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Abstract
Personalized item recommendation is useful in nar-
rowing down the list of options provided to a user.
In this paper, we address the problem scenario
where the user is currently holding a basket of
items, and the task is to recommend an item to be
added to the basket. Here, we assume that items
currently in a basket share some association based
on an underlying latent need, e.g., ingredients to
prepare some dish, spare parts of some device.
Thus, it is important that a recommended item is
relevant not only to the user, but also to the existing
items in the basket. Towards this goal, we propose
two approaches. First, we explore a factorization-
based model called BFM that incorporates various
types of associations involving the user, the target
item to be recommended, and the items currently
in the basket. Second, based on our observation
that various recommendations towards constructing
the same basket should have similar likelihoods, we
propose another model called CBFM that further
incorporates basket-level constraints. Experiments
on three real-life datasets from different domains
empirically validate these models against baselines
based on matrix factorization and association rules.

1 Introduction
Traditional recommender systems are premised on model-
ing the associations between users and items. For instance,
collaborative filtering learns a user’s preference from other
users who have expressed similar behaviors. Recent works
are mostly based on matrix factorization [Koren et al., 2009],
where every user ui is associated with a latent vector xi ∈
RK inK dimensions, and every product vj is associated with
a latent vector yj ∈ RK . A user is recommended the item vj
with the highest inner product xiT vj . The implicit assump-
tion is that a user is interested in only one item at a time.

In reality, user buys an item to address a specific need,
which frequently could only be fulfilled by multiple related
items. When shopping for clothes, a user may be looking for
matching top, bottom, and accessories. To make a cake, a
user needs flour, milk, eggs, and sugar, among other ingredi-
ents. Someone on an errand may wish to visit several places

in one trip: dropping mail, collecting laundry, having lunch,
and buying groceries. In these cases, the items (e.g., products,
places, songs) sought by users are not independent.

Problem. We are interested in the notion of basket. Given
a user who is holding a basket of items, we seek to recom-
mend another item to add to the basket. This problem is rel-
evant in both online and offline scenarios. For instance, an
online shopper at Amazon.com, or an offline shopper at an
upcoming Amazon Go1 physical store, may be recommended
relevant products based on her current cart. In brick-and-
mortar supermarkets, RFID-tagged items and smart shopping
carts [Yewatkar et al., 2016] allow real-time recommendation
of items based on a user’s smart cart. A basket may also refer
to items adopted by a user within a specific period of time,
e.g., points of interest visited in a trip. While seeking the la-
tent need represented by a basket of items, recommendation
shall still be personalized, as a user may have preferences as
to the exact items involved (a specific brand, size, color, etc.).

The literature on market basket analysis is dominated by
association rule mining [Agrawal et al., 1994]. For recom-
mendation, we can mine historical transactions for rules in the
form of Bi ⇒ vj , where Bi is a set of items currently in the
user’s basket, and vj would be the recommended item. The
set Bi ∪ {vj} must occur in at least some minimum number
of transactions. Confidence is the fraction of the transactions
that contain Bi ∪ {vj}, among the transactions that contain
Bi. An item with a higher confidence is higher on the rec-
ommendation list. Association rule-based approach suffers
from a couple of shortcomings. First, the rules are “rigid” in
that items in Bi must all occur in the same transaction. Thus,
it may not model associations that have not been previously
seen, but could have been inferred. Second, the rules are gen-
eral and apply to all users. While there exist ways to make
it “personalized” [Sarwar et al., 2000] by ensuring that the
rule is supported by a user’s historical transaction before us-
ing it for recommendation, the model itself essentially does
not learn personalized association among items. We seek to
address these shortcomings with a factorization approach.

Approach. We advocate an approach that factorizes
basket-level associations. As our first contribution, we pro-
pose a model that we call BASKET-SENSITIVE FACTORIZA-
TION MACHINE or BFM, which models the recommendation

1https://www.amazon.com/b?node=16008589011
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as a function of four types of associations. The first is associ-
ation between the user and the target item to be recommended
(where most matrix factorization approaches stop). In addi-
tion, we model association between the target item and each
item currently in the basket, association among basket items,
and association between the user and each basket item. We
investigate empirically which associations are most useful.

While BFM captures the notion of relationship among
items within a basket, we further observe relationship among
baskets with similar intent. Continuing an earlier example,
suppose that a user shops for cake ingredients. At one oc-
casion, the user may already have {milk, flour, sugar} in
her basket, and we may recommend eggs. At another occa-
sion, the user may already have {milk, flour, eggs} in her
basket, and we thus recommend sugar. While we may be
recommending different items (eggs in one case, and sugar
in the other), the suggested instances are addressing similar
needs. As our second contribution, we propose a set of con-
straints to BFM to make the likelihood of recommendations
that eventually belong to the same basket similar. We refer to
this second model as CONSTRAINED BFM or CBFM, and
investigate empirically whether the constraints are effective.

Organization. This paper is organized as follows. In Sec-
tion 2, we review the literature on recommendations related
to baskets, as well as on other types of associations. We then
describe our first model BFM in Section 3, as well as how its
parameters could be learned. This is followed in Section 4 by
a discussion on the second model CBFM. Through experi-
ments on three real-life datasets from different domains, we
conduct an empirical analysis of BFM and CBFM in Sec-
tion 5, which also includes a comparison to an association
rule-based baseline. We conclude the paper in Section 6.

2 Related Work
The original aim of association rule mining is not recommen-
dation, but finding insightful associations from transaction
data. The research focus was mainly on computational ef-
ficiency, with pruning strategies such as Apriori [Agrawal et
al., 1994] or FP-tree [Han et al., 2000]. The rules are general
rules, and are not personalized. Some works described ways
to use association rules for personalized item recommenda-
tion. For comparison in Section 5, we follow the approach in
[Sarwar et al., 2000] as a baseline. Other works inspired by
association rules are not directly comparable. [Kim and Kim,
2003] used information on product categories for multi-level
rules. [Wang et al., 2014] considered association rules across
baskets, instead of within a basket. [Pradel et al., 2011] used
bigram rules, with an item each in antecedent and consequent.

[Li et al., 2009] proposed non-personalized recommenda-
tion based on random walk. It is different from ours where the
recommendation is sensitive to both the user and the basket.

Another orthogonal direction is to recommend a user’s
next basket. The key association is sequence based on time.
One approach is based on integrating matrix factorization and
Markov chains [Rendle et al., 2010]. Subsequent work ap-
plies recurrent neural networks [Yu et al., 2016] or a hierar-
chical representation model [Wang et al., 2015]. In contrast,
our intent is to predict which item to be added into the cur-

rent basket, and the key is correlation among items within the
basket. Another problem is bundle recommendation [Zhu et
al., 2014] to recommend a bundle of items. This is akin to
next-basket recommendation, a different scenario from ours.

There are other non-basket associations that are not the fo-
cus of our work. One is the sequence of items [Le et al., 2016;
Xiang et al., 2010]. Another is taxonomy-induced associa-
tions [Shan et al., 2012; Koenigstein et al., 2011]. There is
also similarity- or co-occurrence-induced associations [Liu et
al., 2015; Liang et al., 2016], including content-based rec-
ommendation [Pazzani and Billsus, 2007]. They recommend
items independently, whereas we factor in the items in the
user’s basket to arrive at the personalized recommendation.

3 Basket-Sensitive Factorization Machine
Consider N users U = {u1, u2, ..., uN} and M items V =
{v1, v2, ..., vM}. Given a user ui ∈ U , a basket Bi ⊂ V
is defined as a subset of items that ui is currently “holding”.
We refer to them as basket items. For instance, these could be
items in the user’s shopping cart or places already visited by
the user on that day. Our objective is to recommend a target
item vj ∈ V \ Bi (or a ranked list of items) to ui. We seek
to learn a real-valued function F (ui, Bi, vj ; Θ), such that if
F (ui, Bi, vj ; Θ) > F (ui, Bi, vj′ ; Θ), then the target item vj
is preferable to vj′ , and would be more likely to be recom-
mended to ui. Θ denotes the parameters of the function.

3.1 Modeling Association Types
We develop our proposed BFM model by incorporating vari-
ous types of useful associations.

User and Target Item. For personalized item recommen-
dation, the basic type of association is between the user and
the target item. This is a fundamental building block in most
matrix factorization techniques [Koren et al., 2009]. Build-
ing upon this foundation, we include in Θ, a latent vector
xi ∈ RK in K dimensions for each user ui ∈ U , as well
as a latent vector yj ∈ RK for each target item vj ∈ V .
F (ui, Bi, vj ; Θ) is assumed to be proportional to xiT yj .

F (ui, Bi, vj ; Θ) ∝ xiT yj (1)

Matrix factorization essentially assumes that the basket items
are irrelevant, implying that a user chooses items indepen-
dently of one another. In practice, we expect that items in a
basket may be associated with one another.

Basket Item and Target Item. It is important to model the
associations between items in the basket and the target item.
For instance, a supermarket shopper who is picking up in-
gredients for curry would be recommended items differently
from when she is picking up ingredients for cake. To model
the influence of a basket item on the choice of the target item,
we further include in Θ a latent vector zj ∈ RK for every
item vj ∈ V . As opposed to yj that models vj’s behavior as
a target item, zj models vj’s behavior as a basket item. With-
out prior knowledge, we assume that all items in the basket
would have an influence on the choice of the target item.

F (ui, Bi, vj ; Θ) ∝
∑
vk∈Bi

yj
T zk (2)
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Among Basket Items. A basket of items may not always
share a strong association among themselves. On one occa-
sion, a shopper may buy a complete set of ingredients for
some dish. On another occasion, the shopper may pick up
loose ends, resulting in a basket of less related items. The
strength of association among items in the basket may influ-
ence the choice of the target item. We model this as well.

F (ui, Bi, vj ; Θ) ∝
∑

(vk 6=vk′ )∈Bi

zk
T zk′ (3)

User and Basket Item. For completeness, we also model
the association between the user and each basket item.

F (ui, Bi, vj ; Θ) ∝
∑
vk∈Bi

xi
T zk (4)

This association is potentially redundant if the associations
between the user and the target item, as well as between the
target item and each basket item are already modeled.

Overall Function. We now encapsulate the above associ-
ation types into one overall function as follows.

F (ui, Bi, vj ; Θ) ∝ γ1 · xiT yj + γ2 ·
∑
vk∈Bi

yj
T zk (5)

+ γ3 ·
∑

(vk 6=vk′ )∈Bi

zk
T zk′ + γ4 ·

∑
vk∈Bi

xi
T zk

For flexibility in whether to incorporate an association type,
we indicate each association type with a binary variable
γ1, γ2, γ3, γ4 ∈ {0, 1} to be specified according to each ap-
plication scenario. We will experiment with different combi-
nations of association types to see which are most useful.

Prediction. Once the parameters Θ are learned, given a
user ui and a basket Bi, we construct a recommendation list
of target items in the order of decreasing F (ui, Bi, vj ; Θ).

3.2 Parameter Learning
We are given a set of tuples T , where each t =
〈ui, Bi, vj , δ〉 ∈ T connotes a user ui holding a basket Bi. If
δ = 1, the user ends up adopting a target item vj . If δ = −1,
the user does not adopt vj . A user may have multiple tuples
in T . The goal is to learn the parameters in Θ, i.e., {xi}ui∈U ,
and {yj , zj}vj∈V to maximize the likelihood of observing T .

We make the interesting observation that the model pa-
rameters can be mapped into a factorization machine or FM
[Rendle, 2012]. Let h be a vector of length p, with binary
elements, i.e., hi ∈ {0, 1}. A second-oder FM is as follows.

F(h) = µ0 +

p∑
i=1

µihi +

p∑
i=1

p∑
j=i+1

hihj(φi
Tφj) (6)

The parameters include the global bias µ0 and a bias co-
efficient µi for each component. Each φi ∈ RK is a K-
dimensional latent vector associated with the ith component.

We transform our model into the appropriate factorization
machine. For t = 〈ui, Bi, vj , δ〉 ∈ T , we construct a binary
vector ht of length p, where p = N + 2M . The first N terms
in ht are for the presence of a user. We have hti = 1. The next
M terms in ht are for the target item. We have htN+j = 1.
The last M terms are for the basket items. For each basket
item vk ∈ Bi, we have htN+M+k = 1. All other elements of

ht are zeros. The latent vectors of this factorization machine
stand for those of BFM. φi stands for a user latent vector x
when i ≤ N , for a target item latent vector y when N < i ≤
N+M , and for a basket item latent vector z whenN+M < i.

For BFM, the function F (ui, Bi, vj ; Θ) in Equation 5 is
effectively transformed into Equation 7. Θ denotes the φi’s
that also stand for x, y, z’s. The addition of biases µ0 and
µi’s is appropriate, and it is a common practice in matrix
factorization-based recommendation [Koren et al., 2009].

F(h; Θ) = µ0 +

p∑
i=1

µihi + γ1

N∑
i=1

N+M∑
j=N+1

hihj(φi
Tφj)

+ γ2

N+M∑
i=N+1

p∑
j=N+M+1

hihj(φi
Tφj)

+ γ3

p∑
i=N+M+1

p∑
j=i+1

hihj(φi
Tφj) (7)

+ γ4

N∑
i=1

p∑
j=N+M+1

hihj(φi
Tφj)

To learn from training data T , we would like F(ht; Θ) to
be high when t.δ = 1, and to be low when t.δ = −1. To
penalize errors during training, we adopt the following opti-
mization criterion incorporating a logistic loss function.

OPT BFM(T ) (8)

= argminΘ

[∑
t∈T
− ln(σ(F(ht; Θ)× t.δ)) +

∑
θ∈Θ

λθθ
2

]
where σ(a) = 1/(1 + e−a) is the sigmoid function, and λθ ∈
R+ is the regularization coefficient for θ.

The parameters could be estimated via several methods,
e.g., stochastic gradient descent (SGD), alternating least-
squares and Markov Chain Monte Carlo [Rendle, 2012].

4 Constrained BFM or CBFM
We describe CONSTRAINED BFM or CBFM that incorpo-
rates constraints relating baskets of similar intent. Intuitively,
if a user shops for a number of items to fulfil a need, con-
ceivably on different occasions the user may put items in dif-
ferent sequences and construct different intermediate baskets
that make up the same collection of items. For example, if the
intent is served by four items v1, v2, v3, v4, on one occasion
when a user’s basket contains {v1, v2, v3}, we would recom-
mend v4, while on a different occasion when the user’s basket
contains {v1, v3, v4}, we would recommend v2. Because the
recommendations go on to serve the same intent for the user,
we postulate that their likelihoods should be similar.
Definition 1. TUPLES OF THE SAME INTENT We say that
two tuples t1 and t2 in the training data T have the same
intent if the following conditions hold:

• t1 and t2 concern the same user,
• the union of the basket items and the target item is iden-

tical between t1 and t2,
• both are positive examples, i.e., t1.δ = 1 and t2.δ = 1.
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Given two tuples t1 and t2 of the same intent, we seek to
minimize the difference between their function values.(

F(ht1 ; Θ)−F(ht2 ; Θ)
)2

(9)
Different pairs of tuples with the same intent may have dif-

ferent degrees of correlation, which we model by the Point-
wise Mutual Information (PMI) [Bouma, 2009] of their target
items. Suppose for two same-intent tuples t1 and t2, their tar-
get items are v1 and v2. The PMI is the joint probability of
v1 and v2, estimated through their joint co-occurrence across
transactions, divided by the marginal probabilities of v1 and
v2 respectively, as shown in Equation 10. The higher the PMI
the more likely two items appear in the same basket.

PMI(t1, t2) = ln
P (v1, v2)

P (v1)(v2)
(10)

In practice, there may be more than two tuples sharing the
same intent. For a collection of such tuples from positive ex-
amples, the objective is to learn high scores. Imposing simi-
larity across all pairs of such tuples may have the unintended
effect of making them equally low, instead of equally high.
Therefore, we would only add the constraint between a tuple
t and its same-intent tuple tm that has the maximum score.

We now define the optimization criterion for the CON-
STRAINED BFM or CBFM, as shown in Equation 11 below.

OPT CBFM(T ) (11)

= argminΘ

[∑
θ∈Θ

λθθ
2 +

∑
t∈T

{− ln(σ(F(ht; Θ)× t.δ))

+
α

2
× PMI(t, tm)×

(
F(ht; Θ)−F(ht

m

; Θ)
)2

}
]

The objective function of CBFM subsumes that of BFM. It
still has the logistic loss function of BFM. It also features the
constraints. α is a coefficient controlling the strength of the
constraint vis-á-vis the logistic loss, to be tuned empirically.
As we are most concerned with strongly-correlated tuples, we
apply the constraint only for positive tuples having positive
PMI; otherwise it is considered zero with no effect.

The inference for CBFM’s logistic loss is similar to that of
BFM. The key difference is the constraint component. The
overall gradient of parameters consists of the gradient due to
the logistic loss, as well as the gradient due to the derivative
the constraint component. The latter is as follows.
∂

∂θ
F(ht; Θ)−F(ht

m

; Θ))2 (12)

= 2(F(ht
m

; Θ)−F(ht; Θ))
∂

∂θ
(F(ht

m

; Θ)−F(ht; Θ))

Subsequently, we perform the following update iteratively in
the SGD algorithm, where η is the learning rate.

θ ← θ − η
[
t.δ × (σ(F(ht; Θ)× t.δ)− 1)

∂

∂θ
F(ht; Θ)

+ α× PMI(t, tm)× (F(ht
m

; Θ)−F(ht; Θ))

× ∂

∂θ
(F(ht

m

; Θ)−F(ht; Θ)) + 2λθθ

]
(13)

The complexity of CBFM learning is similar to BFM,
O(K · |T | · s̄), where K is the vector dimensionality, |T | is
the size of the training data, and s̄ is the average basket size
in T . Compared to BFM, CBFM takes additional compar-
isons to find the maximum instance tm. The extra calculation
is linearly proportional to the size of the respective basket.

Dataset #Users #Items #Transactions Average #Items
per Transaction

TaFeng 11711 11035 71447 7.3
BeiRen 9245 5581 87224 6.1
Foursquare 1548 3619 31377 2.7

Table 1: Statistics for TaFeng, BeiRen & Foursquare.

5 Experiments
The objective of experiments is to investigate the effective-
ness of the BFM and CBFM models.

5.1 Setup
Datasets. We experiment with three public real-life datasets

from different domains bearing basket-like associations. The
dataset sizes are summarized in Table 1.

TaFeng2: This is a retail market dataset. There are a se-
ries of transactions, where each transaction involves a user
and multiple grocery items. The hypothesis is that items in a
basket may be related as they go towards household needs.

BeiRen3: This comes from a large retailer in China, cap-
turing the period from 2012 to 2013. Similar to TaFeng, each
transaction contains a set of items bought by a given user.

Foursquare4: This consists of users’ check-ins at various
points of interest in Singapore [Yuan et al., 2013]. We treat
the check-ins within the same day as a transaction. The hy-
pothesis is that these check-ins involve related purposes. Pre-
vious works on point-of-interest [Yuan et al., 2013] rely on
modeling temporal or sequential associations. That is not the
scope of our work, which is modeling in-basket associations.

Similar pre-processing is applied on all datasets. For suf-
ficient statistics, we filter out items bought by too few users,
i.e., 10 users for TaFeng & BeiRen and 5 users for Foursquare
corresponding to their data sizes. As our focus is on mod-
eling associations, we remove items that behave like “stop
words” with presence in a large fraction of transactions (more
than 5%). There are merely 2 or 3 such items in TaFeng and
BeiRen respectively and none in Foursquare. As transactions
with single items do not contain item-item association, we re-
tain only transactions with more than 2 items. We also filter
out users with fewer than 3 transactions, which is the mini-
mum needed to have a training/validation/testing split.

Training, Validation & Testing. We further split the trans-
actions as follows. For each user, we sort her transactions
chronologically. The last transaction will be part of the test-
ing set. The second-last transaction will be part of the valida-
tion set. The rest will be part of the training set.

For each transaction, we induce positive tuples in the form
of t = 〈ui, Bi, vj , 1〉. For each item vj in the transaction of
user ui, we hide vj as the item to be predicted. The remain-
ing items observed in that transaction will form the basketBi.
Hence, a transaction containing n items will result in n posi-
tive tuples. In addition, as we discuss previously in Section 4,
these n tuples are said to have the same intent.

2http://recsyswiki.com/wiki/Grocery shopping datasets
3http://www.brjt.cn
4http://www.ntu.edu.sg/home/gaocong/datacode.htm
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Association TaFeng BeiRen Foursquare

γ1 γ2 γ3 γ4 HLU R@10
(%) HLU R@10

(%) HLU R@10
(%)

1 0 0 0 0.06 0.10 1.94 3.16 5.45 8.29
1 1 0 0 1.47† 2.27† 3.35† 5.11† 8.11† 11.98†

1 1 1 0 2.14†§ 3.41†§ 3.75†§ 5.77† 8.51†§ 12.48†§
1 1 0 1 1.64† 2.59† 3.59† 5.54† 7.08† 10.50†

1 1 1 1 2.08† 3.31† 3.74† 5.78† 8.02† 11.84†

Table 2: Performance Comparison for BFM with Various Associa-
tion Types on TaFeng, BeiRen and Foursquare.The four association
types include γ1: User & Target, γ2: Target & Basket, γ3: Basket &
Basket, γ4: User & Basket.

As the datasets only have positive examples, following
[Pan et al., 2008], we create negative examples by sampling.
From each positive tuple t = 〈ui, Bi, vj , 1〉, we can create a
negative tuple t¬ = 〈ui, B¬i , v¬j ,−1〉. As v¬j , we randomly
pick an item never selected by the user. B¬i contains items
that never co-occur with either the user, v¬j or other items in
B¬i . For parity, we have |Bi| = |B¬i |. As we expect there
are more items that a user does not prefer than those that a
user does, we have twice as many negative tuples. Training
set has both positive and negative tuples for learning, while
validation and testing sets consist of only positive tuples.

Evaluation Task & Metrics. The evaluation task is top-n
recommendations. For each tuple t = 〈ui, Bi, vj , 1〉 in the
testing set, we hide the observed item vj , and require each
model to produce a ranked list of items for ui based on Bi.
A list that ranks the observed vj higher is better. For the pro-
posed models, the performance numbers are averaged across
25 runs with different random initializations.

We rely on two evaluation metrics frequently used for top-
n recommendation [Rendle et al., 2010]. The first metric is
Half-Life Utility or HLU [Breese et al., 1998]. It measures
how likely a user will adopt an item at a ranking position k.
[Breese et al., 1998] proposed this probability as 2

1−k
β−1 with

β as the half-life parameter. In our context, HLU is defined:

HLU =
1

|Ttest|
× C ×

∑
t∈Ttest

2
1−rt
β−1

where Ttest is the testing set, and rt is the rank of the item vj
in tuple t in the list. C is the scaling parameter. Following
[Rendle et al., 2010], we set β = 5 and C = 100.

The second metric is recall (R@n), defined as the percent-
age of testing instances with the ground truth item in top-n.
The higher the percentage, the better the model is. In ex-
periments, we primarily investigate top-10 recommendations,
i.e., R@10, but will show performances for several other top-
n as well. Precision may not be suitable, as the unobserved
items may not necessarily be negative examples, but rather
simply unlabeled positive examples [Wang and Blei, 2011].

5.2 Results
BFM with Various Association Types. First, we investigate
several combinations of association types to determine what
constitutes a good configuration for BFM. We implement
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Figure 1: Performance Comparison for BFM and CBFM for Vari-
ous α on TaFeng, BeiRen and Foursquare

BFM in Java based on libFM 5. For these experiments, we
use latent factor dimension K = 8 and regularization param-
eter λθ = 0.01, which are also the defaults of libFM. The
various numbers of latent factor dimensions K are empiri-
cally investigated in the last experiment. The initial learning
rate η is 0.0001 for TaFeng, BeiRen and 0.001 Foursquare
respectively to reflect their relative sparsity. We further apply
the Bold-Driver adaptive learning rate [Battiti, 1989].

Table 2 shows BFM of different configurations. The first
configuration [γ1, γ2, γ3, γ4] = [1, 0, 0, 0] has only associa-
tions between each user and the target item. This is a fac-
torization machine (FM) akin to matrix factorization, which
does not feature any basket effects. The second configura-
tion [1, 1, 0, 0] adds associations between each basket item to
the target item, with a higher performance than FM in terms
of HLU and R@10, implying that basket items indeed have
an influence on the target item. We further experiment with
several more configurations. It emerges that the best configu-
ration is [1, 1, 1, 0], which includes associations among basket
items, but excludes those between users and basket items.

Table 2 shows that models with basket associations are bet-
ter than FM. The symbol † indicates that paired samples
t-test shows statistical significance (at 0.05 level) in the im-
provements over FM. That the best configuration [1, 1, 1, 0]
shows statistically significant improvements over the second-
best configuration [1, 1, 1, 1] is indicated by the symbol §.
Subsequently, we will use [1, 1, 1, 0] as the default for BFM.

5http://www.libfm.org
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Figure 2: Half-life Utility and Response Times

Dataset Model HLU R@n (%)
10 20 50

TaFeng
CBFM 2.29‡ 3.61‡ 6.00‡ 11.11‡
BFM 2.14 3.41 5.77 10.79
ASR 1.97 2.72 3.56 4.83

BeiRen
CBFM 3.89‡ 6.12‡ 10.42‡ 19.04‡
BFM 3.75 5.78 9.91 18.79
ASR 3.74 5.31 7.60 11.56

Foursquare
CBFM 10.92‡ 16.06‡ 21.83‡ 30.81‡
BFM 8.51 12.48 17.86 26.41
ASR 6.54 10.36 12.56 15.64

Table 3: Performance Comparison to Association Rules (ASR) on
TaFeng, BeiRen and Foursquare.

Effect of Constraint. We take the best configuration of
BFM, and add the basket-level constraint to form CBFM.
Figure 1(a) illustrates the CBFM’s HLU and R@10 on
TaFeng when we vary α. BFM is equivalent to CBFM when
α = 0. The performance generally rises and then falls. The
best on TaFeng is α = 0.5. Figure 1(b) is for BeiRen, where
the best configuration is α = 0.05. Finally, Figure 1(c) shows
the corresponding results on Foursquare, with best perfor-
mance at α = 1. Subsequently, we will use these α settings.

Comparison to Association Rules. We include a com-
parison to a baseline based on association rules [Sarwar et
al., 2000]. First, we learn association rules from the training
data, with minimum support of 10 on TaFeng, BeiRen and 5
on Foursquare (the same filters as for our training data). For a
user and a basket, a rule is applicable if the antecedent items
are contained in the basket, and have been adopted by the user
previously. For each target item, if there are multiple appli-
cable rules, we use the rule with maximum confidence. We
then construct a ranked list in decreasing order of confidence.

Table 3 shows a comparison to the association rule-based
baselineASR. In addition toHLU andR@10, we also show
R@20 and R@50. CBFM and BFM both outperform ASR
across all measures. We hypothesize this is due to their use of
factorization that allows them to discover other latent associ-
ations among items. The symbol ‡ indicates the statistically
significant (at 0.05 level) improvement of CBFM over BFM.

Model Complexity and Response Time. The goal of rec-

ommender systems is to provide users with relevant results
in a timely and responsive manner [Koenigstein et al., 2012].
To retrieve the top-n recommendation at run time, we need
to evaluate the prediction score for all possible items in the
inventory [Bachrach et al., 2014]. One setting that has a di-
rect effect on retrieval speed is the number of latent factors.
We define response time as the time required to do the predic-
tion computation for all items (required for top-n). Timing is
based on a PC with Intel Core i5 3.2GHz with 8GB RAM.

Figure 2 demonstrates how HLU and response time are
affected by different number of latent factors K. For CBFM,
we tune the α based on the validation set for each K. We
see a trend that increasing K leads to higher HLU but
also higher response times. For TaFeng and BeiRen, Fig-
ures 2(a) and 2(b) show that CBFM has a slight gap over
BFM throughout (statistically significant at 0.05 level). FM
has relatively low performance, probably due to significant
basket effects and data sparsity. Foursquare is an “easier”
dataset, as shown by Figure 2(c). For very high number of la-
tent factors (which also result in higher response times), even-
tually the models achieve similar performance. Importantly,
CBFM shows a good trade-off behavior. For most response
times, especially for the fast response times, it has signifi-
cantly better HLU . The trends for R@10 are similar, and not
shown here due to space constraint.

6 Conclusion
We investigate recommendation models that take into account
of a user’s current basket in making personalized recommen-
dations. We propose two models: BFM that incorporates
various association types, and CBFM that further integrates
constraints for baskets with similar intent. Experiments show
some improvements over factorization machine that does not
model basket associations, and association rules that do not
benefit from latent associations discovered by factorization.
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