
An Efficient Algorithm for the k-Dominating Set
Problem on Very Large-Scale Networks

Minh Hai Nguyen1,2, Minh Hoàng Hà1, Dinh Thai Hoang2, Diep N. Nguyen2, Eryk
Dutkiewicz2, and The Trung Tran3

1 ORLab, VNU University of Engineering and Technology, Hanoi, Vietnam
2 Faculty of Engineering and Information Technology, University of Technology Sydney,

Australia
3 FPT Technology Research Institute, Hanoi, Vietnam

The minimum dominating set problem (MDSP) aims to construct the minimum-size
subsetD ⊂ V of a graphG = (V,E) such that every vertex has at least one neighbor in
D. The problem is proved to be NP-hard [4]. In a recent industrial application, we en-
countered a more general variant of MDSP that extends the neighborhood relationship
as follows: a vertex is a k-neighbor of another if there exists a linking path through no
more than k edges between them. This problem is called the minimum k-dominating set
problem (MkDSP) and the dominating set is denoted as Dk. The MkDSP can be used
to model applications in social networks [1] and design of wireless sensor networks [2].
In our case, a telecommunication company uses the problem model to supervise a large
social network up to 17 millions nodes via a dominating subset in which k is set to 3.

Unlike MDSP that has been well investigated, the only work that addressed the
large-scale MkDSP was published by [1]. In this work, the MkDSP is converted to
the classical MDSP by connecting all non-adjacent pairs of vertices whose distance
is no more than k edges. The converted MDSP is then solved by a greedy algorithm
that works as follows. First, vertex v is added into the set Dk, where v is the most
covering vertex. Then, all vertices in the set of k-neighbors of v denoted by N (k, v)
are marked as covered. The same procedure is then repeated until all the vertices are
covered. The algorithm, called Campan, could solve instances of up to 36,000 vertices
and 200,000 edges [1]. However, it fails to provide any solution on larger instances
because computing and storing k-neighbor sets of all vertices are very expensive.

The telecommunication company currently uses a simple greedy algorithm whose
basic idea is to sort the vertices in decreasing order of degree. We then check each
vertex in the obtained list. If the considering vertex v is uncovered, it is added to Dk

and the vertices inN (k, v) become covered. Our experiments show that this algorithm,
called HEU1, is faster but provides solutions that are often worse than Campan.

Our main contribution is to propose an algorithm that yields better solutions at the
expense of reasonably longer computational time than Campan. More specially, unlike
Campan, our algorithm can handle very large real-world networks. The algorithm, de-
noted as HEU2, includes three phases: preprocessing, solution construction, and post-
optimization. In the first phase, we remove the connected components whose radius is
less than k+1. The construction phase is similar toHEU1 except that if the considering
vertex v is covered but itself covers more than θ uncovered vertices, then v is added to
Dk. We repeat this process with different integer values of θ from 0 to 4, and select the
best result. In the post-optimization phase, we reduce the size of Dk by two techniques.

2 Nguyen et al.

First, the vertices in Dk are divided into disjoint subsets; each contains about 20,000
vertices with the degree less than 1000, e.g. if there are 45,000 vertices in Dk that
have degree less than 1000 then they are divided in to three subsets which have 20,000,
20,000 and 5000 vertices respectively. For each set B, we define set B̄ = ∪v∈BN(v, 1)
and X , the set of all vertices covered by B, but not by Dk \ B. A Mixed Integer Pro-
gramming (MIP) model is used to find a better solution B′ which replaces B in Dk.
The second technique is removing redundant vertices. A vertex v ∈ Dk is redundant if
there exists a subset U ⊂ Dk \ {v}, such that N (k, v) ⊂ ∪u∈UN (k, u).

Experiments are performed on a computer with Intel Core i7-8750h 2.2 Ghz and
24 GB RAM. Three algorithms are implemented in Python using IBM CPLEX 12.8.0
whenever we need to solve the MIP formulations. The summarized results are shown
in Table 1. The first ten instances are from the Network Data Repository source [3].
The last two instances are taken from the data of the telecommunication company men-
tioned above. The values of k are set to 1 and 3. The results clearly demonstrate the
performance of our proposed algorithm. It outperforms the current algorithm used by
the company (HEU1) in terms of solution quality and provides better solutions than
Campan on 10 over 12 instances. More specially, it can handle 13 very large instances
that Campan cannot (results marked “-” in Campan columns).

k = 1 k = 3

Instances |V | |E|
HEU1 Campan HEU2 HEU1 Campan HEU2

Sol Time (s) Sol Time (s) Sol Time (s) Sol Time (s) Sol Time (s) Sol Time (s)
ca-GrQc 4k 13k 1210 0.00 803 0.15 776 1.38 251 0.01 120 0.35 102 2.71
ca-HepPh 11k 118k 2961 0.01 1730 1.54 1662 6.49 430 0.02 138 14.63 117 53.76
ca-AstroPh 18k 197k 3911 0.02 2175 1.79 2055 15.22 438 0.06 122 75.60 106 203.18
ca-CondMat 21k 91k 5053 0.04 3104 4.20 2990 21.35 898 0.02 302 5.82 266 63.16
email-enron-large 34k 181k 12283 0.10 2005 4.48 1972 37.71 724 0.14 92 203.72
soc-BlogCatalog 89k 2093k 49433 0.72 4896 26.89 4915 1839.26 87 0.06 15 1616.70
soc-delicious 536k 1366k 215261 19.07 56066 1464.84 56600 5679.63 14806 2.44 1505 1695.77
soc-flixster 2523k 7919k 1452450 999 91543 27374.44 20996 29.71 313 3333.45
hugebubbles 2680k 2161k 1213638 2087.83 1169394 7498.20 843077 649.47 688817 17221.76
soc-livejournal 4033k 27933k 1538044 2689.72 930632 75185.96 211894 394.98 83710 42600.51
soc-tc-0 17642k 33397k 6263241 64228.04 29278 26740.42 6337 55.57 5158 5200.1448
soc-tc-1 16819k 26086k 4129393 19109.00 38303 38644.65 12807 78.3 10905 5481.59

Table 1: Comparisons among three algorithms.

References

1. Campan, A., Truta, T.M., Beckerich, M.: Approximation algorithms for d-hop dominating set
problem. In: 12th International Conference on Data Mining. pp. 86–91 (2016)

2. Rieck, M., Pai, S., Dhar, S.: Distributed routing algorithms for wireless ad hoc networks using
d-hop connected dominating sets. Computer Networks 47, 785–799 (04 2005)

3. Rossi, R., Ahmed, N.: The network data repository with interactive graph analytics and visu-
alization (02 2015)

4. Wang, Y., Cai, S., Chen, J., Yin, M.: A fast local search algorithm for minimum weight domi-
nating set problem on massive graphs. In: Twenty-Seventh International Joint Conference on
Artificial Intelligence (IJCAI). pp. 1514–1522 (07 2018)

	An Efficient Algorithm for the k-Dominating Set Problem on Very Large-Scale Networks

