Nguyen Dinh Duc, Pham Tien Lam, Nguyen Van Quyen, Vu Dinh Quang

Main Article Content

Abstract

This research discusses an analytical method for investigating vibration and dynamic response of plates structure made of 2-Dimensional (2D) penta-graphene. The density functional theory is used to figure out the elastic modulus of single layer penta-graphene. The classical plate theory is applied to determine basic equations of 2D penta-graphene composite plates. The numerical results are obtained by using the Bubnov-Galerkin method and Rung-Kutta method. The research results show high agreement in comparison with other studies. The results demonstrate the effect of shape parameters, material properties, foundation parameters and the mechanical load on the nonlinear dynamic response of 2D penta-graphene plates. The study also investigates the effect of the thermal environment on the behavior of 2D penta-graphene plates.

Keywords: Dynamic load, composite penta-graphene 2D plate, thermal environment, classical plate theory, stress function

References

[1] K.S. Novoselov, A.K. Geim, S.V.Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666–669.
[2] M.E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G. Le Lay, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys. 16 (2014) 95002.
[3] S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene, Small. 11 (2015) 640–652.
[4] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett. 108 (2012) 155501.
[5] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, S. Ciraci, Two-and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102 (2009) 236804.
[6] S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band‐gap transitions, Angew. Chemie Int. Ed. 54 (2015) 3112–3115.
[7] J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Two-dimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun. 7 (2016) 13352.
[8] Z. Shunhong, Z. Jian, W. Qian, C. Xiaoshuang, K. Yoshiyuki, J. Puru, Penta-graphene: A new carbon allotrope, Proceedings of the National Academy of Sciences. 112 (2015) 2372-2377.
[9] J. Sun, Y. Guo, Q. Wang, Y. Kawazoe, Thermal transport properties of penta-graphene with grain boundaries, Carbon N. Y. 145 (2019) 445–451.
[10] W. Xu, G. Zhang, B. Li, Thermal conductivity of penta-graphene from molecular dynamics study, J. Chem. Phys. 143 (2015) 154703.
[11] N.T. Tien, P.T.B. Thao, V.T. Phuc, R. Ahuja, Electronic and transport features of sawtooth penta-graphene nanoribbons via substitutional doping, Phys. E Low-Dimensional Syst. Nanostructures. 114 (2019) 113572.
[12] H. Alborznia, M. Naseri, N. Fatahi, Buckling strain effects on electronic and optical aspects of penta-graphene nanostructure, Superlattices Microstruct. (2019) 106217.
[13] M.-Q. Le, Mechanical properties of penta-graphene, hydrogenated penta-graphene, and penta-CN2 sheets, Comput. Mater. Sci. 136 (2017) 181–190.
[14] H. Sun, S. Mukherjee, C.V. Singh, Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study, Phys. Chem. Chem. Phys. 18 (2016) 26736–26742.
[15] M. Chen, H. Zhan, Y. Zhu, H. Wu, Y. Gu, Mechanical properties of penta-graphene nanotubes, J. Phys. Chem. C. 121 (2017) 9642–9647.
[16] J. Zhang, Y. Ye, Q. Qin, On dynamic response of rectangular sandwich plates with fibre-metal laminate face-sheets under blast loading, Thin-Walled Struct. 144 (2019) 106288
[17] J. Zhang, R. Zhou, M. Wang, Q. Qin, Y. Ye, T.J. Wang, Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading, Int. J. Impact Eng. 122 (2018) 265–275.
[18] Q. Song, Z. Liu, J. Shi, Y. Wan, Parametric study of dynamic response of sandwich plate under moving loads, Thin-Walled Struct. 123 (2018) 82–99.
[19] N. D. Duc, P. H. Cong, Nonlinear thermo-mechanical dynamic analysis and vibration of higher order shear deformable piezoelectric functionally graded material sandwich plates resting on elastic foundations, J. Sandw. Struct. Mater. 20 (2016) 191–218.
[20] N.D. Duc, H. Hadavinia, T.Q. Quan, N.D. Khoa, Free vibration and nonlinear dynamic response of imperfect nanocomposite FG-CNTRC double curved shallow shells in thermal environment, Eur. J. Mech. - A/Solids. 75 (2019) 355–366.
[21] H.B. Li, X. Wang, J.B. Chen, Nonlinear dynamic responses of triple-layered graphene sheets under moving particles and an external magnetic field, Int. J. Mech. Sci. 136 (2018) 413–423.
[22] Z.G. Song, L.W. Zhang, K.M. Liew, Dynamic responses of CNT reinforced composite plates subjected to impact loading, Compos. Part B Eng. 99 (2016) 154–161.
[23] M. Park, D.-H. Choi, A two-variable first-order shear deformation theory considering in-plane rotation for bending, buckling and free vibration analyses of isotropic plates, Appl. Math. Model. 61 (2018) 49–71.