later modified by Lin et al. [19] contains two
components: one input and one output. The property re-
quires that the system must receive a new input after its
output within five units of time and the output must be after
receiving a new message within five units of time, too.

The tool including test data is available on http://www.
tranhoangviet.name.vn/p/tivet.html. For more reliable results, we
have run each test cases ten times and gotten the average time and
memory used during verification process. The maxbound is chosen

On Implementation of the Improved Assume-Guarantee Verification Method for Timed Systems Soict ’19, December 4 – 6, 2019, Hanoi - Ha Long Bay, Vietnam

randomly for all test cases. Test results are shown in Table 2. In this
table, columns denoted by “Systems”, “|C |”, “|M1 |”, “|M2 |”, “|p |”, and
“|B |” show the names of test systems, the size of clocks set, the size
ofM1 (i.e., the number of locations inM1), the size ofM2, the size of
p, andmaxbound used in the corresponding test cases, respectively.
In Table 2, we can see there are some value of “−” in “|M1 |”, “|M2 |”,
and “|p |” columns. These are the cases where test systems contains
more than two components (i.e.,M = M1 ‖ M2 ‖ ... ‖ Mn). In these
cases, we implemented a kind of heuristic whereM is divided into
two components of H1 and H2 containing only behaviors included
in the given property p (i.e.,M = H1 ‖ H2). This method is based on
an observation that those components which contain no behavior
specified in the given property do not play any role in the sys-
tem in regards to the property under checking. After applying the
heuristic, the system is passed to either the two-phase or one-phase
assumption generation method for processing. For each verification
methods, we focus on the following main criteria to compare their
efficiency: whether the given system satisfies its corresponding
property; how many membership queries and equivalence queries
it takes to reach a decisive result; how much time and memory it
costs to reach the result. The test results retrieved when applying
the two-phase assumption generation method are shown in the
following columns: “Sat2?”, “|A2 |”, “MQut

2 ”, “MQt
2”, “EQ

ut
2 ”, “EQt

2”,
“Time2(ms)”, and “Mem2(B)”. Those columns show the result if the
given system satisfies its corresponding property, the size of the
generated assumption, the number of untimed membership queries,
the number of timed membership queries, the number of untimed
equivalence queries, the number of timed equivalence queries, the
time, and memory it takes to reach the decisive result, respectively.
In these columns, the value “DN ” means that the teacher has re-
turned “don’t know” when learning. In the meantime, test results
retrieved when applying one-phase assumption generation method
are shown in the following columns: “Sat1?”, “|A1 |”, “MQt

1”, “EQ
t
1”,

“Time1(ms)”, and “Mem1(B). These columns show the result if the
given system satisfies its corresponding property, the size of the
generated assumption, the number of timed membership queries,
the number of timed equivalence queries, the time, and memory it
takes to reach the result, respectively. From the test results shown
in Table 2, we have following discussions.

• In most of the cases (8 out of 9), one-phase assumption gen-
eration method takes less time to reach a decisive result than
that of the two-phase assumption generation method. This
is because in one-phase assumption generation method, we
have removed the untimed learning phase which has high
time complexity from the learning process.

• In regards to memory usage, there is no obvious difference
between the two assumption generation methods. From the
theory perspective, there is also no clear proof for that kind
of difference.

• There is one case (GSS_spec2), the two-phase assumption
generation method cannot reach a decisive result (i.e., mean-
ing that the learner cannot say either M � |= p or M |= p)
before reaching “don’t know” maxbound. In the meantime,
one-phase assumption generation method can reach the re-
sult ofM � |= p in only 7 equivalence queries.

• There is one case (MasterSlave) where the time it takes to
generate assumption using one-phase assumption genera-
tion method is longer than that when using the two-phase
method. This is the case of a small system where the number
of timed equivalence queries in one-phase method is 3 while
that number in the two-phase method is 2. From this number,
we can see another fact that timed equivalence queries take
a lot of time to be processed.

6 RELATEDWORKS

There are several researches which are related to the method of
learning assumption for compositional verification of timed systems
proposed by Lin et al. [19]. Some of those are about a tool called
PAT that supports the method [8, 9]. Some other researches are
about several aspects related to the Assume-Guarantee Reasoning
verification method for software [1, 10, 16–18, 20, 24]. Our previous
paper [25] in combination (hereafter called our paper) with this
paper introduces three improvements to the two-phase verification
method proposed by Lin et al. [19].

The two papers of Dong et al. [8, 9] present a tool called PAT that
supports many methods in software analysis including the two-
phase assumption generation method [19]. Although we shared the
same interest about verification of timed systems, we give three
improvements to the two-phase assumption generation method.

André et al. proposes a method to improve the verification
of reachability properties in the full parametric systems [1]. Re-
searches proposed by Li et al. [16, 17] gives methods for learning
Büchi Automata and its application. In the meantime, other re-
searches proposed by several authors [20, 24] present methods for
synthesizing untimed and timed models for systems to be used in
the verification process. Lin et al. introduces a method for tuning
M1,M2, and partitioning the systems under checking [18]. The un-
derlying ideas of compositional reasoning, foundational algorithms,
and applications are summarized by Giannakopoulou et al. [10].
We share the same interest in applying the NC-AG verification to
practice. However, we focus on improving the learning process
itself and in the context of verification for timed systems.

7 CONCLUSION

The paper has presented three improvements to the two-phase
assumption generation method proposed by Lin et al. [19]. The first
improvement is to remove the untimed learning phase from the
verification process which effectively reduces its time complexity.
The second one is to give a “don’t know” maxbound which helps the
teacher to return “don’t know” to the learner in cases the teacher
does not know if returning the next counterexample can help the
learner to generate a better candidate. This “don’t know” result acts
as a flag to stop the learning process. Last but not least, the paper
introduces a technique to analyze the returned counterexample
from the teacher to find a suitable suffix for learning a better as-
sumption candidate. The paper also suggests another technique
which helps the teacher not return a counterexample which has
already been returned to the leaner. This improvement prevents
the verification process from running endlessly in many scenarios.

Soict ’19, December 4 – 6, 2019, Hanoi - Ha Long Bay, Vietnam Hoang-Viet Tran, et al.

Table 2: Experimental results

No. Systems |C | |M1 | |M2 | |p | |B|
Two-phase learning algorithm One-phase learning algorithm

Sat2? |A2 |MQut
2 MQt

2EQ
ut
2 EQt

2Time2(ms) Mem2(B) Sat1? |A1 |MQt
1EQ

t
1Time1(ms) Mem1(B)

1 ClientServer 10 - - - 10 No - 9 9 1 1 2,440 41,761,874 No - 5 1 2,213 51,551,356
2 FMS-1_spec1 25 - - - 10 No - 17 397 2 9 68,506 41,115,457 No - 6 4 1,207 40,706,231
3 FMS-1_spec2 25 - - - 10 No - 5 5 1 1 3,828 41,366,172 No - 3 1 3,350 45,703,875
4 FMS-1_spec3 25 - - - 10 No - 7 22 4 3 3,046 48,049,674 No - 4 4 1,853 49,914,883
5 GSS_spec1 15 - - - 10 No - 43 56 25 2 82,573 61,106,959 No - 5 7 48,677 83,395,860
6 GSS_spec2 15 - - - 10 DN - 43 323 25 10 128,026 19,373,386 No - 5 7 39,282 18,383,930
7 GSS_spec3 15 - - - 10 Yes 2 5 20 4 5 5,279 9,600,567 Yes 1 3 5 3,778 11,666,328
8 MasterSlave 5 4 3 2 10 Yes 2 3 8 1 2 412 3,175,247 Yes 1 5 3 519 2,795,131
9 ComChannel 4 3 3 2 10 Yes 2 17 124 2 3 5,272 5,029,697 Yes 1 8 3 768 5,210,304

The initial experimental results shows that the improvements sig-
nificantly reduces the time required for the verification process or
helps the teacher to return “don’t know” in some cases.

Although the one-phase assumption generation method is tested
with some initial test systems, there are many things to do for
applying the method to the real software industry. We are working
on finding out an effective method to divide software systems into
components so that the method can be applied. Another work is
to find a more effective method to apply the proposed method to
systems which have more than two components rather than the
heuristic method mentioned in Section 5. This will be the key issue
when applying the method in large-scale systems. Finally, we need
a kind of graphical user interface for Tivet tool that helps software
engineers represent their systems and apply the method in practice.

ACKNOWLEDGMENTS

This work has been supported by VNU University of Engineering
and Technology under project number CN18.18.

REFERENCES
[1] É. André and S.-W. Lin. Learning-based compositional parameter synthesis

for event-recording automata. In A. Bouajjani and A. Silva, editors, Formal
Techniques for Distributed Objects, Components, and Systems, pages 17–32, Cham,
2017. Springer International Publishing.

[2] Y.-F. Chen, E. M. Clarke, A. Farzan, M.-H. Tsai, Y.-K. Tsay, and B.-Y. Wang.
Automated assume-guarantee reasoning through implicit learning. In T. Touili,
B. Cook, and P. Jackson, editors, Computer Aided Verification, volume 6174 of
Lecture Notes in Computer Science, pages 511–526. Springer Berlin Heidelberg,
2010.

[3] E. M. Clarke, D. Long, and K. McMillan. Compositional model checking. In
Proceedings of the Fourth Annual Symposium on Logic in Computer Science, pages
353–362, Piscataway, NJ, USA, 1989. IEEE Press.

[4] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs, Workshop,
pages 52–71, London, UK, UK, 1982. Springer-Verlag.

[5] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
Cambridge, MA, USA, 1999.

[6] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning assumptions
for compositional verification. In Proceedings of the 9th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’03,
pages 331–346, Berlin, Heidelberg, 2003. Springer-Verlag.

[7] M. H. de Queiroz, J. E. R. Cury, and W. M. Wonham. Multitasking supervisory
control of discrete-event systems. Discrete Event Dynamic Systems, 15(4):375–395,
Dec 2005.

[8] J. S. Dong, J. Sun, Y. Liu, and Y.-F. Li. Event analytics. In G. Ciobanu and D. Méry,
editors, Theoretical Aspects of Computing – ICTAC 2014, pages 17–24, Cham, 2014.
Springer International Publishing.

[9] J. S. Dong, J. Sun, Y. Liu, Y.-F. Li, J. Sun, and L. Shi. Event and strategy analytics.
In 2015 International Symposium on Theoretical Aspects of Software Engineering,

pages 4–6, Sep. 2015.
[10] D. Giannakopoulou, K. S. Namjoshi, and C. S. Păsăreanu. Compositional Reasoning,

pages 345–383. Springer International Publishing, Cham, 2018.
[11] D. Giannakopoulou, C. S. Păsăreanu, and H. Barringer. Assumption generation

for software component verification. In Proceedings of the 17th IEEE International
Conference on Automated Software Engineering, ASE ’02, pages 3–12, Washington,
DC, USA, 2002. IEEE Computer Society.

[12] O. Grumberg and D. E. Long. Model checking and modular verification. ACM
Trans. Program. Lang. Syst., 16(3):843–871, May 1994.

[13] D. Heimbold and D. Luckham. Debugging ada tasking programs. IEEE Software,
2(2):47–57, March 1985.

[14] L. Lamport. Verification and specification of concurrent programs. In J. W.
de Bakker, W. P. de Roever, and G. Rozenberg, editors, A Decade of Concurrency
Reflections and Perspectives, pages 347–374, Berlin, Heidelberg, 1994. Springer
Berlin Heidelberg.

[15] C.-L. Le, H.-V. Tran, and P. N. Hung. On Implementation of the Assumption
Generation Method for Component-Based Software Verification, pages 549–558.
Springer International Publishing, Cham, 2017.

[16] Y. Li, Y.-F. Chen, L. Zhang, and D. Liu. A novel learning algorithm for büchi
automata based on family of dfas and classification trees. In A. Legay and
T. Margaria, editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 208–226, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

[17] Y. Li, A. Turrini, Y.-F. Chen, and L. Zhang. Learning Büchi Automata and Its
Applications, pages 38–98. Springer International Publishing, Cham, 2019.

[18] S.-W. Lin, J. Sun, T. K. Nguyen, Y. Liu, and J. S. Dong. Interpolation guided
compositional verification (t). In 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 65–74, Nov 2015.

[19] S.-W. Lin, É. André, Y. Liu, J. Sun, and J. S. Dong. Learning assumptions for
compositional verification of timed systems. IEEE Transactions on Software
Engineering, 40(2):137–153, Feb 2014.

[20] S.-W. Lin and P.-A. Hsiung. Compositional synthesis of concurrent systems
through causal model checking and learning. In C. Jones, P. Pihlajasaari, and
J. Sun, editors, FM 2014: Formal Methods, pages 416–431, Cham, 2014. Springer
International Publishing.

[21] J. Magee and J. Kramer. Concurrency: State Models and Java Programs. Wiley
Publishing, 2nd edition, 2006.

[22] A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In K. R. Apt, editor, Logics and Models of Concurrent Systems, chapter In
Transition from Global to Modular Temporal Reasoning About Programs, pages
123–144. Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[23] J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems
in cesar. In Proceedings of the 5th Colloquium on International Symposium on
Programming, pages 337–351, London, UK, UK, 1982. Springer-Verlag.

[24] Y. Sun, G. Lipari, É. André, and L. Fribourg. Toward parametric timed interfaces
for real-time components. In Proceedings 1st International Workshop on Synthesis
of Continuous Parameters, SynCoP 2014, Grenoble, France, 6th April 2014., volume
145, pages 49–64, 2014.

[25] H.-V. Tran, P. N. Hung, and D. V. Hung. On improvement of assume-guarantee
verification method for timed component-based software. In 10th International
Conference on Knowledge and Systems Engineering, KSE 2018, Ho Chi Minh City,
Vietnam, November 1-3, 2018, pages 270–275, 2018.

