
Finding Relevant Files for Bug Reports
Based on Mean Reciprocal Rank Maximization Approach

Duc-Trong Le
DS&KTLab, University of Engineering and Technology,

Vietnam National University, Hanoi
144 Xuan Thuy, Cau Giay, Hanoi

trongld@vnu.edu.vn

ABSTRACT
Constructing and maintaining open source projects is not
an easy work. Developers usually need to tackle a lot of
bugs reported by users. The first step of the fixing progress
is to find all relevant files respect to given reports. This
step takes time and human resources. Motivating from this
context, various learning-to-rank models were proposed in
order to automatically rank files and generate suggestions
for developers. The actual related files are expected to be
appeared in high positions of the ranking. In the scope of
this paper, a mean reciprocal rank optimization approach is
investigated for the learning-to-rank relevant files for bug re-
ports task. Given a bug report, the ranking of a source file
is approximated by a function aggregating features which
represent their relationship. The weights of these features
are learned previously to maximize the mean reciprocal rank
of known relevant files on training bug reports. In the ex-
perimental section, the introduced model is evaluated on
three Java open source projects namely Tomcat, AspectJ
and SWT. The three different versions of the model are also
explored and compared to a recent state-of-the-art method
in recommending related files for bug reports.

Keywords
Bug reports, Learning-to-Rank, Mean Reciprocal Rank

1. INTRODUCTION
Checking bug reports and fixing related files are usual

tasks of developers in open-source projects. In the past,
they need to search relevant files manually before solving the
problem. It is no difficult if the bug contains class names or
paths to files as the Figure 1 while it takes much more time
for the textual bug like Figure 2, especially for bugs hav-
ing more complex descriptions. The bigger the open-source
project is, the larger number of bug reports developers need
to deal. Thus, the requirement for automated methods to
determine related files for bug reports becomes more and
more seriously. These methods should give a small and suit-
able set of candidates for developers’ references. Numerous
learning-to-rank models in finding buggy files for bug reports
are proposed such as [1, 3, 5, 9, 14, 15].

Because the bug report text and source code file are often
informative, researches often focus on exploiting the textual
features to link relevant files to bug reports. Kim et al. [3]
simply proposed a two-phase recommendation model which
relies on a binary Naive Bayes classifier. The classifier is
learned using textual features of training bug reports and

Figure 1: A bug report with class names

Figure 2: A textual bug report

respective fixed source files. It is applied on new bugs and
all source files to determine the relevances. The drawback of
this approach is inapplicable for unknown source files. Tak-
ing advantages of topic model, Lukins et al. [5] introduced
a hybrid model using LDA and Vector Space Model (VSM).
Topic distributions of training bug reports and files are gen-
erated. Given a new bug, the ranked list of candidate is
determined by sorting the similarity between the topic dis-
tribution of the bug report and a source file candidate. In
2011, Nguyen et al. [9] not only utilized the topic model
but also a defect-proneness factor favors to frequently fixed
files and files with large size. Exploring features from API
documents and software repositories, Ye et al. [14] present
a learning-to-rank model with 6 features. The significant
enhancement show the effectiveness of the model. However,
the authors utilized the SVMrank toolkit which was wit-
nessed several disadvantages mentioned in [2]. Additionally,
it is clear that among relevant files of a bug report are usu-
ally contain explicit relationships. Starting from a file, we
can travel to other relevant files via variable declarations.
In other words, the recommender model does not require to
suggest all correct files, just few most related ones.

Mean reciprocal rank (MRR), is first introduced in [13],
is computed as the inverse of the rank of the first relevant
item. As described in [8, 7], we can simultaneously learn
parameters and maximize the rank of relevant items in the
information retrieval context. Applying this great point on
recommender systems, Shi et al. [10, 11] built a recom-

mender model via maximizing the smoothed mean reciprocal
rank of users on relevant items. This approach just utilized
relevant items (positive instances) in training and favor few
(not all) relevant items as high position as possible. Hence,
it inspires me to investigate a MRR-based optimization ap-
proach for learning to rank relevant file for bug reports as
well as the presence of irrelevant files in promoting relevant
files of bug reports. In the experimental section, the three
versions of the MRR-based model are considered to explore
the effect of related and unrelated files in favoring relevant
files in the ranked list of a given bug report. The best model
of the three models is compared to a recent state-of-the-art
model LTR-SVM. All results are throughly discussed and
explained later.

The rest of the paper is constructed as follows. Section 2
introduces a mean reciprocal rank maximization approach in
finding buggy files for bug reports. The objective functions,
features and the recommendation technique are described
gradually to ensure a coherent order. This is followed by
Section 3 which contains experimental settings as well as
comparisons between models. A short discussion about re-
lated works is shown in Section 4 before findings and expla-
nations are summarized in the last section.

2. A MEAN RECIPROCAL RANK MAXI-
MIZATION APPROACH

2.1 The smoothed Reciprocal Rank
Considering an open source project P, let us denote B as

the set of bug reports and B as the source files set S. Given
a bug report b ∈ B, the reciprocal rank of a ranked list for
this bug is inspired from [11]. It will favor a few relevant
files at the very high position of the recommendation list.

RRb =

N∑
i=1

Ybi
Rbi

N∏
j=1

(1− YbjI(Rbj < Rbi)) (1)

where N is the total number of source files in P; Ybi is the
binary relevance score of source file i to bug b; Rbi denotes
the rank of source file i in the ranked list over all source files
for the bug report b. The reciprocal rank and I(Rbj < Rbi)
are approximated using a logistic function:

1

Rbi
≈ g(fbi) (2)

I(Rbj < Rbi) ≈ g(fbj − fbi) (3)

where g = 1/(1 + e−x); fbi denotes the predictor func-
tion that aggregate features representing the relationship
between a bug report b and a source file i to a predicted
relevance score. It is defined as:

fbi =

|W |∑
l=1

φl(b, i)Wl (4)

Each feature φl(b, i) measure a specific relationship be-
tween the source file i and the received bug report b while
Wl is the respective feature parameter. The parameter Wl

will be learned in order to maximize the mean reciprocal
rank introduced later. Replacing Eq. (2) and Eq. (3) into
Eq. (1), the smooth version of RRb will be:

RRb ≈
N∑
i=1

Ybig(fbi)

N∏
j=1

(1− Ybjg(fbj − fbi)) (5)

Let us denote the number of relevant files for bug report
b in the given data collection is n+

b . So RRb/n
+
b is the mean

reciprocal rank of bug report b on all source files. Apply
the Jensen’s inequality and the concavity of the logarithm
function, we obtain the lower bound of the natural logarithm
of the mean reciprocal rank:

ln(
1

n+
b

RRb) >
1

n+
b

N∑
i=1

Ybi(ln g(fbi) +

N∑
j=1

ln(1− Ybjg(fbj − fbi)))

(6)

Neglecting the constraint 1/n+
b , the objective function for

the mean reciprocal rank can be expressed as follow:

L(b, S) =

N∑
i=1

Ybi(ln g(fbi) +

N∑
j=1

ln(1− Ybjg(fbj − fbi)))

(7)

Adding irrelevant files
In [11], Shi et al. actually use the relevant items set in

their objective function as Eq. (1). With the objective of
investigating the effect of irrelevant files to the learning-to-
rank model, I consider the presence of unrelated files in the
reciprocal rank equation. Extending from Eq. (1), we have
the new reciprocal rank for a given bug report b

RRb =

N∑
i=1

[
Ybi
Rbi

N∏
j=1

(1− YbjI(Rbj < Rbi))

×
N∏
k=1

(1− Y bkI(Rbi < Rbk))] (8)

where Y bk = 1 if the source file k and the bug report
b are irrelevant, otherwise 0. The primary idea is to favor
more relevant files which are ranked higher than a number of
irrelevant ones. Following the same steps, we obtain the ob-
jective function for the mean reciprocal rank with irrelevant
files as:

L(b, S) =

N∑
i=1

Ybi[ln g(fbi) +
N∑
j=1

ln(1− Ybjg(fbj − fbi))

+

N∑
k=1

ln(1− Y bkg(fbi − fbk))] (9)

Then the objective function for all bug reports in the
project P is expressed as:

L(B,S) =
∑
b∈B

N∑
i=1

Ybi[ln g(fbi) +

N∑
j=1

ln(1− Ybjg(fbj − fbi)

+

N∑
k=1

ln(1− Y bkg(fbi − fbk))] (10)

To avoid over-fitting problem as well as controlling the
complexity of the learning-to-rank model, the regularization

term should be introduced. We have the final objective func-
tion as:

F (B,S) =
∑
b∈B

N∑
i=1

Ybi[ln g(fbi) +

N∑
j=1

ln(1− Ybjg(fbj − fbi)

+

N∑
k=1

ln(1− Y bkg(fbi − fbk))]− λ

2
‖W‖2 (11)

in which λ is the regularization coefficient and ‖W‖ de-
notes the Frobenius norm of W . Using this objective func-
tion we can learn the parameter W in order to maximize the
mean reciprocal rank over all bug reports in the project P

2.2 Features
In the scope of this work, I only want to inspect the effi-

ciency of the mean reciprocal rank-based approach in finding
relevant files for bug reports so that I utilize the same six
features proposed in [14]. Given a bug report b and a source
file s, these features are described as:

Surface Lexical Similarity
This feature represent the textual similarity between the

bug report b and the source file s. In the worst case, the
source file is large while just a segment of code is related to
the bug report, the authors compute the similarity for each
method m in s with the bug report b.

φ1(b, s) = max({sim(b, s)} ∪ {sim(b,m)|m ∈ s}) (12)

where sim(b, s), sim(b,m) are token cosine similarity.
API-Enriched Lexical Similarity
There is a case that the bug report and the relevant buggy

file have very few common tokens. This problem triggers
in unmeaning 0 cosine similarity for clarifying relatedness.
Fortunately, the authors found that there are numerous of
cases witnessing the relevance at abstract levels of the source
file. They extract the API description of super classes and
interfaces (if available) of the source file and compute the
token cosine similarity to the bug report.

φ2(b, s) = max({sim(b, s.api)} ∪ {sim(b,m.api)|m ∈ s})
(13)

where m.api is the API description of all super classes
and interfaces which are declared in the method m; s.api =
∪m∈sm.api

Collaborative Filtering Score
The denotation br(b, s) is the set of bug reports for which

file s was fixed before b was reported. This feature measures
the similarity of the considering bug report to the previous
ones which relate to the considering source file.

φ3(b, s) = sim(b, br(b, s)) (14)

Class Name Similarity
The easiest way to observe the relevance is to check the

presence of the class name of the source file in the bug report.
The longer the class name is, the stronger the relationship
between the source file and the bug report is.

φ4(b, s) =

{
|s.class| if s.class ∈ b

0 otherwise
(15)

Bug-Fixing Recency
The authors claims that the recent changed source file

have higher probability containing bugs than a file was last
fixed long time in the past or never fixed. Denoting last(b, s) ∈
br(b, s) be the most recently fixed bug and b.month as the
month when the bug was reported. The feature is defined
as:

φ5(b, s) = (b.month− last(b, s).month+ 1)−1 (16)

Bug-Fixing Frequency
The fixing frequency of a given source file is informative.

It might imply the complexity of the source file.

φ6(b, s) = |br(b, s)| (17)

Finally, all features are scaled in order to make them be-
coming more comparable with each other. Considering an
arbitrary feature φ, φ.min and φ.max are the minimum and
maximum computed values in the training dataset. In or-
der to maintain the consistency in both training and testing
datasets, the value of the feature φ is re-computed as:

φ′ =

0 if φ < φ.min

φ−φ.min
φ.max−φ.min if φ.min ≤ φ ≤ φ.max

1 if φ > φ.min

(18)

2.3 Optimization
I apply the gradient ascent method to maximize the ob-

jective function in Eq. (11). Given a bug report b and a
source file i, the gradient for each parameter Wl respecting
to the feature l is computed as:

∂F

∂Wl
=

N∑
i=1

Ybi[ln g(−fbi)φl(b, i)

+

N∑
j=1

Ybjg
′(fbj − fbi)

ln(1− Ybjg(fbj − fbi)
(φl(b, i)− φl(b, j)) (19)

+

N∑
k=1

Y bkg
′(fbi − fbk)

ln(1− Y bkg(fbi − fbk)
(φl(b, k)− φl(b, i))]− λWl

where g′(x), the derivative of g(x), could be calculated
as g′(x) = g(x)(1 − g(x)) while g(−x) = g′(x)/g(x). The
learning process is described in the Algorithm 1, γ is the
learning rate.

2.4 Relevant Files Recommendation
According to the Algorithm 1, the parameterW is learned

with the objective of maximizing the mean reciprocal rank.
For a given bug b and a source file i, the relevance score fbi
could be computed via the Eq. (4). Likewise, the reciprocal
rank Rbi is approximated via the Eq. (5). We have the rank
of the source file i in the ranked list for the bug report b:

Rbi ≈
1

g(fbi)
(20)

Algorithm 1: Learning Algorithm for LTR-MRR

Input : Training bugs set B and source files set S
Output: The learned parameter W
foreach (b, s) do

% Compute φl(b, s) repsects to Eq. (12), (13),
(14), (15), (16), (17) ;
b ∈ B, s ∈ S, l = 1, 2, ..., |W |

end

Initialize W (0) randomly;
repeat

for l = 1, 2, ..., |W| do
% Update Wf ;

W
(t+1)
l = W

(t)
l + γ ∂F

∂Wl
based on Eq. (19) ;

end
t = t + 1;

until t > itermax or converged;

This rank is utilized to suggest the top K files as relevant
candidate.

3. EXPERIMENTS
As mentioned in the Section 1 as well as the Sub-Section

2.2, this work is to explore the efficiency of the mean recip-
rocal rank-based approach in recommending relevant files to
bug reports. In this section, I present several comparisons
between three different version of the proposed model as well
as a recent stat-of-the-art learning-to-rank relevant files fore
bug reports method [14]. Based on results, I give a discus-
sion to clarify my empirical study about the learning-to-rank
related files for bugs task.

3.1 Datasets & Methodology
Datasets
There are numerous of open-source projects could be uti-

lized in the experimental section. On the ground of the avail-
ability and efficiency of projects, I select three Java projects
for evaluating the introduced model in the sub section 2.1,
namely

• AspectJ 1: an aspect-oriented programming extension
for Java

• SWT 2: a widget toolkit for Java

• Tomcat 3: a web application server and servlet con-
tainer.

Ye et al. [14] collected bug reports as well as respective
relevant files for the three datasets. Subsequently, they share
these files and their results publicly 4. The AspectJ, SWT,
Tomcat contains 593, 4151, 1056 bug reports respectively.
Thank to the authors’ instruction, the features listed in the
subsection 2.2 are analyzed properly for the three datasets.

Methodology
For all datasets except AspectJ, the bug reports are sorted

by their report timestamp descent order before separating

1https://eclipse.org/aspectj
2https://eclipse.org/swt
3http://tomcat.apache.org
4http://files.figshare.com/1656551/dataset.zip

into 10 equally size folds (fold1, fold2, ..., fold10). Due to
the small number of bug reports, the bugs of AspectJ are
just ordered and divided into 3 equally size folds. In the
later experiments, the learning-to-rank model will be trained
on foldk+1 and tested on foldk for all k ≤ 9 (k ≤ 2 for
AspectJ). The coefficients λ and γ using in the model are
tunned on each training fold with 4 different values {0.01,
0.001, 0.001, 0.0001}. The pair of (λ, γ) generates the high-
est mean reciprocal rank in Eq. (11) on training data will
be utilized in the testing phase then. Equally important,
because the number of irrelevant files could be very large,
it could affect on the computational cost of the introduced
model. Therefore, for each bug report b, I only sample the
top M ∈ {50, 100, 200, 300}) irrelevant files which are most
similar to the bug report b in term of the surface lexical fea-
ture. Finally, the overall performance of the model will be
the average of results over all testing folds using the follow-
ing evaluation metrics:

• Accuracy@k measures how many percentages of testing
bug reports having at least one correct recommenda-
tion in the top k ranked files.

• Mean Average Precision (MAP) [6] represents the mean
of Average Precision (AvgP) values obtained on all
testing bug reports set Btest

MAP =
∑

b∈Btest

AvgP (b)

|Btest|
, AvgP =

∑
k∈K

Prec@k

K

(21)

Prec@k =
of relevant files in top k

k
(22)

• Mean Reciprocal Rank (MRR) [13] is relied on the in-
verse of the rank of the first relevant file firstb for a
given bug report b. It is defined as:

MRR =
1

|Btest|
∑

b∈Btest

1

firstb
(23)

Models In the later subsection, I compare the perfor-
mance on the four following models:

• LTR-MRR-P: The mean reciprocal rank-based maxi-
mization approach using only the training relevant files
in the objective function as Eq. (7)

• LTR-MRR-N: The mean reciprocal rank-based max-
imization approach without the training relevant files
in the objective function based on Eq. (11)

• LTR-MRR: The mean reciprocal rank-based maxi-
mization approach using both the training relevant and
irrelevant files in the objective function as Eq. (11)

• LTR-SVM: The state-of-the-art learning-to-rank model
introduced in [14]. The ranking result is mentioned in
the section 3.1

Table 1: Accuracy@k comparison on Tomcat using various top K irrelevant files

k LTR-MRR-P
LTR-MRR LTR-MRR-N

50 100 200 300 50 100 200 300
1 31.41 34.29 33.12 33.01 34.94 16.77 16.77 13.68 13.68
5 56.73 58.33 57.26 57.80 56.73 36.11 36.10 18.48 18.48
10 67.41 67.52 66.77 66.45 66.67 45.08 45.09 21.05 21.05
20 76.82 78.53 78.42 77.88 75.11 60.15 60.13 23.81 23.82

Table 2: MRR and MAP comparisons on Tomcat using various top K irrelevant files

LTR-MRR-P
LTR-MRR LTR-MRR-N

50 100 200 300 50 100 200 300
MRR 0.435 0.458 0.448 0.561 0.460 0.270 0.270 0.160 0.160
MAP 0.107 0.111 0.109 0.109 0.108 0.065 0.065 0.042 0.042

The first three models are to investigate the impact of
relevant and irrelevant files in favoring the target relevant
files for a given bug report. Subsequently, the best one will
be compared to the LTR-SVM model in order to clarify the
efficiency of the learning-to-rank model based on the mean
reciprocal rank.

3.2 Comparisons & Discussion
The recommendation performance of the three models

LTR-MRR-P, LTR-MRR-N, LTR-MRR on the Tomcat
dataset are shown in the Table 1 and Table 2. Various
numbers of the top K ∈ {50, 100, 200, 300} irrelevant files
are tested for the two models LTR-MRR-N, LTR-MRR
.There are two main observations from the results including:
Firstly, the LTR-MRR model using the top 50 is witnessed
the best performance in both Accuracy@k, MAP and MRR.
Excepting the top 10, it outperforms the others significantly
with p ≤ 0.05. It is not bad when over 70% suggestions at
top 20 are correct. This phenomena shows the efficiency to
promote relevant files using both (other) relevant and irrel-
evant files. Secondly, the LTR-MRR-N model seems to be
worst. There is no much difference when use various num-
ber of the top unrelated files. The problem could be caused
by the similar coverage of the unrelated files having nega-
tive effect on the related buggy files. Likewise, I conduct
the same experiments on AspectJ and SWT dataset. The
LTR-MRR model still shows it stable trend comparing the
the two remaining models. With these analysis, I decide to
use the LTR-MRR model using top 50 irrelevant files as the
representative for further comparisons.

The Table 3 and Table 4 illustrate the comparison be-
tween the LTR-SVM model and the LTR-MRR model in
terms of Accuracy@k, MRR and MAP. Unfortunately, the
LTR-SVM model outnumbers the LTR-MRR number ex-
cepts the top 20 in the ApsectJ experiment. The gaps are
significant and consistent over datasets and measurements.
This issue reckons that the MRR-based model (LTR-MRR)
does not rank files as well as the SVM-based model (LTR-SVM).
In my opinion, the main reason is the difference in using ir-
relevant files. The LTR-SVM model concurrently promote
the relevant files and penalize the irrelevant ones via the
pairing comparison f(b, srelevant > f(b, sirrelevant)) while
the other just utilize the irrelevance to favor the irrelevant
files only. Additionally, in the Table 5 show the average
learned parameters on the three datasets. It is clear that
there are few features having more important roles than

others, especially the surface lexical similarity w1. In other
words, the rank of a source file for a given bug is just depen-
dent on several main features. This problem might not hap-
pen in the inspired paper [11] where latent factors were uti-
lized. With mentioned points, the LTR-MRR model could
not differentiate the relevant and irrelevant file in the rank-
ing properly.

4. RELATED WORKS
Here, I survey the literature in learning to rank relevant

files for bug reports and MRR-based optimization approaches
Learning to rank relevant files for bug reports It is

a popular topic in software mining research. The accuracy
performance is improved by time, become better and better.
In 2011, Nguyen et al. [9] apply topic modeling technique
to determine buggy files for given bug reports. The primary
idea is to learn the topic distribution on training bug reports
and source files. For a new bug report, its topic distribution
is generated using the trained LDA model before comparing
the topic distributions of all source file candidates. However,
this model only works on fixed version projects which have
no changes in source files. With the objective of dealing the
task as a classification problem, Kim et al. [3] built a binary
Naive Bayes classifier using textual features on both training
bug reports and their respective files. For a new bug report,
this classifier is utilized to determine the relevance of this
bug with with all source file candidates. Undoubtedly, un-
known or never-fixed source files could not be a recommen-
dation. In [14], Ye et al. propose a learning-to-rank models
using domain knowledge. They introduced 6 features to es-
timate parameters using SVMrank toolkit 5 where pairing
comparisons are exploited. Subsequently, these parameters
are utilized to distinguish the relevant and irrelevant files for
a given bug report. In 2016, Ye et al. publish the extended
version [15] with 17 features. Regardless of significant im-
provements, the drawback of using SVMrank is discussed
in [2]. With the objective of exploiting latent relationship
between bug reports and source files, An et al. [4] proposed
a hybrid model taking advantages of deep neural network
(DNN) and an information retrieval technique rVSM. They
utilized three DNN models in order to bridge the lexical gap
in which features of different types in bug report and source
code are tackled in diverse spaces; combine features in lower
layer and perform dimension reduction for feature vectors.

5http://cs.cornell.edu/people/tj/svm light/svm rank.html

Table 3: Accuracy@k comparison between LTR-SVM and LTR-MRR (using top 50 irrelevant files)

k
Tomcat AspectJ SWT

LTR-SVM LTR-MRR LTR-SVM LTR-MRR LTR-SVM LTR-MRR
1 45.94 34.29 27.88 21.23 31.13 14.96
5 67.63 58.33 56.78 46.28 61.77 36.43
10 77.14 67.52 68.54 63.68 73.73 50.83
20 83.87 76.82 75.19 75.45 83.19 65.44

Table 4: MRR and MAP comparisons between LTR-SVM and LTR-MRR (using top 50 irrelevant files)
Tomcat AspectJ SWT

LTR-SVM LTR-MRR LTR-SVM LTR-MRR LTR-SVM LTR-MRR
MRR 0.561 0.435 0.411 0.355 0.450 0.242
MAP 0.130 0.107 0.108 0.100 0.118 0.071

Table 5: The average model parameters
Project w1 w2 w3 w4 w5 w6

AspectJ 1.61 0.23 0.40 0.18 0.21 0.19
SWT 18.54 7.83 7.47 4.08 3.93 3.81

Tomcat 3.41 0.72 1.07 1.14 0.39 0.68

Deep learning is a strong technique but it is inefficient to up-
date models frequently. Recently, Le et al. [1] presented a
learning-to-rank based fault localization method using likely
invariants and suspiciousness as features. This model uses a
subset of test cases including both falling and passing tests.
Through logging all execution traces, the likely invariants
and suspiciousness features scores are determined and uti-
lized to rank suspicious methods in a given fault localiza-
tion context. In [12], Tian et al. considered the bug report
assignee recommendation task. They extracted 16 activity-
based and location-based features before using the rankSVM
package 6 to learn parameters.

MRR-based maximization approaches In 2005, Met-
zler et al. [8] proposed a direct maximization of ranked-
based metrics for information retrieval. Regardless of im-
posing an ordinal response (”relevant” and ”non-relevant”),
they focus on finding parameters to maximize ranking-based
evaluation metrics. This method is benefit for information
retrieval, collaborative filtering as well as general classifi-
cation tasks. Likewise, Mcfee et al. [7] presented a gen-
eral metric learning algorithm based on the structural SVM
framework. This work bridge the gap between metric learn-
ing and ranking. It supports various ranking measures in-
cluding Precision-at-k, Average Precision (AP) and Mean
Reciprocal Rank (MRR). Inspiring from these works, Shi
et al. [11] built a recommender model, named CLiMF, via
maximizing a smoothed mean reciprocal rank of users on rel-
evant items. Given an user, the rank of an item to this user
and comparisons between items’ ranks are approximated us-
ing the sigmoid function and latent vectors. The model has
close relationships with a lot of state-of-the-art recommen-
dation models. In 2013, xCLiMF [10], an extended version
of CLiMF, was introduced with the objective of building a
recommendation models by optimizing Expected Reciprocal
Rank to consider user feedback with multiple level of rele-
vance. The advantages of the CLiMF and xCLiMF namely:
do not require irrelevant items (negative samples) and di-

6https://www.csie.ntu.edu.tw/ cjlin/papers/ranksvm

rectly estimate the rank of items in ranked list for a given
user.

5. CONCLUSIONS
In the scope of this work, I investigated a learning-to-

rank model in finding relevant files for bug reports based
on the mean reciprocal rank. The main idea is to directly
enhance the position of few relevant files in the ranked list
of respective bug reports. We could travel to the remaining
files using variable declarations. Regardless of witnessing
improvements when incorporating irrelevant files in training
process, the overall performance of the introduced model on
three datasets cannot outperform the recent state-of-the-art
method [14] using SVMrank. This problem can be explained
by the two reasons namely: i) The model just favor the rel-
evant files while it does not penalize the irrelevant ones in
training process; ii) The limited number of features as well as
their unfair roles in datasets. Hence, the model cannot dis-
tinguish the differences between related and unrelated files
in order to generate good recommendations.

6. REFERENCES
[1] T.-D. B Le, D. Lo, C. Le Goues, and L. Grunske. A

learning-to-rank based fault localization approach
using likely invariants. In Proceedings of the 25th
International Symposium on Software Testing and
Analysis, pages 177–188. ACM, 2016.

[2] P. Donmez and J. G. Carbonell. Optimizing estimated
loss reduction for active sampling in rank learning. In
Proceedings of the 25th international conference on
Machine learning, pages 248–255. ACM, 2008.

[3] D. Kim, Y. Tao, S. Kim, and A. Zeller. Where should
we fix this bug? a two-phase recommendation model.
IEEE transactions on software Engineering,
39(11):1597–1610, 2013.

[4] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N.
Nguyen. Combining deep learning with information
retrieval to localize buggy files for bug reports (n). In
Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on, pages
476–481. IEEE, 2015.

[5] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Source
code retrieval for bug localization using latent dirichlet
allocation. In 2008 15th Working Conference on
Reverse Engineering, pages 155–164. IEEE, 2008.

[6] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to information retrieval. 2008.

[7] B. McFee and G. R. Lanckriet. Metric learning to
rank. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages
775–782, 2010.

[8] D. A. Metzler, W. B. Croft, and A. McCallum. Direct
maximization of rank-based metrics for information
retrieval. 2005.

[9] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V.
Nguyen, and T. N. Nguyen. A topic-based approach
for narrowing the search space of buggy files from a
bug report. In Automated Software Engineering
(ASE), 2011 26th IEEE/ACM International
Conference on, pages 263–272. IEEE, 2011.

[10] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, and
A. Hanjalic. xclimf: optimizing expected reciprocal
rank for data with multiple levels of relevance. In
Proceedings of the 7th ACM conference on
Recommender systems, pages 431–434. ACM, 2013.

[11] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson,
N. Oliver, and A. Hanjalic. Climf: learning to
maximize reciprocal rank with collaborative
less-is-more filtering. In Proceedings of the sixth ACM
conference on Recommender systems, pages 139–146.
ACM, 2012.

[12] Y. Tian, D. Wijedasa, D. Lo, and C. L. Gouesy.
Learning to rank for bug report assignee
recommendation. In 2016 IEEE 24th International
Conference on Program Comprehension (ICPC), pages
1–10, May 2016.

[13] E. M. Voorhees. The trec question answering track.
Natural Language Engineering, 7(04):361–378, 2001.

[14] X. Ye, R. Bunescu, and C. Liu. Learning to rank
relevant files for bug reports using domain knowledge.
In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 689–699. ACM, 2014.

[15] X. Ye, R. Bunescu, and C. Liu. Mapping bug reports
to relevant files: A ranking model, a fine-grained
benchmark, and feature evaluation. IEEE
Transactions on Software Engineering, 42(4):379–402,
2016.

