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Abstract — In this paper, we present an efficient hardware 

implementation of a Context Adaptive Variable Length Coding 

(CAVLC) module for an H.264/AVC video encoder. To improve 

timing performance, a three-stage pipeline architecture is 

proposed including: input data statistical analysis, encoding and 

packing. The context information and coding tables are stored in 

memory elements. To minimize the hardware implementation 

overhead and increase the system performance, in some sub-

encoders, the codewords are calculated on-the-fly instead of 

being stored in look-up tables. The proposed architecture has 

finally been implemented using a low power CMOS 65nm 

technology from STMicroelectronics. The design is able to 

operate up to 715MHz. At 550MHz, the design complexity is 

33Kgates for a power consumption of 20mW. The design is 

initially targeted to CIF video format; however, it is obviously 

suitable for real-time HD 1080p video format. 

Keywords- Video encoding, H.264/AVC, CAVLC, entropy coding, 

pipeline architecture, VLSI architecture for H.264 codec. 

I.  INTRODUCTION 

The H.264/AVC video coding standard proposed by the 
Joint Video Team (JVT) has introduced significant compres-
sion performance. To save approximately 50% bit-rate for 
equivalent perceptual quality compared with the performance 
of previous standards, many advanced techniques have been 
introduced with a large computational complexity [1]. There-
fore, H.264/AVC codecs are often implemented in full hard-
ware or hardware/software co-design.  

In video compression, after being transformed and quan-
tized [2], video data enters the entropy encoding process to 
remove statistical redundancy. One main idea of entropy 
encoding in video compression is Variable Length Coding 
(VLC) using shorter codewords for more frequent symbols and 
longer codewords for less frequent symbols. The new tech-
niques used in H.264 are context adaptive entropy encoding. 
One of them is Context Adaptive Variable Length Coding 
(CAVLC) which is applied in the baseline and main profiles of 
the H.264/AVC standard. In CAVLC, many variable length 
coding tables are used and the table selection depends on the 
context of the input data. 

Several previous works have presented the implementation 
of CAVLC encoder. Most of them tried to implement a high 
throughput CAVLC encoder, using pipelining techniques [3] or 
parallel symbols encoding [4][5]. Two-stage pipeline architec-

ture can halve the time to process a block in average, but 
requires double buffer size to store all the statistic information 
of one block before the data is encoded. Therefore, Chien [5] 
and Tsai [6] introduced a mechanism that scans the coefficients 
in inversed zigzag order and proposed a special buffer structure 
to maintain the buffer size at the size of one block. 

Parallel symbols encoding is an efficient method in terms 
of performance, however, it obviously double the area cost of 
symbol encoders. This method also needs to handle the data 
dependency, that is, with two symbols encoded in parallel, the 
encoding of the later symbol depends on the previous one. 
Thus, the statistical information of both symbols is pre-
calculated before encoding process [5]. In [4], the later symbol 
is encoded in two parallel encoders, then, the results are 
selected based on the output of the previous symbol encoder. 
This solution triples the hardware cost of the symbol encoder. 
Ramos et al. [7] presented an efficient method to overcome the 
bottleneck at the scan phase by scanning coefficients in 
parallel. This method halves the required time of the scan 
phase. Parallel coding of level and run-before is also applied. 

Some other authors aimed at designing low cost CAVLC 
encoders by calculating the coding level variables on-the-fly 
[8][9] or by reducing the size of look-up tables [5][10]. In [10], 
instead of storing 16-bit word for each symbol in coeff_token 
encoding, Kim has modified the VLC tables into tables of 9-bit 
words. Finally, Tsai [6] has implemented a low power CAVLC 
encoder which can reduce up to 69% the power consumption 
but the total gate count is somewhat high (about 27Kgates 
without the implementation of coefficient token VLC table 
selector). 

In this paper, we propose an efficient hardware implemen-
tation of the CAVLC encoder for H.264/AVC video coding. In 
order to achieve high performance encoding, we propose a 
three-stage pipeline architecture using various techniques to 
reduce the number of codewords to be packed into the bit-
stream in the last stage. Zero-skipping technique is intently 
used at 8×8 block level to skip encoding the all zero blocks. 
This technique reduces the encoding time for low-bit rate video 
data where lots of coefficients are zero. The VLC table selector 
for encoding coeff_token, including the reference memory, is 
integrated in our design to minimize the load of the 
H.264/AVC global processor. Finally, in order to reduce the 
cost of the table selector and its associated memory area, two 
main techniques are applied: to re-encode the VLC tables and 
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to calculate the codewords arithmetically. For example, the 
codewords are calculated on-the-fly instead of being stored in 
look-up tables at the level encoding and run_before infor-
mation encoding. The proposed CAVLC architecture has been 
fully implemented in RTL and synthesized using a low power 
CMOS 65nm technology from STMicroelectronics. 

The rest of the paper is organized as follows. In Section II, 
the basic principles of CAVLC coding is briefly reviewed. 
Section III presents in detail the proposed CAVLC encoder 
pipeline architecture. In Section IV, we discuss the achieved 
performance in comparison to related works. Finally, conclu-
sion will be given in Section V. 

II. CAVLC ENCODING PRINCIPLES 

A. Main principles of CAVLC 

CAVLC is entropy encoding used to encode residual data 
in 4×4 or 2×2-coefficient blocks. The coding techniques are 
applied according to statistical characteristic of the block: 

The blocks of quantized transform coefficients contain 
mostly zero coefficients. Thus, run-length coding is applied to 
encode the zero strings. In the zigzag order, non-zero coeffi-
cients are gradually lower. The last non-zero coefficients of the 

blocks are normally +1 or −1. The last consecutive coefficients 
with magnitude 1 are called trailing ones. The maximum 
number of trailing ones is three. These coefficients are encoded 
in a special way.  The other non-zero coefficients are called 
“level”. Levels are encoded in inversed zigzag order because in 
this inversed order, the magnitude of the previous level is used 
to predict the value of the next level. This prediction is then 
used to select the appropriate coding table. Because the 
numbers of non-zero coefficients in neighboring blocks are 
correlated, these numbers in upper and left blocks are used to 
predict the current block [11]. 

The ITU-T recommendation [12] has introduced the five 
syntax elements to be encoded in the CAVLC. They are 
coefficient token (coeff_token), trailing ones’ signs, level, total 
zero, and run before. 

B. Coefficient Token encoding  

Coefficient token (coeff_token) is a syntax element present-
ing a pair of numbers: the number of non-zero coefficients and 
the number of trailing ones in a block. The VLC table selection 
depends on the number of non-zero coefficients in the upper 
and the left blocks. If the number of non-zero coefficients in 
the upper block is nU and the number of non-zero coefficients 
in the left block is nL, then, the parameter nC used to decide 
which VLC table will be selected is calculated as follows: 

�� = �������(�
 + ��2 ) 
The coeff_token of a 4×4 luma block is encoded using the 

table VLC0 if nC is less than 2. The table VLC1 is selected if 
nC is greater than 1 and less than 4. If nC is greater than 3 and 
less than 8, the VLC2 is selected. If nC is greater than 7, the 
Fixed Length Coding (FLC) table is used. We also have a 
special table for encoding the coeff_token of 2×2 chroma DC 
blocks. 

C. TrailingOnes Sign flag encoding  

Each TrailingOne is encoded in one bit presenting its sign. 

If the coefficient is 1, the sign bit is zero (‘0’). If it is −1, the 
sign bit is one (‘1’). The TrailingOne signs are encoded in the 
bitstream in inversed zigzag order. 

D. Level encoding 

Levels are encoded in inversed zigzag order. In the level 
encoding, seven VLC tables are used. The next VLC table is 
selected according to the current VLC table and current 
magnitude of level. The first level is encoded using VLC0. 
Then the VLC number is increased if the magnitude of the 
current level is larger than the correlate threshold of the current 
VLC. TABLE I shows the thresholds of VLC tables. 

One exception is that if there are more than 10 nonzero co-
efficients and less than three trailing ones, the first level will be 
coded using table VLC1. Other exception is that if there are 
less than three trailing ones, the first level coded with the 
magnitude is decreased by 1 as mentioned in [12]. 

TABLE I. THE THRESHOLDS TO INCREASE THE VLC NUMBER 

Current VLC table Threshold 

Level_VLC0 0 

Level_VLC1 2 

Level_VLC2 3 

Level_VLC3 12 

Level_VLC4 24 

Level_VLC5 48 

Level_VLC6 - 

The ITU-T recommendation [12] introduces the level en-
coding using three variables: suffix length, level prefix and 
level suffix. The coding tables can be found in the JVT docu-
ment JVT-C028 [13]. From this presentation of VLC tables, we 
can figure out the formats of the codeword in three cases: one 
general case and two escape code cases. Signed level is 
converted into unsigned code-number. 

- In general case, a codeword contains prefix and suffix 
parts. The prefix is a string of zero bits followed by one 
‘1’. Suffix length is equal to the VLC number. The suffix 
value is equal to code-number minus the number of zero in 
the prefix. The maximum prefix is 13 in VLC0. In the 
baseline and main profile, maximum prefix is 14 in the 
other VLC tables [1]. 

- If the VLC number is VLC0 and the code-number is 
greater than 13 and smaller than 31, the codeword is in the 
first escape format: prefix is equal to 14, suffix length is 4. 

- If in VLC0, the code-number is greater than 30, or in the 
other VLC tables, the code-number is greater than maxi-
mum prefix plus maximum suffix, the second escape for-
mat is applied: the prefix is 15; the suffix length is 12 in 
baseline and main profile. 

E. TotalZero encoding 

TotalZero is the number of zero coefficients standing be-
fore the last non-zero coefficient in the zigzag order. Total zero 
is encoded using 15 VLC tables selected by the number of non-



zero coefficients in the luma blocks. Three other tables are used 
for encoding chroma DC blocks. 

F. Run_Before encoding 

Run_before is a sequence of numbers of zero coefficients 
standing before levels in zigzag order. However, run_befores 
are encoded in inversed zigzag order. The VLC table selection 
is done based on “zero left” information, that is, the number of 
zero left after each run_before is encoded. Next zero left is 
equal to current zero left minus current run_before. There are 7 
VLC tables used for run_before encoding. 

Finally, the syntax structure of output bitstream for one 
block data is in the following order: coeff_token, TrailingOne 
signs, Levels, TotalZero, and run_before. A conventional 
CAVLC encoder is composed of five encoders to generate five 
syntax elements of the current block. Each encoder contains 
several look-up tables to store VLC tables. Table selection is 
done by the previous coded syntax elements with some excep-
tional cases. There are totally up to 41 VLC tables in the 
CAVLC encoder. 

III. THE PROPOSED CAVLC ARCHITECTURE 

In this section, the proposed architecture of the CAVLC 
encoder will be presented. Pipelining and other techniques are 
used to achieve high performance. In order to reduce the 
hardware implementation cost, Level and run_before are 
encoded using dedicated combinational logic circuits while 
coeff_token and TotalZero are encoded by using look-up tables 
containing re-encoded VLC tables. 

A. CAVLC pipelined architecture overview 

 

Figure 1. The proposed three-stage pipeline architecture of CAVLC encoder. 

Figure 1 illustrates the three-stage pipeline architecture of 
our proposed CAVLC encoder design. The pre-process stage 
scans the sixteen (or four) coefficients, and then analyzes the 
statistical characteristic of the input blocks. In this stage, the 
coeff_token table selector is also integrated. This sub-module 
stores the reference information of the neighboring blocks and 
calculates the parameter nC to select the coding table for 
coeff_token encoding. In the encoding stage, various encoders 
operate in parallel to encode syntax elements of the current 
block at the same time. The three encoders (coe_tok_t1, level 
and zero info encoders) generate codewords in 32-bit bus and 
code length in 5-bit bus. The encoding controller synchronizes 

these three encoders, controls output data flow according to the 
syntax structure of the output bitstream. Finally, the packing 
stage concatenates the codewords and aligns them into 32-bit 
words. These words are written into an outer memory block. 

The pipeline between pre-process and encoding stages is 
performed at block level. Due to data dependency, encoders 
start to encode a block after the scanning process is complete. 
Two buffers are implemented between two first stages. By 
doing this way, two blocks can be processed in parallel, one is 
being scanned, while the previous one is being encoded, thus 
increasing the throughput of CAVLC module. 

The pipeline between two last stages is realized at code-
word level. Each codeword generated by the encoder is pushed 
into the FIFO. Whenever there is a codeword in the FIFO, the 
packing stage pops it and concatenates with the previous codes. 
Therefore, the codewords can be processed in parallel; one is 
being encoded while the previous one is being packed. 

The packing stage will stop packing and write out the re-
maining data of a macroblock into the outer memory when the 
mb_end flag is set. Hence, the architecture of the packing stage 
is simple. 

B. Reduce number of codewords entering the packing stage 

The preprocessing stage scans the input coefficients and 
stores the statistic information in the first buffer. After the 
scanning is complete, all the information such as number of 
non-zero coefficients, number of trailing ones, levels, run 
before…, is copied into the second buffer. During this copy 
process, the signs of three first levels are extracted and written 
into the second buffer (see Figure 2). Using the number of 
trailing ones, the encoding stage can construct the syntax 
element trailing one sign flag in just one clock cycle. 

 

Figure 2. T1 signs extraction during buffer copy. 

In the encoding stage, the coeff_token and TrailingOne 
signs are 19 bits long at maximum. In one clock cycle, the two 
syntax elements are merged into only one codeword pushed 
into the FIFO to reduce the task of packing stage, thus increas-
es the throughput of the module. Figure 3 presents the encoding 
of coeff_token and the combining of two syntax elements into 
one. 

In a block, the number of non-zero coefficients and the 
number of run_befores are equivalent. Although run_befores 
and levels are encoded simultaneously, the time for the encod-
ing stage to encode and push all the syntax elements into the 
FIFO is still twice time greater than the time for encoding 
levels. 



 

Figure 3. Coeff_token and T1 signs encoding into one codeword. 

Besides, the total number of bits of TotalZero and 
run_befores after being encoded is less than 32 bits. Thus, we 
can solve the timing process problem by packing all the zero 
information of a block into a 32-bit codeword while the 
run_befores are being encoded. By this solution, we reduce the 
number of zero information codewords entering the packing 
stage into only one codeword. Figure 4 describes the position 
and architecture of the zero information packer (small packer) 
in the zero information encoder. 

 

Figure 4. Position and architecture of the zero information packer. 

C. Zero-skipping at block level 

Another method to enhance the performance of the 
CAVLC encoder is zero-skipping where all residual zeros are 
flagged in order to skip the complete encoding process. Chen 
[3]  and Chien [5] adopt zero skipping at 8×8-block level, using 
Coded Block Pattern. Then, in the following work [6], Chen 
has applied zero skipping at coefficient level to achieve high 
throughput and low power for CAVLC encoding. 

In our design, zero skipping is also used at 8×8 block level. 
Before being scanned in pre-process stage, an 8×8 zero block is 
detected in zigzag scan phase. If the flag of 8×8 zero block is 
set, the encoder needs only two clock cycles to store the 
information into the reference memory, all the other encoding 
processes are then omitted. At 4×4 block level, zero blocks are 

also detected and flagged by zigzag scanner to reduce tasks of 
the CAVLC encoder. When a 4×4 block is flagged as zero 
block, the pre-processing does not have to re-scan it and 
coeff_token encoder is the only encoder operating in the 
encoding stage. 

D. VLC table selector for coeff_token encoding 

As mentioned above, the coeff_token VLC table selector 
including the reference memory is implemented in the pre-
process stage. Without this integration, the global processor of 
the H.264 encoder would have to access the global memory 
three times per block to read the nL, nU and write back the 
number of non-zero coefficients of the current block. There-
fore, with the VLC selector integrated in the CAVLC, the 
global performance of the H.264 encoder is increased. 

However, the hardware cost of this table selector is very 
high. The work presented in [14] is known as the only design 
including the nC generator in the CAVLC encoder. The nC 
generator is reported to occupy more than 50% of the total 
hardware overhead of CAVLC encoder. 

The significant cost of this sub-module leads us to optimize 
the hardware cost of the design. For blocks whose lower 
neighbors are in the same macroblock, reference memory is 
reused after each macroblock to be encoded. For the other 
blocks, the reference memory is reused line-by-line. The data 
stored in the reference memory is the number of non-zero 
coefficient in blocks which is in range 0 to 16. According to the 
CAVLC principle mentioned above, nL (or nU) equal to 16 or 
15 yield different nC parameters, however, the VLC table 
decisions are the same. Indeed, the ceiling of ((15 + n)/2) ≥ 8 
and the ceiling of ((16 + n)/2) ≥ 8, the FLC table is selected in 
both cases. To reduce the number of bit stored in reference 
memory from five to four bits, we store all data equal to 16 as 
15 with no influence on the table selection. In other parts of the 
CAVLC encoder, the two main techniques are codeword 
calculation and VLC table re-encoding. 

E. Codeword arithmetic calculation 

Every logic/arithmetical relation between the input data and 
the output codeword is utilized. In the coeff_token encoding, 
the fixed length coding (FLC) table can be constructed by 
forming the codeword as: 4 bits presenting the number of non-
zero coefficients minus 1 followed by 2 bits indicating the 
number of trailing ones. Hence, we remove the FLC look-up 
table. To reduce the area of address generator, the calculated 
FLC codeword is used as the address to access the VLC tables. 

 
Figure 5. Architecture of level encoder. 



In level encoding, the arithmetical relation between code-
number and codeword is also exploited. The architecture of 
level encoder is presented in Figure 5. The lev_para_cal 
calculates two parameters: VLC number and code-number for 
each level. The lev_cod_gen generates the codeword and code 
length in one of three formats presented above. All the compu-
tations are arithmetic and logical. We even optimized some of 
the mathematical equations to have a circuit with minimum 
resource. 

For example, the circuit in Figure 6 calculates the parame-
ter code-number. The original relation between code-number 
and level is:  

Cod_num =
��
� |level| � 2 � 2	if	level " 0	and	no	exception

|level| � 2 � 1	if	level * 0	and	no	exception
	|level| � 1� � 2 � 2	if	level " 0	and	exception
	|level| � 1� � 2 � 1	if	level * 0	and	exception

 

 

The relation is simplified as follows.  

• If level > 0 and no exception, cod_num � 	level � 1� 
concatenates with ‘0’.  

• If level < 0 and no exception, then cod_num �
	�level� � 2 � 1 � 	inverse	level� � 1� � 2 � 2 � 1 �
-inverse	level�. � 2 � 1 . It means that cod_num �
inverse	level� concatenates with ‘1’. 

 

Figure 6. Code-number arithmetic expression optimization. 

In run_before encoding, the codewords are also calculated 
to remove the look-up table for VLC in the design. 

F. Re-encoding the VLC tables 

The rest syntax elements are encoded using loop-up table. 
However, conventional look-up tables require large memory 
size to store the whole codewords and code length. We pro-
posed a simple method to re-encode the coeff_token codeword 
into a format of length and value information as shown in 
TABLE II. Because the coeff_token codewords have length in 
range 1 to 16 and the values are in range of 0 to 15, a 8-bit 
word is enough to store the information of one coeff_token. 
The TotalZero coding table is re-encoded in the same method. 

TABLE II. AN EXAMPLE OF A 8-BIT WORD IN VLC TABLES 

Original codeword Proposed codeword 

 Length - 1 Value 

0000000000000010 1111 0010 

16 bits 4 bits 4 bits 

 

G. CAVLC controller 

 
Figure 7. The main controller of the proposed CAVLC encoder. 

The main controller of the proposed CAVLC encoder is 
illustrated in Figure 7. As the data transfer protocol between 
stages is defined in Figure 1, the major task of this controller is 
to generate input conditions for the pre-process stage and 
synchronize the three stages at macroblock level. 

Whenever an input macroblock is available, the controller 
switches from “idle” state to “start encoding” (start_enc) state 
to start encoding a block. In “start_enc” state, based on the 
current block number and the input macroblock type, the 
controller decides the current block type and switches into a 
correlate state. The controller stays at “Zero block” (Zero_blk) 
and “I_PCM” (one mode of encoding in H.264 standard) states 
for only one clock cycle to write the number of non-zero 
coefficients into the reference memory. 

After the last block of the current macroblock is processed 
in the first two stages, the controller stays at “Pause” state until 
the last information of the current macroblock is written into 
the outer memory. Then, the next macroblock can be encoded. 

IV. PERFORMANCE ANALYSIS AND COMPARISON 

A. Implementation and verification 

The proposed architecture has been modeled in VHDL at 
RTL level and implemented using low power CMOS 65nm 
technology from STMicroelectronics. Verification is then done 
by using a testbench modeled in VHDL. The test cases of a 
macroblock are defined in the testbench. The input-output 
block data templates are the block examples presented in [11]. 
The reference output data is generated manually to make the 
comparison with the simulation results of the CAVLC encoder. 
In terms of CAD tools, the simulation is done using ModelSim 
from Mentor Graphics, and the synthesis is done using DC 
Compiler Topographical from Synopsys. Synthesis includes 
automatic clock gating for low power purpose and scanable 
flip-flops for testability purpose. 

Two types of scenario are used. The first one represents the 
high-quality video with 33% non-zero coefficient of the total 
coefficients. The other represents the low-bit rate quality video 
where the coefficients are mostly zeros. As an example, the 
waveform in Figure 8 shows the simulation waveforms at the 
end of a macroblock coding process. After the last block is 
encoded, the last information of the macroblock (the output bits 

-2

-1

&’1’
Level

Cod_num

Level’s sign

Exception

&’0’



left after data is aligned into 32-bit codes and data size infor-
mation) is also written into the memory. The two first stages in 
the pipeline have to wait until the packing stage complete its 
task to start the next macroblock. 

 

Figure 8. Simulation waveforms at the end of the macroblock encoding. 

B. Performance analysis 

Regarding performance results, Figure 9 presents the rela-
tionship between power consumption (in mW), area cost (in 
µm

2
) versus the (synthesized) operating frequency of the 

design. The design is able to achieve a maximum frequency of 
about 715MHz in worst case corner (worst-case process, 1.1V, 
105C). At 715MHz, more than 100 violating paths (with less 
than a few ps) are observed. 

 

Figure 9. Power consumption and area at targeted frequencies. 

At 550MHz, the CAVLC encoder consumes approximately 
20.7mW including 2.4mW of clock tree and occupies approxi-
mately 32.6Kgates. Hardware implementation cost and power 
consumption of individual modules is reported in TABLE III 
containing the coeff-token table selector, the pre-process stage 
occupies the largest amount of area (51.3%) and consumes 
most energy (62.1%). FIFO is the second largest module, in 
terms of both area (19.1%) and power consumption (15.1%). In 
the current design, the size of FIFO is 19 elements, which is the 
maximum number of codewords per block.  

TABLE III. AREA COST AND POWER CONSUMPTION  
PER SUB-MODULE (@ 550MHZ) 

Item 
Pre-process 

stage 

Encoding 

stage 
FIFO 

Packing 

stage 
Total 

Area cost 

(gate count) 
16734 3611 6248 5747 32636 

Area ratio (%) 51.3 11.1 19.1 17.6 100 

Power (mW) 12.8 1.1 3.1 0.8 20.7 

Power ratio(%) 62.1 5.4 15.1 3.8 100 

However, the simulation indicates that, even in high-quality 
video data, a few elements of FIFO are used. Because the FIFO 
is generic, it should be resized into a more adequate size to 
achieve better synthesis results. Due to the data dependency, 
the processing time per macroblock exhibits a large variability. 
For a high quality test case, in average, it takes around 450 
clock cycles to encode a macroblock.  

In the case that all coefficients are non-zero, it takes at max 
540 cycles. In the low-bit rate test case, number of clock cycles 
required is about 100 cycles. The minimum operating time to 
process all zero macroblocks is 52 cycles. 

The proposed CAVLC encoder initially targets the CIF vid-
eo format (resolution: 352×288; frame rate: 30fps; colour 
encoded using YCbCr 4:2:0) which is widely used for video 
teleconferencing. However, at the operating frequency of 
550MHz, the proposed CAVLC design can process at least 
1019000 macroblocks (~2573 CIF frames, ~126 HD1080p 
video frames) per second. Thus, the design is obviously 
suitable for real-time application with HD1080p HD video 
format. 

C. State of the art comparison  

To compare with other CAVLC designs, we use our pro-
posed CAVLC design, running at a frequency of 550MHz, 
which is a good area/power tradeoff. 

In the previous designs, different techniques and architec-
tures are used. Some modules/phases are not integrated in the 
CAVLC encoder. Hence, it is not fair enough if only the total 
gate counts are compared. In the TABLE IV, hardware cost is 
counted in individual items to be able to give a fair compari-
son. 

TABLE IV. HARDWARE COST COMPARISON 

  Implementation cost (gates)   

Design 
Pre-

proc 
Enc Fifo Pkg Total Tech. Target 

Prop. at 

550MHz 
16734 3611 6248 5747 32636 65nm 

CIF@30fps 

YCBCr 4:2:0 

[3] 

12283 
(scan 

buffer) 

5352 N/A 4796 22611 180nm 
720p30 

YCbCr 4:2:0 

[5] 

5325 
(scan 

buffer) 

2614 N/A N/A 9724 180nm HD1080p 

[10] 

5279 
(scan 

buffer) 

N/A N/A N/A 12276 180nm N/A 

[14] 

17656 

(scan + 
table 

select) 

4472 N/A 9265 31393 FPGA HD1080p 

[9] N/A N/A N/A - 6850 FPGA CIF 

[16] - 7389 - - - 65nm HD1080p 

N/A: the item is implemented, but there is no number in detail. 

‘-’: the item is not implemented in the design or not counted in the total cost. 

Only the CAVLC encoder of D. Kim [14] integrates the 
coeff-token table selector inside the pre-processing phase, as 
presented in [15]. In the table, the total cost of scanning and 
nC_gen [14] and the proposed pre-proc are mostly equal, while 
the others report only the cost of statistic buffer. Re-encode 
LUTs and codeword calculation are applied in the proposed 
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encoding stage. Thus, this module has a fairly low cost, 3611 
gate count compared to 7389 gate count of [16] with the same 
technology 65nm. 

Packing stage is omitted in some CAVLC designs. In the 
table, our packing stage has an equivalent area cost. The 
packing stage in [14] seems to be costly compared to the 
proposed and [3]. However, in [3] and the proposed design, the 
codewords enter the packing stage in syntax elements order 
while in [14], the packing module has to classify and order the 
codewords. 

TABLE V presents other synthesis results from many 
CAVLC encoders. Zero skipping at block level can reduce the 
number of cycles per MB only in low-bit rate video. To 
actually reduce the processing time, zero skipping at coefficient 
level [6] and parallel scanning [7] actually break the bottleneck 
at the scanning phase, hence achieve outstanding throughput. 
The power consumption of [6] is also very promising. Howev-
er, the frequency is low which reduces the performance of the 
design. The reason is that in enhancing throughput, their design 
uses fewer buffers than the others but this causes longer critical 
path. [6] also adds non-zero &abs-one flags and SLA modules 
which cost totally 14717 gate counts. The two modules im-
prove the performance however increase the total gate counts 
to 26598 gates (without table selector and residual SRAM). 

TABLE V.  CAVLC RESULTS COMPARISON 

Design Cycles/MB 
Average 

(MBs/sec) 

Freq. 

(MHz) 
Techno 

Power 

(mW) 

Proposed 540-52 5798×103 550 65nm 20.7 

[8] N/A N/A 66 TSMC 

0.35 

21.8 

[3] 500-200 350×103 100 180nm 12.0 

[6] 350-100 174×103 27 180nm 3.7 

[5] 413-166 
~300 

417×103 125 180nm N/A 

[14] 432 231×103 100 FPGA N/A 

[7] 244 738×103 180 FPGA N/A 

As shown in TABLE IV and TABLE V, the proposed de-
sign has better performances in comparison to other designs 
while the area cost is slightly higher (with table selector). 

V. CONCLUSIONS 

Thanks to many advanced coding techniques equipped, the 
H.264/AVC has recently become as the most efficient video 
compression standard with high video quality at a low bit-rate. 
However, it is very difficult to implement the hardware 
architecture in order to get high performance while keeping 
low the overhead due to the computational complexity. 

We have presented in this paper an efficient hardware im-
plementation of CAVLC encoder being used in H.264/AVC 
video codec. Pipelining, zero-skipping, table selector integra-
tion and many other techniques are applied to improve the total 
performance of the design while re-encoded LUT and code-
word calculating techniques are used to reduce the area cost. 
The proposed architecture has been fully modeled, verified, 
and synthesized using low power CMOS 65nm technology 
from STMicroelectronics. The synthesis results show that at the 
operating frequency of 550MHz, the design occupies about 
32.6Kgates and consumes 20mW. However, the maximum 

operating frequency can reach to 715MHz. The target of the 
design was initially targeted to CIF video format; but it is also 
suitable for real-time HD 1080p video format. 
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