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Abstract—Control flow-based features proposed by Ding, static
characteristic extraction method, has the ability to detect ma-
licious code with higher accuracy than traditional Text-based
methods. However, this method resolved NP-hard problem in a
graph, therefore it is not feasible with the large-size and high-
complexity programs. So, we propose the C500-CFG algorithm
in Control flow-based features based on the idea of dynamic
programming, solving Ding’s NP-hard problem by polynomial
complexity O(N2) algorithm, where N is the number of basic
blocks in decompiled executable codes. Our algorithm is more
efficient and more outstanding in detecting malware than Ding’s
algorithm: fast processing time, allowing processing large files,
using less memory and extracting more feature information.
Applying our algorithms with IoT data sets gives outstanding
results on 2 measures: Accuracy = 99.34%, F1-Score = 99.32%.

Index Terms—IoT, Malware detection, C500-CFG, CFG

I. INTRODUCTION

The Internet of Things (IoT) appears more and more popular
in every aspect of life. IoT devices such as routers, cameras,
TVs, and VOIP phones are now everywhere. They constitute
an important platform for the fourth industrial revolution. As
the number of IoT devices increase exponentially every year,
IoT malware also grows accordingly in number and diversity.
IoT botnets generate more than 750,000 spam emails a day [1].
Especially in October 2016, the Mirai malware infected and
controlled over 100,000 IoT devices worldwide and created
the largest DDoS attacks in history with capacity exceeding
1.5 Tbps [2].

Some research works on the detection of malware in IoT
devices have been conducted recently. In [3], 46 pieces of ac-
tive mobile malware were identified and classified by payload
behavior. Pa et al. [4] constructed a sandbox environment for
dynamic analysis of malware attacks against Telnet-based IoT
devices running on different CPU architectures.

Static malware analysis, which analyzed and examined for
reasoning about their behaviors without actually running them
[5], is an efficient method on IoT malware analysis and
detection because encryption and obfuscation techniques are
not commonly used by IoT malware. Kruegel et al. [10] used

techniques such as Control Flow Graph (CFG), Data Flow
Graph (DFG), Symbolic Execution (SE) to analyze every sin-
gle file found in firmware and identify malware characteristics
such as bytecode, headers, system calls or Printable Strings
Information (PSI). Davidson et al. [6] made use of symbolic
execution for automatically detecting vulnerabilities and mal-
ware in the firmware running on embedded systems. Another
static analysis method was proposed by Trung et al. [7], for
the detection of botnet malware in IoT devices, based on
convolution neural networks applied to PSI extracted from the
malware. Angr [8], [9] is a typical binary analysis toolkit, open
source, with the capability to perform a variety of state-of-
the-art static analysis techniques, from control flow recovery,
flow modeling, and data modeling to concrete execution and
symbolic execution.

Opcode is part of a machine instruction that specifies
the operation to be performed. Opcode sequences describe
the essential behaviors of a program and can be extracted
through static analysis. Researches on malware detection using
opcode and CFG have been interested in by many groups.
Using opcode to detect malware, was firstly proposed by
Bilar [11], afterward, many researches based on opcode like
Robert [12] and Santos [13] have been done. Santos [14]
has suggested the Idea method to detect variants of known
malware families based on frequency of appearance of opcode
sequences. This research is based on opcode sequences to build
vector representation of the executable files, however Santos
has not tested with longer sequences and other information
like system calls. The researchers have also developed a vector
representation of executable files used with machine-learning
algorithms to detect unknown malware variants [13].

Ding [15] calls the opcode-based extraction methods of
these previous researches as ”text-based extraction methods”,
which only show information of files, do not show the char-
acteristic structures or behaviors of a program. Therefore,
Ding proposed a new way of detecting malware based on
opcode called Control flow-based features. The Ding’s method
[15] has a higher accuracy than the text-based methods by



extracting more features of the executable file through CFG’s
structure. Ding’ problem was solved by listing all paths from
the root to leaf vertex in the graph. The root is the entry
point of the program while the end point is leaf vertex. In
this case, the graph has one root, many leaf vertices and very
large number of paths. Therefore, the complete graph with N
vertices has (N !) paths, so this is the NP-hard problem.

Thus, Ding’s method can only be applied to simple CFG
files, with few peaks. In case of many vertices, we cannot
find all the paths, even it is impossible to find the path within
the specified time, so the lack of information on CFG and low
detection capacity. Ding’s method of finding characteristics
is based on recursion so it uses a lot of memory, which we
have experimented with CFG graph on 3,000 peaks, Ding’s
method used 8GB RAM to find the first path in 40 seconds. We
performed statistically with MIPS ELF files, a common type of
program in IoT devices using MIPS chips on Embedded Linux
platform, the average number of vertices is 6,000 peaks for
MIPS ELF static files, while dynamic ones is 1,000 vertices,
so the majority of malware are static files.

II. OUR METHOD

Ding calculates Control flow-based features by constructing
a control flow graph from a program and then traverse it
to obtain all possible execution paths. With cycle in graph,
the back edges were detected and deleted, therefore, Ding
translated the CFG into a tree, which is called an execution
tree. In fact, each vertex of the execution tree is a basic
block, each basic block consists of opcode stream. It must be
calculated n-gram of opcode stream in the basic block, then
replace them for vertex in each path, but this step is completely
independent and we don’t mention. Now, the main problem is
how to calculate n-gram of all execution paths in the CFG.

Definition 1 (Control Flow Graph): A Control Flow Graph
(CFG) of an executable file is a directed graph G = (V, E,r,
L), where:

• V is a set of vertices, each vertex is a basic block in
decompiled file.

• E is a set of edges, each edge u,v is directed, u call head
and v call tail. When traversing graph, u is still call parent
of v, v is call child node of v.

• r is the root vertex, which contains the entry point of
executable file, has in steps equal to 0.

• L is a set of leaf vertices, which contains the end points
of executable file, has out steps equal to 0.

Definition 2 (C500-Graph): C500-Graph G = (V, E,r, L, D)
is a acyclic directed graph built from a Control Flow Graph
G = (V, E,r, L), where D, label of vertices in V, is the number
of execution paths go through vertices.

As an example, a control flow graph is presented like the
directed graph G in Fig. 1, which has 5 vertices, the root
vertex is 0 and only one leaf vertex is 5. By Ding’s method,
to calculate Control flow-based features, it will search on the
graph and find all the paths. There are three paths, namely:

(0, 2, 5), (0, 1, 4, 5) and (0, 1, 3, 4, 5)

Fig. 1. The directed graph G

From this path set, we will find n-gram base on the set of
all paths, which is called Control flow-based features. Specif-
ically, for 2-gram Control flow-based features as follows:

[2-gram(0,1) = 2; 2-gram(1,3) = 1; 2-gram(1,4) = 1; 2-
gram(3,4) = 1; 2-gram(4,5) = 2; 2-gram(2,5) = 1; 2-gram(0,2)
= 1]

The search algorithm enumerates all paths by the Depth-first
search, therefore, it needs a large memory to store paths and
has a very slow speed because of repeated calculation. We
propose a method based on dynamic programming method
for building a C500-Graph which contains a number of paths
from leaves to the root of the execution tree. In constructing
the C500-Graph, the current path is constructed based on the
previous results, so the tree will be formed. Then Control flow-
based features are extracted from the C500-Graph. In this pa-
per, Control flow-based features extraction is transformed into
two sub-problems: constructing a C500-Graph and extracting
Control flow-based features on the C500-Graph.

Fig. 2. C500-Graph of G

A. Constructing a C500-Graph

A C500-Graph contains D array, where D[u,v] is the number
of paths between leaves and root. If (u,v) is an edge, D[u,v]
is the number of paths from the root to leaves, D[v,u] is the



number of backward paths from leaves to the root. Construct-
ing the C500-Graph of a program algorithm has 2 phases: the
go-backward phase to compute number of backward paths,
the go-toward phase to compute the number of paths from the
root to leaves traversed each node. C500-Graph of the Control
Flow Graph in Fig. 1 is presented Fig. 2.

Input: Control Flow Graph GA = (V, A, r, L)
Output: C500 Graph GC = (V, A, r, L, D)

1: Fill(D, 0)
2: Fill(C, 0)

#go-backward
3: for u in V do
4: step[u] = getStepOut(u)
5: if step[u] = 0 then
6: C[u] = 1
7: Stack.push(u)
8: else if then
9: C[u] = 0

10: end if
11: end for
12: while Not Stack.Empty() do
13: currentNode = Stack.pop()
14: for u in getParentOfNodeList(currentNode) do
15: L[u] = L[u] + L[currentNode]
16: D[currentNode,u] = L[currentNode]
17: end for
18: step[u] = step[u] - 1
19: if step[u] = 0 then
20: Stack.push(u)
21: end if
22: end while

#go-forward
23: for u in V do
24: step[u] = getStepIn(u)
25: if step[u] = 0 then
26: Stack.push(u)
27: end if
28: end for
29: while Not Stack.Empty() do
30: cN = Stack.pop()
31: temp = L[cN]/sumBackPaths(cN)
32: for u in getChildOfNodeList(cN) do
33: L[v] = temp * D[v,cN]
34: D[cN,v] = D[cN,v] * temp
35: end for
36: end while

Algorithm 1: Algorithm for constructing the C500-Graph
of program

At the go-backward phase, there are two main loops at
the 12th line and the 14th line. Each loop has the maximum
complexity of N, where N is the number of vertices of Control
Flow Graph, which is also the basic block number of program.
Therefore, the complexity of this step is O(N2). Similar to

Input: C500-Graph GC = (V, A,r, L, D)
Output: Control flow-based features with 2-gram

two gram
1: for u in V do
2: for v in child nodes of(u) do
3: two gram(u,v) = D[u,v]
4: end for
5: end for

Algorithm 2: Algorithm for Extracting Control flow-based
features with 2-gram from C500-Graph

Input: C500-Graph GC = (V, A,r, L, D)
Output: Control flow-based features with 3-gram

three gram
1: for u in V do
2: for v in get child node of(u) do
3: for x in get child node of(v) do
4: three gram(u,v,x) = min(D[u,v], D[v,x])
5: end for
6: end for
7: end for

Algorithm 3: Algorithm for Extracting Control flow-based
features with 3-gram from C500-Graph

the go-forward phase, the two main loops are in the 29th and
32th lines, and the complexity of this step is also O(N2). So,
the complexity of the C500-Graph construction algorithm is
O(N2).

B. Extracting Control flow-based features on C500-Graph

Control flow-based features could be extracted from a C500-
Graph with n-gram feature extraction. The algorithm for ex-
tracting Control flow-based features with 2-gram is presented
in Algorithm 2, and with 3-gram is presented in Algorithm 3.

Control flow-based features with 2-gram of the C500-Graph
in Fig. 2 are:

[2-gram(0,1) = D[0,1] = 2; 2-gram(1,3) = D[1,3] = 1;
2-gram(1,4) = D[1,4] = 1; 2-gram (3,4) = D[3,4] = 1;
2-gram(4,5) = D[4,5] = 2; 2-gram(2,5) = D[2,5] =1;
2-gram(0,2) = D[0,2] =1]

III. THE EXPERIMENTS

A. CFG Extraction

We extract CFG of ELF file by Angr’s CFGEmulated
method due to high accuracy. Angr, which supports two CFG
methods as CFGFast and CFGEmulated, is an open source
tool. The CFGFast has the same CFG extraction algorithm as
IDA [16] based on using symbol and heuristic to determine file
functions. Besides, while CFGEmulated uses force execution
to add basic blocks then using backwards slicing and symbolic
back-traversal, CFGFast uses light-weight analysis to calculate
indirect jump commands [8]. Angr’s CFGFast (or IDA) is
good as CFGEmulated if the binary file is well structured.



The CFGEmulated method step-by-step simulates program
execution and following all states, so it can give the most
accurate CFG, which is formed on basic blocks.

B. Dataset and test scripts

The experimental dataset consists of 7,000 MIPS ELF
templates, which are Executable files on the Embedded Linux
OS that run on the MIPS chip architecture. These include
3,699 MIPS ELF malware samples collected from Detux [17]
and Virushare [18] with 3,400 MIPS ELF benign samples,
which are extracted from more than 2,000 firmware of routers.
Some samples of error templates were unsuccessfully extracted
with Angr, so the total number of samples extracted from CFG
was 5,560/ 7,000 samples. The results of the CFG extraction
indicate that most CFGs have the number of vertices from
300 to 10,000, so the Control flow-based features method
with CFGs has a peak of 300 to 10,000 to avoid noise. After
filtering by a quantity of vertices, the sample set is 4,430
including 2,940 benign and 1,490 malwares.

With the CFG collected, the proposed method of C500-
CFG has an average time to calculate the Control flow-based
features of a CFG of 10 seconds, while the latest time is
40 seconds. The C500-CFG method calculates successfully
Control flow-based features with any models. The old Control
flow-based features extraction method did not calculate the
final result for most models in the 40 seconds. For CFGs with
above 6,000 vertices, the old method did not result in a 60-
minutes. Thus, the experimental case with a threshold of 40
seconds as the slowest time to compute a quantity of paths and
to detect malware. When the 40 seconds are over, our method
will stop looking for a path and then it outputs the current
number of found paths. This is not all the paths but only the
quantities of paths found within the 40 seconds time limit of
the old method.

The experimental results in 40 seconds indicated that the old
method could not find all the paths, the quantities of found path
in the average sample was 2.6x104 paths, much less than with
the average number of paths found in the proposal method of
3.4x10303. During the 40 seconds with 3,586 samples (81%
of all samples), the old method could not find anything at
all, couldn’t calculate Control flow-based features, meaning
there was impossibility of detecting these patterns with Control
flow-based features. Therefore, the proposed method C500-
CFG has a high speed and can find more paths than the old
method many times, so it has ability to present information on
the CFG, thus capable of good grade more between malware
and benign code.

We compared the ability to detect malware of two methods
based on set T1, which is a set of samples as results after
40 seconds by both methods. T1 includes 844 samples of 300
benign and 544 malware samples. We also assessed the ability
to detect malware on the experimental set by our C500-CFG
method. Set T2 is a malware set, which is extracted by our
method, containing 2,940 benign and 1,490 malware samples.
The experiment was carried out to reduce the dimension by

ChiSquare [19] with characteristic number after decreasing
respectively 50, 100, 150, 200, 250, 300 and 350.

C. Machine learning method

It can be seen that compared with machine learning meth-
ods, SVM is a highly efficient method of binary classification,
is also used by Ding. We used SVM with the sigmoid
function kernel and grid search method, which can find the
best parameter set. With this data set, it is better than Ding’s
method when fixed suggesting C=100 and gamma=0.05. In the
experiments, we use a 5-folk method with the best parameter
set. Data are divided into five different sections include four
training sections and one testing section for each experiment.
The accuracy and F1-Score are calculated as the average of
five times in this experiment.

D. Measurements

There are many methods to evaluate a machine learning
model because it depends on each model and different data
sets. Our paper focuses on algorithmic improvements intro-
duced by Ding, so the experiments use the same measurement
accuracy. In addition, here we also use F1-Score integrated
measurement, based on Precision. Besides, Recall is the basic
measure of machine learning model.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

where:
- TP: The number of malware is predicted to be malware;
- FP: The number of benign is predicted to be malware;
- FN: The number of malware is predicted to be benign;
- TN: The number of benign is predicted to be benign.
In order to assess a relation between Precision and Recall,

it often uses F1-Score and are defined as follows:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(3)

According to the traditional assessment, the accuracy of the
model is used:

AC =
TP + TN

TP + TN + FP + FN
(4)

E. Performace comparison of proposed method

The experimental results comparing last methods and C500-
CFG method are shown in Fig 3, 4, 5, 6. Fig 3 compares
Accuracy while Fig 5 compares F1-Score when featured
extraction equal to 2-gram with the two methods. With the
method of taking 2-gram features, the old and new identifiers
reach Accuracy and F1-Score values at K=300. Furthermore,
proposed method is better than the old method at all thresholds
with K value. Fig 4 showed Accuracy comparison, Fig 6
compares F1-Score when extracting features by 3-gram of the
two methods. With the method of taking 3-gram features, the
identifier is based on the old method of achieving Accuracy



and F1-Score values at K=150, while the proposed method
remains stable at K=300. We can see that at all thresholds,
the proposed method is better than the last one. Experiment
results showed that the Accuracy and F1-Score indicators of
our method outperform the Ding’s method when using the 2-
gram or 3-gram characteristic methods.

Fig. 3. Compare accuracy based on 2-gram between old and new ways

Fig. 4. Compare accuracy based on 3-gram between old and new ways

Fig. 5. Compare F1-Score based on 2-gram between old and new ways

F. Evaluation of our C500-CFG method

Fig 7 showed experimental results evaluating C500-CFG
method. The best value model Accuracy and F1-Score with
K=300, typically, Accuracy = 99.07% and F1-Score=98.65%.
The 2-gram feature extraction method gives better results than
the 3-gram one.

Fig. 6. Compare F1-Score based on 3-gram between old and new ways

Fig. 7. Evaluation C500-CFG method

G. Evaluate 2-gram and 3-gram method

Ding stated that 3-gram gave the best results and experi-
mented with 3-gram method. However, our experiments with
Iot Dataset showed that 2-gram method gives better results.
Experimental results comparing the effectiveness of 2-gram
and 3-gram between Ding’s method and C500-CFG in Figs
8 and 9 showed that the 2-gram method is superior to 3-
gram method. In the same way, the optimal result of the
model corresponding to K value when extracting features
by 2-gram and 3-gram methods are different. With the 3-
gram method, the best value was achieved with K=150 then
gradually decreasing. Thus, when we choose to add a feature
with large K, it will cause data interference to reduce the
accuracy. This is also consistent with previous observations,
if the greater the K, the higher the level of data sensitivity.
Therefore, malicious models with high variability are difficult
to detect.

IV. CONCLUSIONS AND FUTURE WORK

Ding proposed the control flow-based features extraction
method to extract opcode sequences with a higher accu-
racy compared with the former text-based features extraction
method. However, one of the main limitations of Ding’s
algorithm is that it uses the deep first search strategy to find
all paths in the execution tree of the considered program. This
search problem is an NP-hard problem. Hence, it cannot be
applied to large and complex files, such as a static MIPS ELF



Fig. 8. Accuracy based on our proposal method between 2-gram and 3-gram

Fig. 9. Accuracy based on old method between 2-gram and 3-gram

with about 6,000 basic blocks in its decompiled executable
codes. Our proposed C500-CFG algorithm is based on the idea
of dynamic programming and could extract Control flow-based
features by a complexity of O(N2), where N is the number
of basic blocks in decompiled executable codes from the
considered program. Our experimental results showed that the
C500-CFG algorithm could be applied to extract Control flow-
based features of all samples, while Ding’s method can only
extract less than 20% of samples and gives less information
in the same time limit. Evaluating on the same sample set,
our proposed algorithm is with a higher accuracy (up to
Accuracy = 99.34%, F1-Score = 99.32%), with a faster speed,
with ability to process large files, and uses less memory.
Our experimental results also clarify that the 2-gram feature
extraction is better than the 3-gram feature extraction for the
same IoT dataset. As our future work, we will (1) verify the
C500-CFG algorithm with various data sets to evaluate the
performance and effectiveness; (2) improve the efficiency of
extracting CFG from decompiled executable codes; and (3)
eliminate cycles in graphs more efficiently.
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