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Abstract. Objective: Epilepsy is one of the most common brain disorders. For
epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes
from electroencephalography (EEG) data. Since multi-channel EEG records can
be naturally represented by multi-way tensors, it is of interest to see whether
tensor decomposition is able to analyze EEG epileptic spikes. Approach: In
this paper, we first proposed the problem of simultaneous multilinear low-rank
approximation of tensors (SMLRAT) and proved that SMLRAT can obtain local
optimum solutions by using two well-known tensor decomposition algorithms
(HOSVD and Tucker-ALS). Second, we presented a new system for automatic
epileptic spike detection based on SMLRAT. Main results: We propose to
formulate the problem of feature extraction from a set of EEG segments,
represented by tensors, as the SMLRAT problem. Efficient EEG features
were obtained, based on estimating the “eigenspikes” derived from nonnegative
GSMLRAT. We compared the proposed tensor analysis method with other
common tensor methods in analyzing EEG signal and compared the proposed
feature extraction method with the state-of-the-art methods. Experimental
results indicated that our proposed method is able to detect epileptic spikes with
high accuracy. Significance: Our method, for the first time, makes a step forward
for automatic detection EEG epileptic spikes based on tensor decomposition.
The method can provide a practical solution to distinguish epileptic spikes from
artifacts in real-life EEG datasets.

Keywords: Electroencephalography (EEG), epileptic spikes, multilinear low-rank
approximation, tensor decomposition, nonegative Tucker decomposition, feature
extraction, feature selection.
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1. Introduction

According to estimates [1] in 2010, epilepsy affects
about 50 million people worldwide in which nearly
40 million people live in developing countries. In
electroencephalography (EEG) records of the brain,
epilepsy biomarkers are seizures and epileptiforms (e.g.
spikes, sharp waves and spike-wave complexes), which
are resulted from abnormal and excessive electrical
discharges of nerve cells.

For epilepsy diagnosis and treatment, one needs
to observe epileptic seizures or epileptiforms to help
identify the type of epilepsy and the affected area of
the brain. Since epileptic spikes are interictal (i.e., they
occur in between seizures) while seizures occur sparsely
in time, one normally obtains EEG records which
contain various spikes. To better detect the epileptic
spikes in long EEG records or to reduce false-alarm
detection (which is often the case since various other
non-epileptic spikes also co-exist in EEG), automatic
detection of spikes by software programs/systems is
advantageous over visual reading by neurologists, and
thus has been a subject of engineering and science
studies for several decades [2–6].

For epileptic spike detection, most studies have
focused on analysis of single-channel EEG signals,
each of which is obtained from an EEG electrode.
Especially, recent efforts are seen in developing
multi-stage detection systems that take into account
of various types of information (i.e., electrical,
physiological and morphological) of the spikes [7–9].
However, each EEG record simultaneously collects
signals from multiple electrodes, resulting in a multi-
channel EEG signal. Since epilepsy is often caused by
an affected area in the brain, several electrodes may
be able to pick up the resulting epilepsy biomarkers
around the same time at which the single-channel EEG
signals are spatially correlated across the channels.
Therefore, analysis of multi-channel EEG signals may
enhance the detection of epileptic spikes. Currently,
there exists only one study on spike detection that
deals with multi-channel EEG signals [10].

Multi-channel EEG signals can be naturally
represented by matrices which are two-way tensors
(when considering time and channel domains), or
multi-way tensors (when considering more than two
domains, e.g. of time, frequency, space, trial,
condition, subject and group). Many studies have
used tensor decomposition for EEG signals in general

and for epileptic seizures in particular [11–19]. To the
best of our knowledge, there exists no study applying
tensor decomposition to detect EEG epileptic spikes.
Therefore, the aim of our study is to propose a new
method of tensor decomposition to deal with this
challenging problem, that is to separate two types
of spikes in an EEG dataset, including real epileptic
spikes and non-epileptic ones. Real epileptic spikes
are those recognized and labeled by the neurologists,
whereas non-epileptic spikes are not related to epilepsy
but may be easily misdiagnosed as epileptic spikes.
Non-epileptic spikes are large positive or negative
voltage transients that can be confused as epileptic
spikes by regular algorithms.

In many analysis and classification systems, low-
rank matrix approximation (LRAM) and its multi-way
extension – low-rank tensor approximation (LRAT) –
play important role for dimensionality reduction,
feature extraction and feature selection [20]. In this
paper, we are interested in dealing with a sequence
of matrices and tensors and, hence, the problems
of simultaneous LRA of multiple matrices (SLRAM)
and tensors (SLRAT), as well as their applications
in classification. We now review simultaneous LRA
approaches in general (i.e., not limited to EEG
applications), while noting that the literature for LRA
of a single matrix or tensor, and their applications can
be found in recent reviews [21,22].

The common idea in dimensionality reduction is
to seek a linear or multilinear subspace embedded
in a high-dimensional manifold which represents the
dataset of interest. Then depending on the appli-
cations at hand, different approaches can be taken.
For SLRAM, the resulting two-dimensional subspace
methods include: two-dimensional singular value de-
composition (2dSVD) [23, 24], two-dimensional princi-
pal component analysis (2dPCA) [25, 26], population
value decomposition (PVD) [27], generalized low-rank
approximation of matrices (GLRAM) [28–32], two-
dimensional linear discriminant analysis (2dLDA) [33],
and simultaneous component analysis (SCA) [34, 35].
These methods can be categorized in two main ap-
proaches: non-iterative-based and iterative-based al-
gorithms. The former [23–27,29] provides sub-optimal
solutions, but is simple and efficient in practice. The
latter [28, 30–32, 35] can yield optimal solutions, but
follows procedures that are time-consuming.

For SLRAT, the resulting higher dimensional sub-
space methods include: manifold regularization non-



Multi-Channel EEG Epileptic Spike Detection by a New Method of Tensor Decomposition 3

negative Tucker decomposition (MR-NTD) [36], con-
current subspace analysis (CSA) [37], multilinear dis-
criminant analysis (MLDA) [38], multilinear PCA
(MPCA) including unconstrained MPCA [39], nonneg-
ative MPCA [40] and sparse MPCA [41]. In a per-
spective of data fusion perspective [42], the problem
of SLRAT can be considered as a special type where
data inputs have the same size. Data fusion is to look
for common factors sharing meaningful information be-
tween datasets. When the data are represented by mul-
tiple matrices or tensors, simultaneous decomposition
(a.k.a., joint factorization) methods are the key for fus-
ing the data.

In light of the above literature, the work in
this paper has two main contributions. Based on
the preliminary result in [43], the first contribution
of this paper is the proposal of a new method
for SLRAT, generalizing SLRAM from matrices to
tensors. In particular, we introduce simultaneous
multilinear LRAT (SMLRAT) in which different
tensors with identical dimensions are factorized so
that (i) all tensors share common factor matrices
and (ii) each tensor has it own core-tensor. By
a theoretical analysis, we then show that SMLRAT
can obtain local optimum solutions by using two
well-known tensor decomposition algorithms: higher-
order singular value decomposition (HOSVD) and
higher-order orthogonal iteration (HOOI or Tucker
alternating least-squares (Tucker-ALS). We further
develop a local solution for nonnegative SMLRAT
since our analysis aims to EEG signals for which
the nonnegativity constraint plays an important role
[44]. Finally, inspired by the feature extraction
algorithm proposed in [45], we propose a generalized
SMLRAT algorithm (GSMLRAT) to effectively solve
the SMLRAT and nonnegative SMLRAT problems.
We note that the SLRAT methods are considered
as special cases of our proposed GSMLRAT, and is
analyzed in conjunction with other methods, as shown
in our technical report of [46]. Also, a similar approach
to [45] can be found in [47, 48], which is based on the
linear system with a CP decomposition constrained
solution (LS-CPD) framework for data classification.

The second contribution of the paper is, for
the first time, the successful application of tensor
decomposition for detection of EEG epileptic spikes.
We propose to formulate the problem of feature
extraction from a set of EEG segments, represented
by tensors, as the SMLRAT problem. We first
obtain efficient EEG features, based on estimating the
“eigenspikes” derived from nonnegative GSMLRAT.
We then apply the Fisher score as the feature
selection method for selecting significant features.
These selected features are then fed into the widely
used classifiers to evaluate their separability between

epileptic and non-epileptic spikes. Due to artifacts,
false detection of epileptic spikes often occurs, possibly
leading to misdiagnosis. Our algorithm, however, can
accurately distinguish real events from artifacts (See
Table 2 for further details). Note that, nonnegative
Tucker decomposition (NTD) has previously been
applied for multi-domain feature extraction in EEG
analysis [49]. In this paper, similar to [49], EEG
segments were also represented by higher order tensors
and then decomposed by NTD to derive their features.
However, our work is different from [49] in both
objective and method. Particularly, in [49], NTD was
applied to extract the multi-domain feature of visual
mismatch negativity (i.e., event-related potentials) for
the cognitive research while the objective of this study
is to detect epileptic spikes. In addition, the approach
in [49] does not exploit the relation among inputs, while
our method aims to investigate the relation among
input tensors by looking for a “common” feature space
of activities of interest (e.g. epileptic spikes). Besides,
the core tensor in conjunction with factors are used as
feature in our work instead of only core tensor as [49].

The paper is organized as follows. In Section 2,
a brief review of tensors and related operators, as well
as the multilinear LRAT problem will be presented. In
Section 3, we present the SLRAM problem, and hence
propose the SMLRAT problem that extends SLRAM
from matrices to general tensors and nonnegative
tensors. Section 4 describes a new tensor-based
epileptic spike detection system and Section 5 shows
experimental results.

2. Preliminaries

2.1. Tensor Notations and Definitions

Follow notations defined in [50], we use lowercase
letters (e.g. a), boldface lowercase letters (e.g. a),
boldface capital letters (e.g. A) and bold calligraphic
letters (e.g. A) to denote scalars, vectors, matrices
and tensors respectively. Moreover, we summarize here
some useful tensor operators, to be used later.

The mode-k unfolding of a tensor A is a matrix
in vector space RIk�pI1...Ik�1Ik�1...Inq, where Ik is the
integer number presenting the dimension of the k-th
vector space generating the tensor, denoted as Apkq,
whose elements are defined by

Apkqpik, i1 . . . ik�1ik�1 . . . inq � Api1, i2, . . . , inq,

where i1i2 . . . in is a multi-index, which combines
multiple indices i1, i2, . . . , in together in a single
index used regularly in vectorization/matricization for
tensors [21], given by

i1i2 . . . in � i1 � pi2 � 1qI1 � pi3 � 1qI1I2 � . . .

� pin � 1qI1I2 . . . IN .
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The k-mode product of A with a matrix U P
Rrk�Ik , written as A �k U, yields a new tensor
B P RI1�����Ik�1�rk�Ik�1����In such that its k-mode
unfolding is given by Bpkq � UApkq. Useful properties
for the k-mode product follow:

A�k U�l V � A�l V �k U for k � l,

A�k U�k V � A�k pVUq.

The inner product of two n-way tensors A,B P
RI1�I2����In is defined by

xA,By �
I1̧

i1�1

. . .
Iņ

in�1

Api1, i2, . . . , inqBpi1, i2, . . . , inq.

The Frobenius norm of a tensor A P RI1�I2����In

is defined by the inner product of A with itself

}A}F �
a
xA,Ay.

The concatenation of AP RI1�I2����In and a tensor
B P RI1�I2����In�1 yields a new tensor C � A ` B P
RI1�����In�1�pIn�1q such that

Cpi1, . . . , inq �
"

Api1, . . . , in�1, inq, if in ¤ In,
Bpi1, . . . , in�1q, if in � In � 1.

Remark that, a pn-1q-way tensor D P RI1�I2����In�1

can be represented by a n-way tensor E P
RI1�I2����In�1�1, so the operator can be used for con-
catenating the two n-way tensors.

For operators on a matrix A P RI1�I2 , AT and
A# denote the transpose and the pseudo-inverse of
A respectively. The Kronecker product of A with a
matrix B P RJ1�J2 , denoted by AbB, yields a matrix
C P RI1J1�I2J2 defined by

C � AbB �

�
��
a1,1B . . . a1,I2B

...
. . .

...
aI1,1B . . . aI1,I2B

�
�� .

2.2. Multilinear Low-Rank Tensor Approximation

Multilinear LRAT (MLRAT) can be considered as
a generalization of LRAM for tensors [21]. In
particular, MLRAT of a tensor X requires the
following optimization problem:

arg min
�X

fMLRAT � }X � rX }2F ,

s.t. rX � G �1 U1 �2 U2 � � � �n Un,

rankpUkq ¤ rk, k � 1, 2, . . . , n,

(1)

where G is called the core tensor of X , tUku
n
k�1 are

called factors of X , and a set of trku
n
k�1 is the desired

low multilinear rank. Next, we present the connection
of MLRAT with several types of tensor decomposition.

2.2.1. CP decomposition
This decomposition can be considered as constrained
MLRAT, where the core tensor is diagonal and the
factors have the same rank. Specifically, fMLRAT can
be expressed to CP as

arg min
�X

fCP � }X � rX }2F ,

s.t. rX �
ŗ

i�1

λiU1p:, iq � � � � �Unp:, iq,

rankpUkq � r, k � 1, 2, . . . , n,

(2)

where “�” presents the outer product, the factors Uk P
RIk�r are full column-rank and tλiu

r
i�1 are diagonal

entries of the core tensor G. To solve fCP in (2), the
“workhorse” algorithm is based on alternating least
squares (ALS) [50,51].

2.2.2. Tucker Decomposition
This decomposition is more flexible than CP, where the
core-tensor are not required to be diagonal while the
factors are orthogonal matrices, i.e,

arg min
�X

fTucker � }X � rX }2F

s.t. rX � G �1 U1 �2 U2 � � � �n Un,

UT
k Uk � Irk , k � 1, 2, . . . , n,

(3)

where Irk P Rrk�rk denotes the identity matrix. As
a result, solution of fTucker in (3) is not unique
in general, but the subspaces spanned by tUku

n
k�1

are physically unique [50, Section IV]. Two well-
known algorithms for solving fTucker are HOSVD and
Tucker-ALS. Depending on applications, both HOSVD
and Tucker-ALS can provide good approximation.
Moreover, in many practical implementations, HOSVD
is used as a starting point (i.e., initialization) to further
accelerate the convergence of Tucker-ALS [52].

2.2.3. Nonnegative Tensor Decomposition
This type of decomposition is considered as a
generalization of nonnegative matrix factorization for
tensors, where the nonnegativity constraint is imposed
on the factors and/or the core tensor [44]. Specifically,
nonnegative tensor decomposition (NTD) can be seen
as a nonnegative fMLRAT as

arg min
�X

fNTD � }X � rX }2F ,

s.t. rX � G �1 U1 �2 U2 � � � �n Un,

G © 0,Uk © 0, k � 1, 2, . . . , n,

(4)

where the notation © means that all entries of the
matrix/tensor are nonnegative.
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3. Generalized Simultaneous Multilinear
Low-Rank Approximation of Tensors

In this section, we first present connection between the
SLRAM and three-way tensor decomposition methods
(i.e., HOSVD and Tucker-ALS). Motivated by such
connection, we then propose a generalized approach for
SLRAT, where the tensors are general or constrained
to be nonnegative.

3.1. SLRAM and Tensor Decomposition

SLRAM problem [28]: Given a set of N matrices
X1, . . . ,XN P RI1�I2 , find two orthogonal matrices
U1 P RI1�r1 and U2 P RI2�r2 and N matrices
F1, . . . ,FN P Rr1�r2 such that U1FiU

T
2 , i � 1, . . . , N ,

yield good approximates of Xi.
Solving SLRAM is equivalent to finding the

solution of

arg min
tFiuNi�1,U1,U2

fSLRAM �
Ņ

i�1

}Xi �U1FiU
T
2 }

2

s.t. UT
1 U1 � Ir1 , and UT

2 U2 � Ir2 .

(5)

Let us define a three-way tensor X P RI�J�N

concatenating inputs such that each slide X:,:,i of X is
the input matrix Xi. Then tensor X can be expressed
as X � X1 `X2 � � �`XN .

It is well-known that Tucker-ALS provides the
local optimal solution [50, 52] of (3), while SLRAM
was shown to be a special case of Tucker-ALS [53,
Theorem 4.1]. Accordingly, we have the following
proposition, showing the connection between SLRAM
and Tucker-ALS, and hence providing good iterative-
based approximation for SLRAM.

Proposition 1 ([53, Theorem 4.1]). If U1 and U2

are the factors obtained from decomposing a three-
way tensor X P RI�J�N using Tucker-ALS, and let
Fi � UT

1 XiU2, then U1, U2 and F1, . . . ,FN form a
(local) optimal solution of fSLRAM in (5).

It is also well-known that HOSVD gives a
sub-optimal solution of (3) [50, 52]. Accordingly,
we have the following connection between SLRAM
and HOSVD, providing good non-iterative-based
approximation for SLRAM.

Proposition 2 ([24, Section IV]). If U1 and U2

are the factors obtained from decomposing a three-way
tensor X using HOSVD, and let Fi � UT

1 XiU2, then
U1, U2 and tFiu

N
i�1 form a sub-optimal solution of

fSLRAM in (5).

3.2. Generalized Simultaneous Multilinear LRAT

Inspired by results in Section 3.1, we first state
the following simultaneous multilinear low-rank tensor
approximation (SMLRAT) problem.

SMLRAT problem: Given a set of N n-way
tensors tXiu

N
i�1,Xi P RI1�I2����In , find n common

factors tUku
n
k�1,Uk P RIk�rk and N core tensors

tGiu
N
i�1,Gi P Rr1�r2����rn such that Gi �1 U1 �2

U2 � � � �n Un, i � 1, . . . , N , yield good approximates
of Xi.

The problem can be considered as a generalization
of SLRAM for multi-way tensors and formulated as
follows:

arg min
t�XiuNi�1

fSMLRAT �
Ņ

i�1

}Xi � rXi}
2
F

s.t. rXi � Gi �1 U1 �2 U2 � � � �n Un.

(6)

To solve (6), we propose the following theorem which
provides (local) optimal solution. Details of the proof
of this theorem can be found in the technical report
of [46].

Theorem 1. A local optimum solution of the
SMLRAT problem is given by

Gi � Xi �1 UT
1 �2 UT

2 � � � �n UT
n , (7)

with Uk, k � 1, 2, . . . , n, including the principal rk
eigenvectors of the covariance matrix Rk defined by

Rk �
Ņ

i�1

Xipkq
rUk
rUT

kXi
T
pkq, (8)

where rUk is given by

rUk �
�
Un b � � � b Uk�1 b Uk�1 � � � b U1

�
. (9)

Let X P RI1�����In�N be the tensor formed by
concatenating N multi-way tensors X1, . . . ,XN ; that
is, X � X1 `X2 � � � `XN . Inspired by Theorem 1, a
practical solution for the problem of fSMLRAT in (6) can
be achieved, using the Tucker-ALS algorithm, given by
the following proposition.

Proposition 3. If tUku
n
k�1 are the factors obtained

from decomposing the pn � 1q-way tensor X P
RI1�����In�N using Tucker-ALS, and core tensors Gi

are defined by

Gi � Xi �1 UT
1 �2 UT

2 � � � �n UT
n , (10)

then tUku
n
k�1 and tGiu

N
i�1 can be a (local) optimal

solution of fSMLRAT in (6).

This result contributes a connection between
Theorem 1 and the well-known Tucker-ALS algorithm
for Tucker decomposition, thus allowing us to exploit
known characteristics of this algorithm to enhance
performance and/or reduce computational complexity
of implementation [54–56]. Therefore, we can also
obtain an alternative solution of SMLRAT using
the HOSVD algorithm, as given by the following
proposition.
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Algorithm 1: GSMLRAT: Generalized Si-

multaneous Multilinear LRA of Tensors
Input: N n-way tensors

tXiu
N
i�1,Xi P RI1�I2�����In , multilinear

rank tr1, r2, . . . , rnu.
Output: common factors tUku

n
k�1, core tensors

tGiu
N
i�1.

1 function
2 Initialization:
3 Contruct a concatenated pn� 1q-way

tensor X � X1 `X2 � � �`XN ;

4 Compute covariance matrices trRpkqu
n
k�1

over modes of tensors as
rRpkq �

°N
i�1 XipkqXi

T
pkq ;

5 tU
p0q
k unk�1 are initilized by selecting the

first eigenvectors of rRpkq and

U
p0q
n�1 � IN ;

6 Tucker decomposition (HOSVD,
Tucker-ALS, NTD):

7 G, tUku
n�1
k�1 � decomposepX , tU

p0q
k un�1

k�1q;
8 Obtain core tensors: Gi � Gp:, :, . . . , iq

Proposition 4. If tUku
n
k�1 are factors obtained from

decomposing the pn� 1q-way tensor X P RI1�����In�N

using HOSVD, and

Gi � Xi �1 UT
1 �2 UT

2 � � � �n UT
n ,

then tUku
n
k�1 and tGiu

N
i�1 can be a sub-optimal

solution of fSMLRAT in (6).

To deal with nonnegative tensors, we can propose
the nonnegative SMLRAT as

arg min
t�XiuNi�1

fNSMLRAT �
Ņ

i�1

}Xi � rXi}
2
F

s.t. rXi � Gi �1 U1 �2 U2 � � � �n Un.

tUku
n
k�1 ¥ 0.

(11)

Similarly, we can obtain a practical solution for the
NSMLRAT problem using NTD.

Proposition 5. If G, tUku
n
k�1 are core tensor and

factors obtained from performing NTD on the pn� 1q-
way tensor X P RI1�����In�N , and Gi � Gp:, :, . . . , iq,
then tUku

n
k�1 and tGiu

N
i�1 can be a local solution of

fNSMLRAT in (11).

Based on Theorem 1, Propositions 3, 4 and 5, we
propose Algorithm 1, namely Generalized SMLRAT
(GSMLRAT). Depending on kinds of constraints
being considered (e.g. orthogonality, sparsity or
nonnegativity), we can apply the corresponding tensor
decomposition (e.g. HOSVD, Tucker-ALS and NTD)
to obtain the desired solution.

4. Proposed Epileptic Spike Detection System

In this section, we introduce a novel epileptic spike
detection system based on the proposed SLRMAT
method. This system, illustrated in Figure 1, is
composed of four stages: data transformation, EEG
feature extraction, feature selection and classification.

In the data representation stage, three-way EEG
tensors (time, wavelet-scale and channel) are calcu-
lated by applying the continuous wavelet transform
on multi-channel EEG segments simultaneously. Then,
magnitude of the resulting wavelet coefficients is used
to construct nonnegative EEG tensors. In EEG fea-
ture extraction, we propose to estimate the so-called
“eigenspikes”. We also propose to use HOSVD for de-
termining the multilinear rank for the three-way EEG
tensors. In the feature selection stage, we propose to
apply the Fisher score for selecting significant EEG fea-
tures. In the classification stage, we use several well-
known classifiers to assess system performance. Now,
we will focus on our contributions to the second and
the third stages.

4.1. Feature Extraction

Consider N three-way EEG tensors, Xi P RI1�I2�I3
�

(whose dimensions I1, I2 and I3 correspond to time,
wavelet-scale and channel), in which N1 tensors
represent EEG segment containing epileptic spikes,
denoted as tX ep

i uN1
i�1, and N2 tensors represent EEG

segment containing non-epileptic spikes, tX nep
j uN2

j�1.
For feature extraction, our idea is first to estimate
a feature space, Fep, which spans the class of EEG
epileptic spikes, and then to project both types of
spikes onto the resulting space to derive discriminant
features. In such a case, the objective function can be
expressed as

fEEG �
N1̧

i�1

}X ep
i � Gep

i �1 A�2 B�3 C}2, (12)

over nonnegative projection matrices A,B,C and N1

core tensors tGep
i uN1

i�1.
Inspired by the proposed SMLRAT method and

a method proposed by Phan and Cichocki in [45], we
minimize fEEG by concatenating all three-way epileptic
tensors tX ep

i uN1
i�1 into a single four-way tensor rX ep P

RI1�I2�I3�N1
� , and then perform NTD of rX ep, as given

by

rX ep � X ep
1 `X ep

2 � � �`X ep
N1

NTD
� G �1 A�2 B�3 C�4 D, (13)

to obtain the factors A P RI1�r1
� , B P RI2�r2

� , C P

RI3�r3
� and D P RN1�N1

� , which respectively span the
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Classifiers
(SVM, DT, 

KNN, NB)

Wavelet 

Transform
Scale

Channel

Time

Ch1

Ch19

56 samples
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Epileptic 

spikes

Non-

epileptic 

spikes

Fisher Score

GSMLRAT

NTD

Figure 1: Proposed epileptic spike detection system.

spaces of parameters representing the domains of time,
wavelet-scale, channel and epileptic spikes. Columns
of D are considered as eigenspikes, the span of which
forms the feature space Fep of epileptic spikes.

Therefore, given any three-way tensor X of some
EEG data, its k-mode unfolding can be expressed by a
linear combination of eigenspikes as

Xpkqloomoon
input data

� Dloomoon
basic vectors

GpkqpCbBbAqTlooooooooooomooooooooooon
coefficients

, (14)

where Gpkq is the k-mode unfolding of the core tensor
G. The core G and the factor D now carry part of
information of the EEG data which resides in Fep, i.e.,

Fep � G �4 D. (15)

To investigate multi-domain features of EEG
epileptic spikes, we can choose different basis functions.
For examples, we can define an eigenspike time-basis
Ftime, by multiplying A with Fep to obtain Fep

time �
G �1 A �4 D, to yield the principal axes of variations
of an epileptic spike across channel and wavelet-scale
modes. Similarly, we can derive the channel-basis
and scale-basis of the eigenspike space, i.e, Fep

scale �
G �2 B�4 D and Fep

channel � G �3 C�4 D.
Given a training set of M tensors X train

m , m �
1, 2 . . . ,M , of EEG data (including both epileptic and
non-epileptic spikes), we form a discriminant feature
vector f train

m as follows:

F train
m � Gtrain

m �4 D � X train
m �1 A# �2 B# �3 C#,

f train
m � vecpF train

m q. (16)

Similarly, for any tensor X test in the testing set of EEG
data, its features can be extracted by projecting the
tensor onto Fep, i.e.,

F test � X test �1 A# �2 B# �3 C#,

f test � vecpF testq. (17)

Remark: Our formulation of the concatenated tensor
in (13) differs from [45] in which we do not integrate the
complete set of training tensors of both epileptic and
non-epileptic spikes, but use only tensors of epileptic
spikes to compute the factors and hence the feature
space. It stems from the following observations.
EEG signals are composed of several components,
including epileptic spikes (which are abnormal brain
activity), EEG background (which includes normal
brain activities) and artifacts (which are non-brain
activities, e.g. eye or muscle movements). Since
epileptic spikes are abnormal activity, they can be
considered independent from the other activities.
Hence, we assume that the other activities do not
belong to the feature space of epileptic spikes.
Moreover, it is difficult to describe non-epileptic
activities present in the EEG data because we do not
have knowledge of all these activities. Furthermore, the
number of non-epileptic spikes is huge in EEG datasets,
hence, the concatenation of a complete set of training
tensors results in a very big four-way tensor (e.g.
more than 109 entries). This leads to two issues: (i)
decomposition of such four-way tensor is difficult and
the resulting factors are not guaranteed to be optimal;
(ii) the imbalance problem which has emerged as one
of the challenges in data science [57] (e.g. the ratio of
epileptic spike class to non-epileptic class is 1:260 in our
EEG dataset). Therefore, we aim to capture a feature
space that covers only epileptic spikes. Our method
is related to the one-class classification (OCC) which
aims to find a decision boundary around a specific
class of interest, namely “positive” class, in machine
learning [58,59]. Accordingly, data of no interest form
the “negative” class. The OCC problem may be harder
than the conventional classification with data from
two or multiple classes. Since the “negative” data
samples (i.e., belonging to the negative class) in such a
case are limited (i.e., activities of non-interest such as
collected non-epileptic spikes can not cover the whole
feature space for the negative class in our case), so
only one side of the decision boundary can be estimated
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definitively by using the collected data. Our method is,
thus, consistent with one of three learning frameworks
of OCC, as categorized in [58, 59]: learning with only
positive examples, learning with positive examples
and some amount of poorly distributed negative
examples, and learning with positive and unlabeled
data. On the contrary, Phan-Cichocki’s method [45]
was proposed to solve the problem of binary/multi-
class classification, concatenating all training tensors
derived from multiple classes.

4.2. Feature Selection

The aim of feature selection is to find a subset of input
features, such that it can span the space of data of
interest. An EEG dataset usually includes different
components: brain activities of interest such as
epileptic spikes, and activities without interest such as
artifacts and noise. In addition, tensor decomposition
may result in a huge number of the features; for
example, NTD would give r � r1r2r3 features. Thus,
the expected outputs (e.g. detected epileptic spikes)
may not be determined by a complete set of the
resulting features, but depends only on a subset of
relevant features. In this stage, we use the Fisher
score [60] of each feature to assess the effectiveness
of classification. Assume that we have extracted n
features from NTD, i.e., F � tf1, f2, . . . , fnu. Denote
N1 and N2 the numbers of epileptic spikes and non-
epileptic spikes, respectively. Let µi,c and σi,c be
the mean and standard deviation of the i-th feature
for class Ωc, c P t1, 2u, µi and σi be the mean
and the standard deviation of the i-th feature in the
whole training dataset, mc and Σc be the mean and
covariance matrix of class Ωc.

The objective is to find a linear combination wT f
such that the best separation can be achieved. In
particular, the Fisher discriminant ratio is determined
by maximizing the ratio of between-class variation and
within-class variation, i.e.,

fFisherpwq �
σ2

between

σ2
within

�
rwpµ1 � µ2qs

2

wT pΣ1 � Σ2qw
. (18)

The Fisher score of each feature fi can then be defined
as the maximum separation wpiq, i.e.,

γpfiq
∆
� wpiq �

N1pµi,1 � µiq
2 �N2pµi,2 � µiq

2

N1σ2
i,1 �N2σ2

i,2

. (19)

We select l significant features with top Fisher scores,

FFisher � tfp1q, fp2q, . . . , fplq|fpiq P F, i � 1, 2, . . . , lu.

4.3. Number of Components

In tensor decomposition, determining rank of a tensor
(or number of components) is an important issue, and

it is also an NP-hard problem. In the literature, several
popular methods for this task was surveyed in [61],
such as DIFFIT, CORCONDIA and ARD.

To determine the number of components when de-
composing an EEG tensor, we apply the truncated
HOSVD algorithm, which can provide an effective so-
lution for the best rank-pr1, . . . , rnq tensor approxima-
tion [52]. This selection is motivated by an observa-
tion that the “meaningful” components of each fac-
tor is often related to the underlying signal of interest
(e.g. EEG spikes) and thus may be different the true
rank of the data tensor. For our three-way EEG ten-
sor, the numbers of components trku

3
k�1 in the factors

tUku
3
k�1 can be estimated from their corresponding

modes tXpkqu
3
k�1 using the truncated SVD, as follows:

Xpkq � UI�rk
k Λrk�rk

k Vrk�JK
k , k � 1, 2, 3. (20)

In the above SVDs, each number of components (e.g.
r1) in each tensor mode of the EEG tensor can be
obtained by selecting r1 principal singular values of
the mode such that the total variance is maximized,
i.e.,

VARr1 �

°r1
i�1 λi°I
j�1 λj

100%. (21)

5. Experimental Results and Discussions

5.1. EEG Dataset and EEG Tensor Construction

The EEG data used in this study were recorded
by using the international standard 10-20 system
with 19 channels and the sampling rate of 256 Hz.
The measurements were carried out on 17 patients
(including 11 males and 6 females) who were clinically
diagnosed to have epilepsy, with durations varying
from 5 to 28 minutes. Details of the dataset are given in
Table 1. Figure 2 illustrates some epileptic spikes from
this dataset. Epileptic spikes were manually identified
by a neurologist from Vietnam National Children’s
Hospital.

To obtain EEG signals within the desired
frequency band and restrain artifacts and noise as
well as “negligible” spikes, as shown in Figure 2, the
following pre-processing was implemented [9]. We
first used a digital Butterworth low-pass filter with
the cutoff frequency 70 Hz, a notch filter with the
cutoff frequency of 50 Hz associated with a bandwidth
of 2 Hz, and a high-pass filter with the cutoff
frequency of 0.5 Hz. After that, we removed negligible
spikes by using a threshold criteria and three training
perceptrons. The remaining set of possible spikes
included either real epileptic or “non-epileptic”.

From the EEG dataset, we extracted 1442
epileptic spikes and more than 375429 non-epileptic
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Figure 2: Some epileptic spikes (circle markers) and
non-epileptic spikes (star markers) derived from three
typical patients in our filtered EEG data.

spikes. Then, we constructed the corresponding
tensors of the 19-channel EEG 56-point segments
containing these spikes, with dimensions of time,
wavelet-scale and channel, as follows. Denote Ω1 and
Ω2 the classes of epileptic and non-epileptic tensors,
respectively. Now, for each spike, an EEG data sample
is first presented by a segment of 56 points around the
location of a spike. After that, the continuous wavelet
transform was used to obtain the time-frequency
representation of the multi-channel EEG segments

Table 1: EEG Dataset

Pat. Gen. Age Dur. Spike

1 M 4 19m21s 8/15145
2 M 6 22m25s 635/20484
3 M 9 11m24s 6/14975
4 M 9 11m24s 16/30751
5 M 11 16m16s 351/25916
6 M 12 17m49s 22/44387
7 M 15 22m00s 2/2036
8 M 16 22m58s 11/29351
9 M 20 27m13s 1/3742

10 M 21 23m57s 8/2371
11 M 72 15m26s 2/1565
12 F 10 17m07s 3/53302
13 F 13 18m53s 5/69583
14 F 16 20m14s 8/6217
15 F 20 14m32s 324/11219
16 F 22 27m37s 28/23215
17 F 28 5m31s 12/21170

Pat. = Patient, Gen. = Gender (M=Male, F= Female),
Dur. = Duration, Spike = Number of epileptic spikes /

Number of non-epileptic spikes.

simultaneously. We enlarged the number of wavelet
scales in the dominant range r4-8s to the size of 20,
instead of 5 as used in [9]. Hence, we obtain 19
wavelet coefficient matrices of size 56 � 20 presenting
EEG spectral features. Finally, we concatenate the 19
coefficient matrices into a tensor X P R56�20�19 with
three modes of time, wavelet-scale and channel.

5.2. Performance Metrics

To assess epileptic spike detection performance, three
statistical metrics including Sensitivity (SEN, a.k.a.,
Recall), Specificity (SPE) and Accuracy (ACC) are
widely used to evaluate performance of detection
systems, see [7–9,18,62,63] for examples. Furthermore,
boxplot, receiver operator characteristic (ROC) and
its area under the ROC curve (AUC) are also used
to illustrate the performance of the systems. When
we assess the effectiveness of the system on the
EEG dataset using cross validation methods, we may
obtain different values of these metrics across different
tests/patients. Inspired by the results on evaluating
the average performance of EEG interictal spike
detection algorithms in [64], the overall performance
with respect to the metric ρ (e.g. SEN) of our system
can be averaged in the following ways:

(i) Arithmetic mean: ρAM �
1

T

Ţ

i�1

ρi,

(ii) Time-weighted average: ρTWA �
1°T

k�1Dk

Ţ

i�1

ρiDi,

(iii) Total accuracy: ρTA �
1°T

k�1Nk

Ţ

i�1

ρiNi

(iv) Time/event-weighting: ρTEW �
1°T

k�1
Dk

Nk

Ţ

i�1

ρi
Di

Ni
,

5.3. Experiment Setups and Results

Our experiments are conducted to study the three
stages, by: (i) performing feature extraction by
estimating the eigenspikes and the corresponding
features, (ii) performing feature selection to obtain
the significant features for classification task, and
(iii) performing classification by comparing the testing
features with the training features using well-known
classifiers. The EEG dataset is split into two groups,
including a training set and a testing set using leave-
one-out cross-validation (LOO-CV) method. In each
test case, the classification model is fitted by using
a training data composed of 16 patients and then
is tested by a remaining patient. The evaluation is
repeated until the last patient is done.
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Figure 3: Eigen-spectra of three modes of the epileptic
tensor. For each mode, the first row (in blue)
corresponds to the set of eigenvalues, the second row
(in red) corresponds to their spectral variance.

5.3.1. Feature Extraction
The first task is to determine the multilinear rank
(r1, r2, r3) of EEG tensors. The spectra and total
variances of three covariance matrices for epileptic
tensor modes are illustrated in Figure 3. If we
choose to have a significance level of 99%, which
approximately corresponds to the sum of variances of
the first 15 components in Figure 3(a), then we can
have a good approximation for the time mode A by
A �

°15
i�1 λiuiv

T
i , where λi is the i-th singular-value

associated with the right and left singular-vector, ui

and vi, of A. In the same way, we also obtained 10 and
19 components for the frequency and spatial domains
respectively, as shown in Figures 3(b) and 3(c).

By performing NTD of the training four-way

epileptic tensor rX ep P R56�20�19�M
� , with M is the

number of training three-way tensors, we obtained
common factors A P R56�15

� , B P R20�10
� , C P

R19�19
� . Similarly, we also obtain factors of time,

scale and channel for the non-epileptic spike class.
Comparison of the features between class Ω1 and
Ω2 are shown in Figures 4 and 5, revealing some
difference between the factors of epileptic tensors and
non-epileptic tensors. In particular, considering first
the factor A, components of epileptic spikes were most
localized in time; e.g. components #1, #2 and #3
were associated with the 30-th, 28-th and 3-th time
sample, respectively. Meanwhile, the components of
non-epileptic spikes seem to be spread, except from
components #9, #11 and #12. Next, the factor B is
shown in Figure 5. Since the behaviors of epileptic
spikes and non-epileptic spikes are different, the
resulting subspace of parameter representing wavelet-
scale for class C1 may not span non-epileptic spikes.
Figure 6 shows common factor C P R19�19

� of epileptic
tensors obtained from NTD, showing that the factor
of epileptic spikes was well localized in space, i.e., to
specific regions on the head. Hence, it may lead to
the ability of learning localized parts of epileptic spikes
from the channel mode.

Next, we investigated the advantages of NTD
over other types of tensor decomposition, e.g.
unconstrained Tucker decomposition and nonnegative
CP decomposition (NCP), for EEG epileptic spike
analysis. The multilinear rank tensor used for this task
is r1 � r2 � r3 � 15. As shown in Figure 7, NTD and
NCP can yield sparse basis vectors in A and B while
this is not the case for Tucker decomposition (TD).

5.3.2. Feature Selection
To assess the effectiveness of the proposed feature
selection stage for detecting EEG epileptic spikes, the
extracted features are fed into the support vector
machine (SVM) classifier. For illustration, we use
the simplest SVM kernel, namely the linear kernel.
In addition, we also use p-value [65] to provide the
strength of ranked features derived by the Fisher score.
A p-value in a statistical hypothesis test is that value of
p, with 0 ¤ p ¤ 1, such that given a significance level
α, if α ¡ p the test rejects the null hypothesis, H0,
otherwise the test does not reject H0. By convention, α
is commonly set to 0.05 [65]. The experimental results
are shown in Figures 8, 9, and 10.

Figure 8 shows that more than 600 significant
features with largest Fisher scores had p-values smaller
than 0.05, corresponding to 45% of the original 1425
features. Specifically, among the features there were
the top 500 features having p-value close to 0, meaning
that we can reject the null hypothesis H0 completely.
Hence, these 500 features have stronger discrimination
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Figure 4: Common time factor A P R56�15
� derived from NTD.
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Figure 5: Common scale factor B P R20�10
�

derived from NTD. The x-axis denotes the number of
components (column vectors), while the y-axis presents
20 wavelet scales in the range of r4-8s.

Figure 6: Common channel factor C P R19�19
� of the

epileptic tensor derived from NTD.

power than others. Furthermore, these features are
different to that of non-epileptic class Ω2, as illustrated
in Figure 9. Thus, they are efficient in detecting
epileptic spikes. Performance of the SVM model using
the first 500 significant features achieved the top SEN
at approximately 0.9 and overall ACC around 0.92
with the first 200 features (Figure 10), while the
corresponding values of the area under ROC curves
(AUC) were always higher than 0.9, thus ranked as
excellent result of classification;.

; Performance ranking based on AUC: r0.9–1s is excellent, r0.8–
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Figure 7: A comparison of obtained loading factors
between using three different tensor decompositions
(NTD, TD, NCP) of the epileptic tensor. The x-axis
denotes the number of components (column vectors),
while the y-axis presents 56 time samples.

5.3.3. Classification
To investigate how effective concatenation of input
tensors, we compare the proposed method against
Phan-Cichocki method in [45]. Second, we use
other tensor-based approaches which were successfully

0.9s is good, r0.7–0.8s is fair, r0.6–0.7s is poor, r0.5–0.6s is fail.
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Figure 10: Classification performance vs. number of
selected features

applied to detect brain activities of interest in EEG

signals as comparative methods, including Tucker-
based [15,18], CP-based [14,16], NCP-based [66].

To evaluate the separability of the extracted
features, we applied three widely used classification
models in the platform WEKA [67] to classify EEG
epileptic spikes out of non-epileptic spikes, including k-
nearest neighbors (KNN), naive Bayes (NB), decision
tree (DT) and SVM. Parameters of the classifiers were
set by default. In particular, the distance metric used
in the KNN was the Euclidean distance and the size
of the neighborhood was automatically obtained by
setting the cross-validation option. For NB, we selected
the Gaussian distribution as predictor distribution to
compute the posterior probability for the two classes
and then made decision for the class with higher
probability. For DT, the standard CART algorithm
was selected as the predictor selection technique,
the tree depth equaled the size of training set and
each node in the training tree had 10 observations.
Meanwhile, we used the linear SVM kernel, similar to
the previous task. We report here results of the SVM
model trained with our features across 17 patients
using the LOOCV method. The detailed results of
other classifiers can be found in the technical report
of [46], due to space limit.
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Figure 11: Detection performance of SVM when using
our features against different tensor-based approaches
(CP, NCP, TD and NTD).

Feature extraction is key for EEG epileptic spike
detection, and our approach outperforms the baselines
on all evaluation metrics. First, the NTD-SVM model
yielded strong results in terms of all measurements
(SEN, SPE, ACC and AUC) (see Table 2). Table 2
presents a quantitative statistic of EEG epileptic spike
detection performance of our NTD-SVM model using
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Table 2: Detection performance of the NTD-SVM model using Leave-One-Out Cross-Validation (LOOCV)

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 7 1 13546 1599 0.8750 0.8944 0.8944 0.9435
2 635 20484 525 110 18639 1845 0.8268 0.9099 0.9074 0.9267
3 6 14975 6 0 13314 1661 1.0000 0.8891 0.8891 0.9488
4 16 30751 15 1 29587 1164 0.9375 0.9621 0.9617 0.9370
5 351 25916 329 22 23088 2828 0.9373 0.8909 0.8915 0.9633
6 22 44387 16 6 40967 3420 0.7273 0.9230 0.9229 0.9191
7 2 2036 2 0 1791 245 1.0000 0.8797 0.8789 0.9536
8 11 29351 9 2 26437 2914 0.8182 0.9007 0.9007 0.8822
9 1 3742 1 0 3447 259 1.0000 0.9212 0.9212 0.9546

10 8 2371 5 3 2327 44 0.6250 0.9814 0.9802 0.9036
11 2 1565 1 1 1407 158 0.5000 0.8990 0.8985 0.9476
12 3 53302 2 1 48318 4984 0.6667 0.9065 0.9065 0.9098
13 5 69583 4 1 66534 3049 0.8000 0.9562 0.9562 0.9736
14 8 6217 5 3 5691 526 0.6250 0.9154 0.9150 0.9406
15 324 11219 271 53 9401 1818 0.8364 0.8380 0.8379 0.8976
16 28 35495 21 7 19563 3652 0.7500 0.8427 0.8426 0.8720
17 12 21170 9 3 19262 1908 0.7500 0.9099 0.9098 0.9212

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.8044 � 0.1468 0.8044 0.8516 0.8042 0.8593 0.8299 � 0.0297
SPE : 0.9071 � 0.0371 0.9071 0.9145 0.9066 0.9137 0.9105 � 0.0042
ACC : 0.9067 � 0.0369 0.9067 0.9142 0.9062 0.9118 0.9097 � 0.0039
AUC : 0.9291 � 0.0287 0.9291 0.9291 0.9272 0.9436 0.9323 � 0.0076

the LOOCV method. Accordingly, the percentage of
correctly detected epileptic spikes (i.e., SEN) varied
from patient to patient. In particular, the highest
SEN achieved 100% in the cases of patients with a
few of epileptic spikes (e.g. the 3-rd, 7-th and 9-th
patient), while the worst case with SEN of 0.5 was
from the 11-th patient. The NTD-SVM model achieved
over 80% SEN in 10 out of 17 patients. In spite of
the variation, the average metrics for SEN were still
good, e.g. the arithmetic mean SENAM � 0.8044,
SENTA � 0.8516, and �SEN � 0.8299 � 0.0297. The
metrics to the non-epileptic class, including SPE and
ACC were all high with small standard deviations (i.e.,
ρ̄ ¥ 0.9 and S.D. � 0.04). The key metric AUC
to measure of separability of the classifier was also
excellent, i.e., NTD-SVM obtained over 90% AUC in 14
out of 17 patients and the mean �AUC � 0.9323�0.0076
on average. These results indicate that the features
extracted by our method are able to detect epileptic
spikes with good performance.

Our detection system outperforms the three other
tensor-based approaches, including CP, NCP and
unconstrained TD decompositions (see Figure 11
and 13(a)). Figure 11 illustrates a number of boxplots
to demonstrate the performance improvement of our
system over others. Each boxplot for a specific metric
(e.g. SEN) presents the distribution of evaluation
performance across 17 patients in our EEG dataset.
A box is based on the five summary numbers,
including the “minimum”, first quartile (Q1), second
quartile, third quartile (Q3) and the “maximum”.
For instance, across the 17 patients, the highest
median SEN achieved 0.8182 from the NTD-SVM
model, while the value was low (i.e., ¤ 0.5) when

using other tensor decompositions. In addition, the
interquartile range (i.e., IQR � Q3�Q1) measuring
the variability of the NTD-SVM were lower than
that of TD-SVM, CP-SVM and NCP-SVM for each
evaluation metric. The results were also verified by
Figure 13(a) that shows ROC curves to illustrate
overall performance of the four models. The ROC
curve is drawn by plotting the true positive rate (TPR
equivalent to SEN) and false positive rate that can
be computed as 1 � SPE. Thus, the ROC curve
allows us to derive a cost/benefit analysis for making
decision. We can observe from the two figures that
the NTD-based feature extraction provided a better
classification accuracy than the CP decomposition
(i.e., unconstrained CP and NCP decomposition) and
unconstrained Tucker decomposition based approaches
in this work. According to the Table 3, the average
AUC of the CP-based and NCP-based models were
always lower than 0.9. That means there were less
than 90% chance that the models will be able to
distinguish between epileptic spikes and non-epileptic
spikes. The worst result was from the NCP-NB
model which had much less discrimination capacity
to detect EEG epileptic spikes, i.e., AUC � 0.574 �
0.25. The results of TD-based models were similar
to that of CP-based models. Although TD-SVM
might provide a good performance in terms of AUC
(i.e., 0.836 � 0.113), the resulting SEN was not good
enough, around 0.5. Hence, a half of the total
number of epileptic spikes were detected incorrectly
and labeled as non-epileptic activities. Meanwhile,
the NTD-based models yielded a 10% to 30% better
performance than that of other tensor decompositions.
The two best overall accuracy belonged to the NTD-
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based models, including NTD-SVM and NTD-DT (i.e.,
AUC � 0.929 � 0.029 and 0.914 � 0.041 respectively,
while SEN ¥ 0.8 in both cases). Furthermore, the
NTD-based models also detected non-epileptic spikes
successfully, which more than 95% activities of non-
interest were rejected correctly by the NTD-KNN
model. The percentage was 90% when using the NTD-
SVM model. The experiments shows that the NTD-
based feature extraction can provide good features to
enhance the separation between epileptic spikes and
non-epileptic spikes.
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Figure 12: Detection performance of four classifiers
using our features.

Our NTD-SVM outperforms three widely used
classifiers (i.e., KNN, NB and DT) in the classifica-
tion task. The performance comparison between us-
ing difference machine learning models is shown sta-
tistically in the Table 3 and Figure 12. The Ta-
ble 3 shows the overall performance of 16 models in
terms of all evaluation metrics. SVM-based models
performed better than others both in cases using fea-
tures extracted from different tensor decompositions.
As mentioned above, the two average area under ROC
curves of NTD-SVM are AUC � 0.929 � 0.029 and�AUC � 0.932 � 0.008 in terms of arithmetic mean
and overall mean respectively. The values were higher
than that of NTD-KNN (e.g. �AUC � 0.856 � 0.002),
NTD-NB (e.g. �AUC � 0.756 � 0.070) and NTD-
DT (e.g. �AUC � 0.911 � 0.006). The number of
correctly detected epileptic spikes of NTD-SVM (i.e.,�SEN � 0.830 � 0.003) was also higher than that of
KNN and NB (i.e., 0.402 � 0.213 and 0.539 � 0.212).
Moreover, the results were verified by boxplots across
17 epileptic patients, as shown in Figure 12. Results
from TD-based feature extraction also indicated that

the SVM model took more advance of tensor decom-
positions than the three classifiers. The �AUC of TD-
SVM was 0.836 � 0.113 compared to 0.524 � 0.229,
0.702 � 0.243 and 0.612 � 0.171 of TD-KNN, TD-NB
and TD-DT respectively. In spite of that, the average
SEN of the four models using the features were not
good enough. Specifically, neither one of the TD-based
models could detect more than 50% of total epileptic
spikes in our EEG dataset (i.e., SEN   0.5, see the
second column of Table 3). In the cases of using fea-
tures extracted from two types of CP decompositions,
the detection performances were bad, except the DT
classifier. However, the resulting AUC of the DT clas-
sifier (i.e.,   0.9) were not good enough compared to
that of the NTD-SVM where four evaluation metrics
for AUC of NTD were all higher 0.9.
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Figure 13: Performance comparison in terms of
averaged ROC.

The concatenation of training input tensors is key
for EEG epileptic spike detection. Accordingly, our
method provided a better performance than Phan-
Cichocki method. Table 4 and Figure 13(b) present
a performance comparison of epileptic spike detection
between using our method and Phan-Cichocki method.
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Table 3: Detection performance comparison between using difference machine learning models

Method SEN SPE ACC AUC �SEN �SPE �ACC �AUC

CP-KNN 0.106 � 0.132 0.966 � 0.027 0.963 � 0.028 0.690 � 0.124 0.126 � 0.107 0.966 � 0.003 0.966 � 0.004 0.682 � 0.012
CP-NB 0.546 � 0.275 0.710 � 0.138 0.709 � 0.137 0.662 � 0.216 0.627 � 0.085 0.709 � 0.003 0.713 � 0.020 0.693 � 0.050
CP-DT 0.826 � 0.246 0.829 � 0.046 0.829 � 0.045 0.857 � 0.112 0.831 � 0.057 0.829 � 0.008 0.826 � 0.005 0.856 � 0.001

CP-SVM 0.311 � 0.270 0.950 � 0.034 0.948 � 0.035 0.742 � 0.155 0.341 � 0.142 0.952 � 0.005 0.952 � 0.005 0.728 � 0.008

NCP-KNN 0.162 � 0.194 0.955 � 0.031 0.951 � 0.030 0.733 � 0.150 0.189 � 0.118 0.956 � 0.005 0.952 � 0.003 0.726 � 0.011
NCP-NB 0.366� 0.358 0.742 � 0.147 0.741 � 0.148 0.574� 0.250 0.472 � 0.111 0.736 � 0.011 0.733 � 0.012 0.587� 0.023
NCP-DT 0.871 � 0.149 0.835 � 0.052 0.834 � 0.051 0.888 � 0.049 0.850 � 0.042 0.834 � 0.004 0.834 � 0.004 0.892 � 0.007

NCP-SVM 0.288 � 0.255 0.941 � 0.040 0.939 � 0.040 0.734 � 0.188 0.324 � 0.203 0.941 � 0.007 0.940 � 0.006 0.695 � 0.074

TD-KNN 0.098� 0.135 0.984 � 0.030 0.980 � 0.031 0.524� 0.229 0.081 � 0.029 0.985 � 0.003 0.983 � 0.005 0.476� 0.090
TD-NB 0.333 � 0.286 0.856 � 0.160 0.857 � 0.161 0.702 � 0.243 0.278 � 0.062 0.865 � 0.008 0.872 � 0.024 0.667 � 0.062
TD-DT 0.240 � 0.207 0.897 � 0.042 0.894 � 0.043 0.612 � 0.171 0.211 � 0.077 0.898 � 0.004 0.900 � 0.007 0.621 � 0.014

TD-SVM 0.490 � 0.281 0.929 � 0.034 0.927 � 0.035 0.836� 0.113 0.470 � 0.115 0.903 � 0.062 0.903 � 0.063 0.811� 0.048

NTD-KNN 0.404 � 0.274 0.957 � 0.023 0.956 � 0.030 0.855 � 0.079 0.402 � 0.213 0.958 � 0.001 0.958 � 0.005 0.856 � 0.002
NTD-NB 0.560 � 0.313 0.850 � 0.087 0.851 � 0.087 0.794 � 0.141 0.539 � 0.212 0.851 � 0.008 0.854 � 0.005 0.756 � 0.070
NTD-DT 0.826 � 0.247 0.877 � 0.061 0.877 � 0.060 0.914 � 0.041 0.847 � 0.015 0.879 � 0.003 0.877 � 0.001 0.911 � 0.006

NTD-SVM 0.804� 0.147 0.907� 0.037 0.907� 0.037 0.929� 0.029 0.830� 0.030 0.910� 0.004 0.910� 0.004 0.932� 0.008

Results expressed as Mean � S.D.

Table 4: Concatenation of input tensors, with SVM, KNN, NB and DT using first 500 significant features.

Our method Phan-Cichocki method
Metric SVM NB KNN DT SVM NB KNN DT

SEN 0.830� 0.030 0.402 � 0.274 0.539 � 0.213 0.847� 0.015 0.379� 0.047 0.346� 0.060 0.092� 0.036 0.217� 0.022
SPE 0.911 � 0.004 0.958� 0.001 0.851 � 0.010 0.878 � 0.004 0.931 � 0.013 0.779 � 0.012 0.954 � 0.008 0.866 � 0.006
ACC 0.910 � 0.004 0.958� 0.005 0.857 � 0.006 0.877 � 0.003 0.927 � 0.012 0.783 � 0.006 0.951 � 0.006 0.865 � 0.003
AUC 0.932� 0.008 0.856 � 0.002 0.756 � 0.070 0.911� 0.006 0.817 � 0.011 0.590 � 0.082 0.622 � 0.028 0.521 � 0.003

We note that, according to Phan-Cichocki method,
the complete set of training tensors was used to
concatenate a single four-way tensor. However, the
number of non-epileptic spikes is very huge in our EEG
dataset (i.e., more than 375000 spikes). Therefore,
taking NTD decomposition of the resulting four-way
tensor rXtrain may be difficult, while the decomposed
factors were not guaranteed to be optimal, because
of the very big tensor (i.e., the number of entries inrXtrain is more than 7.109 for each testing case using
LOOCV). This could be a weakness of Phan-Cichocki
method in this work. For the ease of implementation
as well as avoiding the imbalanced problem, we applied
the random under-sampling technique for the non-
epileptic spike class to balance two class distributions,
which is a widely used technique to handle imbalance
dataset [57]. As a result, around 6000 non-spikes
were selected to form the training four-way tensor
in our experimental setup. The results showed that
evaluation metrics measuring the four classifiers using
our method were higher than that of Phan-Cichocki
method. Specifically, the our method obtained the
best classification accuracy, i.e., �AUC of 0.932� 0.008,
achieved the highest �ACC � 0.910 � 0.004 and the
highest �SEN � 0.830 � 0.030. The separability of our
features was also validated by applying the classifiers
KNN, NB and DT. In contrast to our method, both
classifiers using features extracted by Phan-Cichocki
method did not work well. In all test cases, the average�SEN across 17 patients of four classifiers were low, (i.e.,�SEN   0.4). That means more than 60% epileptic

spikes in our EEG dataset could not be detected
by these classifiers. Our NTD-SVM and NTD-DT
models provided much better performance in terms
of SEN in which they detected more than 80% the
number of epileptic spike correctly. The metrics to
non-epileptic class (i.e., SPE and ACC) of both four
classifiers were also effective, e.g. the overall SPE of
SVM and KNN were 0.931 � 0.013 and 0.954 � 0.008
respectively. However, three of four classifiers resulted
in a poor AUC on average (i.e., 0.5 ¤ �AUC ¤ 0.6)
which indicates that these models failed to detect EEG
epileptic spikes, except the SVM classifier. However,
the AUC of SVM was lower 11% than that of our
method. We refer the reader to the technical report [46]
for further detailed results of the four classifiers using
features extracted by Phan-Cichocki method.

6. Conclusions

In this paper, we have proposed a new model,
abbreviated as GSMLRAT, for solving the problem
of simultaneous multilinear low-rank approximation of
tensors. Inspired by the advantages of GSMLRAT and
NTD, we proposed, for the first time, a new tensor-
based system to detect epileptic spikes in EEG data.
We have first derived a new feature space that can span
EEG epileptic spikes from sparse loading factors of
NTD. A new discriminant set of features, learned from
NTD, which can distinguish between epileptic spike
class and non-epileptic spike class with high accuracy.
To reduce feature dimensionality as well as to achieve
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the good separability between these classes, we have
applied the Fisher score in EEG feature selection. The
numerical experiments have indicated that EEG multi-
way analysis using NTD allows us to extract multi-
domain features of epileptic spikes and provide high
classification accuracy only with well-known “shallow”
classifiers such as KNN, NB, DT and SVM.

Acknowledgments

This research was funded by Vietnam National
Foundation for Science and Technology Development
(NAFOSTED) under Grant No. 102.04-2019.14.

References

[1] Berg A T and Panayiotopoulos C P 2010 Atlas of Epilepsies
1st ed (Springer-Verlag London)

[2] Gotman J 1982 Electroencephalography and Clinical
Neurophysiology 54 530–540

[3] Gotman J 1999 Journal of Clinical Neurophysiology 16
130–140

[4] Tzallas A T, Tsipouras M G, Tsalikakis D G, Karvou-
nis E C, Astrakas L, Konitsiotis S and Tzaphlidou
M 2012 Automated epileptic seizure detection meth-
ods: A review study Epilepsy: Histological, Electroen-
cephalographic and Psychological Aspects ed Stevanovic
D chap 4, pp 75–98

[5] Orosco L 2013 Journal of Medical and Biological Engineer-
ing 33 526–537

[6] Acharya U R, Sree S V, Swapna G, Martis R J and Suri J S
2013 Knowledge-Based Systems 45 147–165

[7] Liu H S, Zhang T and Yang F S 2002 IEEE Transactions
on Biomedical Engineering 49 1557–1566
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