
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjit20

Journal of Information and Telecommunication

ISSN: 2475-1839 (Print) 2475-1847 (Online) Journal homepage: https://www.tandfonline.com/loi/tjit20

Estimation of air temperature using smartphones
in different contexts

Nguyen Hai Chau

To cite this article: Nguyen Hai Chau (2019) Estimation of air temperature using smartphones
in different contexts, Journal of Information and Telecommunication, 3:4, 494-507, DOI:
10.1080/24751839.2019.1634869

To link to this article:  https://doi.org/10.1080/24751839.2019.1634869

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 03 Jul 2019.

Submit your article to this journal 

Article views: 168

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjit20
https://www.tandfonline.com/loi/tjit20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24751839.2019.1634869
https://doi.org/10.1080/24751839.2019.1634869
https://www.tandfonline.com/action/authorSubmission?journalCode=tjit20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjit20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24751839.2019.1634869
https://www.tandfonline.com/doi/mlt/10.1080/24751839.2019.1634869
http://crossmark.crossref.org/dialog/?doi=10.1080/24751839.2019.1634869&domain=pdf&date_stamp=2019-07-03
http://crossmark.crossref.org/dialog/?doi=10.1080/24751839.2019.1634869&domain=pdf&date_stamp=2019-07-03


Estimation of air temperature using smartphones in different
contexts
Nguyen Hai Chau

Faculty of Information Technology, VNU University of Engineering and Technology, Hanoi, Vietnam

ABSTRACT
Measuring air temperature at a high spatial resolution is very
important for many applications including detection of urban heat
islands. However, air temperature is currently measured by weather
stations those are very sparse spatially. In this paper, we propose a
new approach to estimate air temperature using smartphones in
different contexts. Most of the smartphones are not equipped with
air temperature sensors but they are all equipped with battery
temperature sensors. When a smartphone is in idle state, its battery
temperature is stable and correlated with ambient air temperature.
Furthermore, it is often carried close to human body, e.g. in pockets
of coats, trousers and in hand. Therefore we developed a new
approach of using two linear regression models to estimate air
temperature from the idle smartphones battery temperature given
their in-pocket or out-of-pocket positions. Lab test results show that
the new approach is better than an existing one in mean absolute
error and coefficient of determination metrics. Advantages of the
new approach include the simplicity of implementation on
smartphones and the ability for creating maps of temperature
distribution. However, this approach needs field tests on more
smartphone models to achieve its robustness.
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1. Introduction

Temperature is a physical quantity that is very important to human health. In urban areas
due to different concentration of roads, buildings and population, there exists urban heat
islands (UHI) (Rasul et al., 2017). An UHI is an urban area that is significantly warmer than its
surroundings. The UHI has bad consequences such as decreasing air quality, water quality
and directly influencing human health (Tan et al., 2010). Thus a number of UHI mitigation
attempts have been made (Salata et al., 2017). Collection of temperature data of urban
areas is an important task in the UHI mitigation.

Currently there are approaches for collection of temperature data: direct measurement,
using satellite images, estimating temperature from normalized difference vegetable
index (NDVI) and crowdsourcing (Rasul et al., 2017). Direct measurement is often per-
formed by weather stations at very sparse spatial resolution. Satellite data and NDVI
approach are limited by temporal resolution that is maximum 2–4 observations per day.
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Crowdsourcing for environment data collection is a new approach due to availability of
sensor-equipped smartphones. Some models of smartphones, for example Samsung
Galaxy S4, Samsung Galaxy Note 3, Motorola Moto X, Huawei Ascend P6 and Xiaomi
Mi3, are equipped with environment sensors including temperature ones (de Araújo,
Silva, & Moreira, 2017). Tests of de Araújo et al. (2017) show that smartphone environment
sensors can collect acceptable temperature readings when idle but the readings are
affected by heat from smartphone users. Unfortunately, the number of smartphone
models equipped with environment sensors has been decaying (de Araújo et al., 2017).

Since 2013, Overeem et al. (2013), Droste et al. (2017) have been collecting battery
temperature from a large number of smartphones and use a heat transfer model to esti-
mate air temperature of urban areas. Data is collected when a smartphone is turned on,
turned off, plugged in and unplugged (Overeem et al., 2013). The areas are defined by
clusters of smartphones. Experiment results of Overeem et al. are very promising. They
published an app on Google Play for data collection since 2014 (Weather Signal app,
2014). However, in an area with a small number of smartphones, the estimated tempera-
ture of the app is not very accurate. Furthermore, this approach provides aggregated
temperature of an area from a large number of smartphone battery temperature readings
rather than its temperature distribution.

In this paper, battery smartphone temperature readings are also used to estimate air
temperature. In contrast with Overeem et al., two statistical models those allow each
smartphone to predict the temperature independently in different contexts (in or out of
human clothes pockets) were built. Using the statistical approach, temperature distri-
bution of urban areas can be estimated. In addition, the new approach focuses on
single user measurement’s accuracy that is considered more important than the
number of users participating in crowdsensing (Koukoutsidis, 2017).

This paper is an improved and extended version of the same author in ACIIDS 2018 con-
ference (Chau, 2018). In the new version, all experiments are reimplemented using new
smartphones models and independent thermometers to increase data accuracy. Further-
more, two new statistical, context-based models those are not available in the old version
are built. In the next sections, experiments and results are presented.

2. Equipments, experiment environments and data processing

When a smartphone is in idle state, its battery temperature is stable and is correlated with
ambient air temperature. An idle state of a smartphone is the one that is achieved when
the smartphone is unplugged, its screen is off and its battery temperature variance in a
temporal window is small enough. When the smartphone is not idle, its battery tempera-
ture fluctuates and depends highly on many factors, for example CPU load, screen bright-
ness level, 3G/WiFi and GPS status (Milette & Stroud, 2012). Battery temperature of an idle
smartphone is considered data and that of a non-idle one is noise. Air temperature predic-
tion models will be built based on the data only.

2.1. Equipments

To collect data for building the prediction models, two Android smartphones and two
thermometers are used (Figure 1). Basic information of the smartphones and
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thermometers are in Tables 1 and 2. The DHT22 (DHT22 data sheet, 2018) is not able to
work independently. It must be wired to an Arduino board and a Raspberry Pi Model B
+ V1.2 computer to collect temperature data automatically. The RC5 temperature ther-
mometer/data logger (Elitech RC5, 2018) is able to work independently but it requires a
dedicated program from its manufacturer to collect the logged data manually.

In all experiments to perform, a reference thermometer must be selected to measure air
temperature surrounding the smartphones. It must work independently with smartphones

Figure 1. Equipments used in experiments from top to bottom, left to right: an Arduino Uno R3 board
with some sensors, a DHT22 thermometer, an Elitech RC5 thermometer, a Raspberry Pi Model B+ V1.2
computer, a Samsung Galaxy Note 3 and a Samsung Galaxy S7 Active smartphone.

Table 2. List of thermometers used in experiments.
Device Work independently Data retrieval Max recording frequency

DHT22 No Automatically 1 Hz or higher
RC5 Yes Manually 0.1 Hz

Table 1. List of smartphones used in experiments.
Smartphone model Manufacturer OS version Air temperature sensor

Galaxy Note 3 Samsung Android 4.4.2 Available
Galaxy S7 Active Samsung Android 7.0 Not available
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and must be pocketable. Among the available equipments, the RC5 is the only one that
meets those requirements and will be considered as the reference thermometer. The
DHT22 is used to record ambient air temperature. Smartphones battery temperature is
recorded using an Android app, namely Sensor Monitor (Sensor Monitor app, 2016).
Based on the data collected from the thermometers and smartphones, experiments are
performed to build air temperature prediction models.

2.2. Experiment environments

A smartphone is often in idle state and is often kept near its owner. A survey of women
aged 15–40 (Redmayne, 2017) shows that participant’s smartphones are generally kept
on stand by (96% by day, 83% at night). When the smartphones are not used, their pos-
itions are off-body (86%), in the hand (58%), in skirt/trousers pockets (57%) or against the
breast (15%) (Redmayne, 2017).

Webb shows that human skin temperature at different positions of the body depends
on ambient temperature (Webb, 1992). His results are given in Table 3 where the first three
columns are human skin temperature of different positions at different air temperature.
The last column presents correlation coefficients of skin temperature at given positions
and air temperature. All the correlation efficients are high showing strong linear relation
of human skin temperature and air temperature.

Based on human habits of keeping smartphones (Redmayne, 2017) and the relation of
human skin temperature and air temperature (Webb, 1992), off-body and in-trousers-pocket
are chosen as two main environments for experiments. The trousers pocket is selected
because of its popularity (57%, similar to 58% in-hand) and its convenience during the
experiments.

2.3. Data recording and preprocessing

In this section, steps of a data recording session are described. Preprocessing of recorded
data is presented subsequently.

Table 3. Human skin temperature in degree Celsius of different positions of the body at different air
temperature (Webb, 1992). The last column is added by N. H. Chau.

Cold (15 ◦C) Room (27 ◦C) Hot (47 ◦C) Correlation

Forehead 31.7 35.2 37.0 0.947
Back of neck 31.2 35.1 36.1 0.890
Chest 30.1 34.4 35.8 0.909
Upper back 30.7 34.4 36.3 0.947
Lower back 29.2 33.7 36.6 0.964
Upper abdomen 29.0 33.8 35.7 0.926
Lower Abdomen 29.2 34.8 36.2 0.888
Tricep 28.0 33.2 36.6 0.965
Forearm 26.9 34.0 37.0 0.931
Hand 23.7 33.8 36.7 0.899
Hip 26.5 32.2 36.8 0.979
Side thigh 27.3 33.0 36.5 0.961
Front thigh 29.4 33.7 36.7 0.970
Back thigh 25.5 32.2 36.0 0.955
Calf 25.1 31.6 35.9 0.966
Foot 23.2 30.4 36.2 0.979
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2.3.1. Data recording
In all of data recording sessions, smartphones are in idle states. Each recording session has
the following steps:

(1) Put all the smartphones (Galaxy Note 3 and Galaxy S7 Active, hereafter abbreviated as
Note 3 and S7, respectively) and thermometers (DHT22, RC5) in the same position as
described in Figure 1 in a closed room. Synchronize clocks of all the equipments and
set air temperature to a given value using an air conditioner.

(2) Record air temperature using the thermometers and record battery temperature of
the smartphones using Sensor Monitor app for 15 minutes. At this step, the ther-
mometers and the smartphones are off-body. Label the recorded data of RC5, Note
3 and S7 as out-of-pocket. The DHT22 is always used to record air temperature in
the room, consequently its recorded data only has the out-of-pocket label.

(3) Put the RC5 thermometer and the smartphones in thigh pockets of worn trousers of a
healthy person and continue recording temperature for 30 minutes. Label the
recorded data of RC5, Note 3 and S7 as in-pocket.

Recording frequency of DHT22, RC5 and the smartphones are 0.1 Hz, 0.1 Hz and 1 Hz,
respectively. Note that the RC5’s maximum recording frequency is 0.1 Hz (Table 2).
When each recording session completes, the following separated, time-stamped data
sets are available:

. Out of pocket air temperature recorded by DHT22.

. Out of pocket and in pocket air temperature recorded by RC5.

. Out of pocket and in pocket battery temperature data recorded by Note 3 and S7
smartphones.

2.3.2. Data preprocessing
Because of differences in recording frequencies of equipments and delay at some points of
time of smartphones, linear interpolations are applied to the recorded data sets to make
recorded temperature as time series at 1 Hz frequency. Purpose of the interpolation is to
prevent data loss when applying join operations on the data sets.

When the smartphones and the RC5 are put in pockets, the smartphones battery
temperature and RC5 temperature change and need a period of time to achieve stable
states. As observed, the smartphones need approximately 20 minutes to achieve stable
states. Non-stable part of in-pocket data is eliminated, only stable part is kept. Figure 2
illustrates temperature data of the two thermometers and the smartphone batteries
collected from a recording session. Other recording sessions are illustrated in Figure A1
and A2, Appendix 1.

In Figure 2, two vertical dotted lines divide the data into three parts. The middle part (in-
pocket, non-stable) is eliminated because of non-stability of smartphone battery tempera-
ture data. The data sets achieved by interpolation and elimination are merged into one
using join operators on date-time primary keys. There is a merged data set per recording
session. Three recording sessions are conducted at programmed air temperature 26 ◦C,
29 ◦C and 34 ◦C and three merged data sets are generated accordingly. The three data
sets are combined by a union operator to form an EX data set that will be used for
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model building. Observed air temperatures of DHT22 in the three recording sessions are
26.6+ 0.09 ◦C, 29.1+ 0.2 ◦C and 33.2+ 0.3 ◦C, respectively.

3. Data analysis and prediction models building

In this section, bias correction for DHT22 and RC5 thermometers is applied on recorded
data. Subsequently, relation of in and out of pocket air temperature is tested and
finally, air temperature prediction models are built.

3.1. Thermometer bias correction

Before analysing data recorded by the two thermometers DHT22 and RC5, programmatical
bias correction is needed. The out-of-pocket data in the EX data set is used to compare
difference of temperature readings. Since the temperature data is not normally distribu-
ted, a Wilcoxon signed rank test is used. The test shows that measured temperature
from DHT22 is 0.18 ◦C lower than RC5. The two readings correlation is 0.999 and RMSE
is 0.19. Since the RC5 is always positioned next to the smartphones, DHT22’s temperature
data is modified following RC5: each reading of DHT22 is increased by 0.18 ◦C.

3.2. Relation of in and out of pocket air temperature

In step (3) of each recording session, in and out of pocket air temperature is recorded sim-
ultaneously by RC5 and DHT22 thermometers, respectively. Data recorded from this step is
used to test correlation of in and out of pocket air temperature. Test results show that the
correlation coefficient is 0.976 with [0.974, 0.977] 95% confidence interval (CI95). It shows
the compliance of the experiments’ recording data with those of Webb (1992) (refer to
Front thigh row of Table 3).

Figure 2. Raw data collected from a recording session at programmed temperature 26 ◦C.
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3.3. Prediction models building

In this section, two regression models are built based on out-of-pocket and in-pocket labelled
data to predict air temperature. To build the models, EX data set is divided into two subsets.
The first one is EXo containing out-of-pocket data of the smartphones and RC5. The second
one is EXi consisting of in-pocket data of the smartphones and RC5. Tables 4 and 5 show
samples of EXo and EXi data sets. In Tables 4 and 5, note3, s7 contain values of smartphone
battery temperature, rc5 and dht22 contain values recorded by RC5 and DHT22 ther-
mometers, respectively. The context column indicates whether temperature data of the
RC5 and the smartphones is recorded in or out of pocket and session is recording session.

Given the data in Tables 4 and 5, two regression models are built using the following
steps:

(1) Divide the EXo (or EXi) data set into 10 equal folds. Choose one fold as a test data set,
the remaining folds form a train data set.

(2) Build a linear regression model on the train data set where the outcome is dht22 (air
temperature) and the predictor is battemp (smartphone battery temperature).

(3) Predict air temperature data on the test set, then calculate the following metrics: mean
error (ME), mean absolute error (MAE) and coefficient of determination (R2).

(4) Repeat steps 1 to 3 for all folds.
(5) Repeat steps 1 to 4 for 5 times.
(6) When steps 1 to 5 completed, a final linear regression model is built and a set of values

of ME, MAE and R2 is obtained. The model’s slope and intercept are the mean of slopes
and intercepts of models built in step (2), respectively.

The models for prediction of air temperature when the smartphone is out of pocket and
in pocket are presented in Tables 6 and 7. The tables show that all coefficients are statisti-
cally significant, referring to less than 0.05 values in the last columns.

Table 4. Samples of out-of-pocket data set.
datetime context session rc5 dht22 note3 s7

2018-06-24 21:51:24 out-of-pocket 1 29.60 29.15 31.90 31.80
2018-06-24 21:51:25 out-of-pocket 1 29.60 29.15 31.90 31.80
2018-06-24 21:51:26 out-of-pocket 1 29.60 29.15 31.90 31.80
2018-06-24 21:51:27 out-of-pocket 1 29.60 29.15 31.90 31.80
2018-06-24 21:51:28 out-of-pocket 1 29.60 29.15 31.90 31.80
2018-06-24 21:51:29 out-of-pocket 1 29.60 29.15 31.90 31.80
2018-06-24 21:51:30 out-of-pocket 1 29.60 29.15 31.90 31.80
2018-06-24 21:51:31 out-of-pocket 1 29.60 29.15 31.90 31.80

Table 5. Samples of in-pocket data set.
datetime context session rc5 dht22 note3 s7

2018-06-24 22:33:45 in-pocket 1 32.40 28.35 34.40 33.50
2018-06-24 22:33:46 in-pocket 1 32.40 28.35 34.40 33.50
2018-06-24 22:33:47 in-pocket 1 32.40 28.35 34.40 33.50
2018-06-24 22:33:48 in-pocket 1 32.40 28.35 34.40 33.50
2018-06-24 22:33:49 in-pocket 1 32.40 28.35 34.40 33.50
2018-06-24 22:33:50 in-pocket 1 32.40 28.35 34.40 33.50
2018-06-24 22:33:51 in-pocket 1 32.40 28.35 34.40 33.50
2018-06-24 22:33:52 in-pocket 1 32.40 28.35 34.40 33.50
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The formulae of models given in Tables 6 and 7 are:

Tair = Tbattery−out−of−pocket × 0.903+ 1.074 (1)

and

Tair = Tbattery−in−pocket × 1.877− 35.1, (2)

where Tair is the estimated air temperature, Tbattery−out−of−pocket and Tbattery−in−pocket are
smartphone battery temperature given smartphone context is out of pocket or in
pocket, respectively. Scatterplots those describe relationship of smartphone battery temp-
erature and air temperature in two contexts are in Figure 3.

4. Models validation

In this section, validation of statistical models in Equation (1) and (2), hereafter denoted as
SMo and SMi, is presented. A field study is a robust way to validate the models. However,
such a field study is not yet implemented in this paper due to limitations of human
resource and equipments. Thus a preliminary validation is performed alternatively by com-
parison of SMo and SMi with the heat transfer model of Overeem et al., abbreviated as HM
(Droste et al., 2017; Overeem et al., 2013). Due to many differences of experiment details of

Figure 3. Scatterplots of out-of-pocket (left) and in-pocket (right) linear regression models.

Table 7. Prediction model for in pocket smartphones, R2 = 0.87.
Estimate Std. error t-value Pr (. |t|)

(Intercept) −35.1003 0.4686 −74.91 0.0000
battemp 1.8767 0.0136 137.78 0.0000

Table 6. Prediction model for out of pocket smartphones, R2 = 0.95.
Estimate Std. error t-value Pr (. |t|)

(Intercept) 1.0740 0.0847 12.69 0.0000
battemp 0.9032 0.0027 336.20 0.0000
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the three models as presented in Table 8; R2, ME and MAE are chosen as metrics of com-
parison. The metrics have the following properties: R2 [ [0, 1] and MAE ≥ 0. R2 is the pro-
portion of the outcome (air temperature) variation that is explained by a linear regression
model. ME measures mean difference of real and predicted air temperature while MAE
measures mean absolute difference. A high value of R2 and low values of ME, MAE indicate
a good prediction model.

Overeem et al. tested their approach for eight cities in 2012 and re-tested for Sao Paolo
in 2017. Their test results are in Table 9.

To compare three different groups (SMi, SMo and HM) in R2 metric, an analysis of var-
iance (ANOVA) (Faraway, 2015) and a subsequent Tukey honest significant difference
(Tukey HSD) post-hoc test are required. The former tests a null hypothesis (refers as Anova-
Null) that means of R2 of the three groups are identical, the latter subsequently tests multiple
null hypotheses that the means are identical pairwisely, if the AnovaNull is rejected.

ANOVA test result in Table 10 shows that AnovaNull is rejected because p-value at
approach row, Pr(. F) column is 0<0.05 and F − value = 113.48 ≫ 1. It implies that
means of R2 of the three groups are not identical and a subsequent Tukey HSD test is
needed.

Table 11 lists the Tukey HSD test results. There are three null hypotheses named as SMo-
HM, SMi-HM and SMi-SMo. SMo-HM is expressed as

mean of R2 of SMo−mean of R2 of HM = 0 (3)

Table 9. Overeem et al. test results on eight cities (Droste et al., 2017; Overeem et al., 2013).
City Time period ME MAE R2

Buenos Aires Jun–Sep −0.25 1.76 0.65
Buenos Aires Sep–Nov −0.28 1.30 0.86
London Jun–Sep −0.28 1.45 0.65
London Sep–Nov 0.10 1.59 0.72
Los Angeles Jun–Sep −0.13 1.57 0.39
Los Angeles Sep–Nov 0.15 1.16 0.79
Mexico City Jun–Sep 0.25 1.69 0.36
Mexico City Sep–Nov −0.14 1.49 0.33
Moscow Jun–Sep −0.27 1.55 0.75
Moscow Sep–Nov −0.04 4.00 0.51
Paris Jun–Sep −0.38 1.63 0.62
Paris Sep–Nov −0.23 1.96 0.70
Rome Jun–Sep 0.21 1.30 0.86
Rome Sep–Nov 0.20 1.25 0.83
Sao Paolo Jun–Sep −0.31 1.21 0.65
Sao Paolo Sep–Nov 0.08 1.23 0.85
Sao Paolo Year 2017 −0.53 1.09 0.87

Table 8. Comparison of experiment details of statistical and heat transfer models.
Criteria SMo and SMi HM

Experiment type Lab experiment Field experiment
Reference temperature Thermometers in lab Weather stations at a distance
Data collection type Periodic based Event based
Tested smartphone models 2 Many
Metrics of assessment R2, ME, MAE R2, ME, MAE
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and is rejected because adjusted p-value at SMo-HM row, p adj column is 0<0.05. More-
over, the mean difference in Equation (3) is 0.28 with [0.24, 0.33] CI95. The numbers are
in diff, lwr and upr columns, respectively. In other words, mean of R2 of SMo is 0.28
higher than that of HM with [0.24, 0.33] CI95. Similarly, mean of R2 of SMi is 0.2 higher
than that of HM with [0.16, 0.25] CI95. Graphical representation of Table 11 is in Figure
4. Means of R2 of SMo, SMi are 0.95 and 0.87, respectively (Tables 6, 7); mean of R2 of
HM is 0.67 as calculated from Table 9.

Applying the same procedure, comparisons SMo, SMi and HM by ME and MAE metrics
are performed. Graphical results of the comparisons are in Figure 5 and 6; corresponding
details are in Tables A1–A5, Appendix 2. The results show that ME of SMo and SMi are
higher than that of HM; MAE of SMo and SMi are lower than that of HM. In summary,
SMo and SMi are better than HM in R2 and MAE metrics but HM is better than SMo and
SMi in ME metric.

5. Discussion and future development

In this paper, a new approach of using statistical models to estimate air temperature from
smartphone battery temperature in different contexts is presented. Using models in
Equations (1) and (2), one can estimate air temperature when smartphones are out of
pockets and in pockets, respectively. Since each smartphone is able to estimate air temp-
erature independently, users can have temperature distributions rather than aggregated

Table 10. ANOVA test result for comparison of means of R2 of SMo, SMi and HM approaches.
Df Sum Sq Mean Sq F value Pr (. F)

Approach 2 1.03 0.51 113.48 0.0000
Residuals 114 0.52 0.00

Table 11. Pairwise comparison of means of R2 of SMo, SMi and HM approaches using Tukey HSD test.
diff lwr upr p adj

SMo-HM 0.28 0.24 0.33 0.00
SMi-HM 0.20 0.16 0.25 0.00
SMi-SMo −0.08 −0.11 −0.05 0.00

Figure 4. Tukey HSD graph showing pairwise differences in means of R2 of SMo, SMi and HM
approaches.
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temperature of areas. This is an advantage of the new approach to that of Overeem et al.
Statistical tests show that in comparison with Overeem’s approach, the new one is better
in R2 and MAE metrics and is worse in ME metric. In addition, the statistical approach uses
simple linear regression models those are energy economy and very easy to implement on
smartphones.

However, as stated in Table 8 this paper only performed tests in lab with a limited
number of smartphone copies and models while Overeem et al. already had quantitative
tests in the field with a large number ones. To obtain robust statistical models, the new
approach needs field tests with more equipments in the future.

An Android app using the SMomodel in Equation (1) is developed. The app’s main func-
tion is to report estimated air temperature to its users. It is released on Google Play in
March 2016 (Smart Thermometer app, 2016). To June 2019, the app has approximately
70,000 downloads and its user rating is 3.2/5.0.

Smartphone context recognition (in pocket/out of pocket, indoor/outdoor) is vital to
implement the SMi model in Equation (2) and will be an important successive research
topic.

Disclosure statement

No potential conflict of interest was reported by the author.

Figure 5. Tukey HSD graph showing pairwise differences in means of ME of SMo, SMi and HM
approaches.

Figure 6. Tukey HSD graph showing pairwise differences in means of MAE of SMo, SMi and HM
approaches.
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Appendix

Appendix 1. Data recording sessions at programmed temperature 29◦C and 33◦C

Figure A.1. Raw data collected from a recording session at programmed temperature 29◦C.

Figure A.2. Raw data collected from a recording session at programmed temperature 33◦C.
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Appendix 2. Results of ANOVA and Tukey HSD tests to compare SMo, SMi and HM using MAE and ME
metrics

Table A3. ANOVA test result for comparison of means of MAE of SMo, SMi and HM approaches.
Df Sum Sq Mean Sq F-value Pr(. F)

Approach 2 15.67 7.84 126.84 0.0000
Residuals 114 7.04 0.06

Table A1. ANOVA test result for comparison of means of ME of SMo, SMi and HM approaches.
Df Sum Sq Mean Sq F-value Pr(. F)

Approach 2 0.17 0.09 11.02 0.0000
Residuals 114 0.89 0.01

Table A2. Pairwise comparison of means of ME of SMo, SMi and HM approaches using Tukey HSD test.
diff lwr upr p adj

SMo-HM 0.11 0.05 0.17 0.00
SMi-HM 0.11 0.05 0.17 0.00
SMi-SMo 0.00 −0.04 0.04 1.00

Table A5. Means of MAE and ME of SMo, SMi and HM approaches (small
numbers are rounded to 0).

ME MAE

HM −0.11 1.60
SMo 0.00 0.51
SMi 0.00 0.91

Table A4. Pairwise comparison of means of MAE of SMo, SMi and HM approaches using Tukey HSD test.
diff lwr upr p adj

SMo-HM −1.09 −1.26 −0.93 0.00
SMi-HM −0.69 −0.85 −0.52 0.00
SMi-SMo 0.41 0.29 0.53 0.00

JOURNAL OF INFORMATION AND TELECOMMUNICATION 507


	Abstract
	1. Introduction
	2. Equipments, experiment environments and data processing
	2.1. Equipments
	2.2. Experiment environments
	2.3. Data recording and preprocessing
	2.3.1. Data recording
	2.3.2. Data preprocessing


	3. Data analysis and prediction models building
	3.1. Thermometer bias correction
	3.2. Relation of in and out of pocket air temperature
	3.3. Prediction models building

	4. Models validation
	5. Discussion and future development
	Disclosure statement
	Notes on contributor
	ORCID
	References
	Appendix

