

Lecture Notes in Computer Science 7260
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Antje Düsterhöft Meike Klettke
Klaus-Dieter Schewe (Eds.)

Conceptual Modelling
and ItsTheoretical Foundations

Essays Dedicated to Bernhard Thalheim
on the Occasion of His 60th Birthday

13

Volume Editors

Antje Düsterhöft
University of Applied Sciences Wismar
Philipp Müller Straße, 23952 Wismar, Germany
E-mail: antje.duesterhoeft@hs-wismar.de

Meike Klettke
University of Rostock
Albert-Einstein-Strasse 21, 18051 Rostock, Germany
E-mail: meike@informatik.uni-rostock.de

Klaus-Dieter Schewe
Software Competence Center Hagenberg and
Johannes-Kepler-University Linz
Softwarepark 21, 4232 Hagenberg, Austria
E-mail: kd.schewe@scch.at

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-28278-2 e-ISBN 978-3-642-28279-9
DOI 10.1007/978-3-642-28279-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012930755

CR Subject Classification (1998): F.3, D.2, F.4.1, I.2, D.3, H.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Over the last decades Bernhard Thalheim has played a major role in the database
and conceptual modelling communities. His research interests have spanned a
wide spectrum including database dependency theory, object-oriented databases,
triggers, abstract state machines, database and information systems design,
business processes, and many more.

In March 2012 Bernhard celebrated his 60th birthday. To mark this occasion
we invited many of Bernhard’s collaborators over the years to contribute to
a volume in his honor. This book is the result of these efforts. The collection
starts with an academic biography, followed by 20 scientific articles. Many of
the contributions also contain a personal tribute based on working experience
with Bernhard. The articles cover a broad range of topics, but they still only
represent a small fraction of Bernhard’s diverse areas of interest.

Each contribution was carefully reviewed by one or two readers. We would
like to thank all authors and all reviewers for their contributions and help in
producing this book.

We offer this volume to Bernhard in honor of his 60th birthday and in recog-
nition of his many inspiring contributions to the fields of databases, information
systems, conceptual modelling and software engineering.

December 2011 Antje Düsterhöft
Meike Klettke

Klaus-Dieter Schewe

Table of Contents

Dedication to a Theory of Modelling: Bernhard Thalheim’s Scientific
Journey . 1

Antje Düsterhöft, Meike Klettke, and Klaus-Dieter Schewe

What about Constraints in RDF? . 7
Jan Paredaens

Some Remarks on Relational Database Schemes Having Few Minimal
Keys . 19

Joachim Biskup

Random Databases with Correlated Data . 29
Gyula O.H. Katona

Statistical Inference for Rényi Entropy Functionals 36
David Källberg, Nikolaj Leonenko, and Oleg Seleznjev

The Subject-Oriented Approach to Software Design and the Abstract
State Machines Method . 52

Egon Börger

BCNF via Attribute Splitting . 73
Johann A. Makowsky and Elena V. Ravve

Foundations for a Fourth Normal Form over SQL-Like Databases 85
Flavio Ferrarotti, Sven Hartmann, Henning Köhler,
Sebastian Link, and Millist W. Vincent

Independent Update Reflections on Interdependent Database Views 101
Stephen J. Hegner

SOF : A Semantic Restriction over Second-Order Logic and Its
Polynomial-Time Hierarchy . 116

Alejandro L. Grosso and José M. Turull Torres

Abstract State Machines for Data-Parallel Computing 136
Qing Wang

OSM-Logic: A Fact-Oriented, Time-Dependent Formalization of
Object-oriented Systems Modeling . 151

Stephen W. Clyde, David W. Embley, Stephen W. Liddle, and
Scott N. Woodfield

VIII Table of Contents

Cloaking Data to Ease View Creation, Query Expression, and Query
Execution . 173

Sudarshan Murthy, David Maier, and Lois Delcambre

On Models of Concepts and Data . 190
Arne Sølvberg

Model Transformation By-Example: A Survey of the First Wave 197
Gerti Kappel, Philip Langer, Werner Retschitzegger,
Wieland Schwinger, and Manuel Wimmer

On Computing the Importance of Associations in Large Conceptual
Schemas . 216

Antonio Villegas, Antoni Olivé, and Maria-Ribera Sancho

Conceptual Modeling of Human Genome: Integration Challenges 231
Oscar Pastor, Juan Carlos Casamayor, Matilde Celma, Laura Mota,
M. Ángeles Pastor, and Ana M. Levin

Transforming Geometrically Enhanced Conceptual Model Schemas to
GML . 251

Hui Ma

Extensional Logic of Hyperintensions . 268
Marie Duž́ı

Culture Sensitive Aspects in Software Engineering 291
Hannu Jaakkola

Cross-Cultural Multimedia Computing with Impression-Based Semantic
Spaces . 316

Yasushi Kiyoki, Shiori Sasaki, Nhung Nguyen Trang, and
Nguyen Thi Ngoc Diep

Author Index . 329

Dedication to a Theory of Modelling

Bernhard Thalheim’s Scientific Journey

Antje Düsterhöft1, Meike Klettke2, and Klaus-Dieter Schewe3,4

1 University of Applied Sciences Wismar, Germany
antje.duesterhoeft@hs-wismar.de
2 University of Rostock, Germany
meike@informatik.uni-rostock.de

3 Software Competence Center Hagenberg, Austria
kd.schewe@scch.at

4 Johannes-Kepler-University Linz, Austria
kd.schewe@faw.at, kdschewe@acm.org

Bernhard Thalheim’s personal website at Christian-Albrechts-University shows
a logo that is meant to illustrate the activities of his research group named “Tech-
nology of Information Systems”. The logo shows a triangle with Information in
the centre, and Content, Concept and Topic at the three corners. If we were
to suggest a logo that illustrates the scientific works and ambitions of Bernhard
Thalheim, we would place Modelling into the centre of the triangle, and label the
corners with Theory, Methods and Applications. So far, Bernhard’s scientific life
led him from mathematics and pure theoretical computer science over database
theory to the design of information systems. What looks on the surface like a
movement from one end of computer science to another is de facto the enrich-
ment of a global picture, which ultimately aims at a general theory of modelling.
In the sense of the German philosopher Georg Wilhelm Friedrich Hegel Bern-
hard Thalheim has developed himself as a virtuoso for playing with the dialectic
antipodes of theory and practice bringing theoretical results into applications
and extracting challenging questions from applications in order to shift scientific
knowledge to a higher level as kind of “negated negation”. Most recently, he has
explicitly declared his ambitions to develop a theory of modelling in an inter-
disciplinary setting that brings together researchers from mathematics, sciences,
economics, engineering and humanities.

Bernhard Thalheim was born on 10th March 1952 in Radebeul in the for-
mer German Democratic Republic. With an education that encouraged him to
become ambitious he showed his extra-ordinary talents already at school. Con-
sequently, his achievements allowed him to continue studying at a university,
though he was first educated as an electrical mechanics. He started to study
mathematics at Dresden University of Technology, where he continued as one of
the best students in his year, which entitled him to continue with further stud-
ies towards a Ph.D. He was selected for research in cybernetics, and received a
scholarship to conduct his doctoral studies at Lomonossov University, one of the
four elite universities in the former Soviet Union.

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 1–6, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 A. Düsterhöft, M. Klettke, and K.-D. Schewe

So Bernhard faced several real challenges at the same time. He had to learn
Russian in very short time, which was probably the subject he most disliked at
school. He had to cope with a completely new environment, where knowledge
how to circumvent the many little restrictions of the Soviet society was essen-
tial, and he had to keep up with high workload, challenging tasks and enormous
expectations in one the scientifically most renowned school of the country un-
der the leadership of Andrei Nikolajevitch Kolmogorov. He mastered all these
challenges perfectly. He became fluent in Russian, and he adapted easily to life
in Moscow. Though contacts of students of different gender was not encour-
aged by the authorities, he also met his wife Valeria during his study times at
Lomonossov. With Valeria he had two sons, Konrad and Klaus, who are his pride
and whom he educated sacrificially. For instance, when they were little Bernhard
practiced the rule to invent new stories for them on an almost daily basis; later
he supported them in their studies and follow-on search for jobs.

Scientifically, he lived up to the expectations of the Kolmogorov school of
excellence. For us it seems beyond any imagination to confront a student of the
current generation with a task to prepare a seminar talk in a few weeks time
with a problem no lesser than to present a novel proof of Turing’s incompleteness
theorem. At Kolmogorov’s school this was normal; for Bernhard it meant very
hard work and in particular searching for fragments of such a proof in work of
Uspenski.

This challenging – and we should also add very supportive – environment laid
the foundations for Bernhard to become the successful researcher we know now.
It is still surprising for us to see how much knowledge he has acquired about
mathematics and computer science way beyond his own research activities. It
came as no surprise that he completed his Ph.D. at Lomonossov University
with the top grade for a thesis on completeness and representation conditions
for stabile automata. More than that, he established close ties with Russian
researchers, which helped him later in his career. In particular, he kept close
contact to the statistician Oleg Seleznev, whom he inspired later to apply his
knowledge to deep problems in database theory.

Back in east Germany he continued his academic career at Dresden Uni-
versity of Technology as Research Assistant in Computer Science, where he was
pushed to slightly change his research orientation. With the immense mathemat-
ical knowledge he had gained in his Russian days he turned towards database
theory with particular focus on dependency theory. He soon achieved results
for several relevant problems. Just to mention two, he discovered an axiomati-
sation for full join dependencies using a Gentzen style approach, and together
with Oleg Seleznev determined bounds for the numbers of shortest keys in re-
lational databases with non-uniform domains. His first book “Dependencies in
Relational Databases”, published 1991 by Teubner-Verlag, is still a highlight of
his works during that time. It is partly a survey on dependency theory and as
such a valuable reference for many new research endeavours and partly a research
monograph summarising his own achievements in the field.

Dedication to a Theory of Modelling 3

Bernhard also engaged himself as founder of the “Mathematical Foundations
of Databases” (MFDBS) conference, the East-European conference on database
theory. The establishment of MFDBS led to several new contacts and long-lasting
collaborations, in particular with Janos Demetrovics, the head of SZTAKI, and
Gyula Katona, the head of the Alfréd Rényi Institute. It also led to starting
research collaboration and friendship with several West-European database re-
searchers, in particular Joachim Biskup and Jan Paredaens.

Naturally, dependency theory in relational databases was also the topic of
his habilitation, which he completed 1985 in Dresden. With this he managed to
open the door for a continuation as independent researcher, as habilitation was a
mandatory prerequisite for becoming professor. In 1989 Bernhard was appointed
as professor for theoretical computer science at the University of Rostock, which
at that time hosted the second largest department of Computer Science in the
German Democratic Republic.

However, before picking up his position in Rostock, Bernhard spent two years
as guest professor in Kuwait. Once again this activity required all his adaptation
talent to cope with the arabic culture. How do you get a good glass of wine in a
country, in which alcohol is completely banned? Bernhard found the solution by
turning himself into a respected wine maker, which surprisingly is legal as long
as you do not sell the produce. He also turned himself into a perfect bargainer,
which is an indispensible gift in societies such as Kuwait. However, he also got
experience with negative aspects such as being convicted for causing a car ac-
cident because of too cautious driving. Fortunately, he managed to get himself
out of punishment.

Scientifically, he started to further widen his scope, first by generalising his re-
sults in database theory to new data models, in particular the Entity-Relationship
model, then by advancing the field of database design. In Kuwait he developed
the database design tool (DB)2, which was based on first versions of his extended
Entity-Relationship model. Surprisingly, the tool is still used in several arabic
countries and other countries such as Malaysia. His work on database design
led to his second book on “Practical Database Design Methodologies”, which he
wrote together with M. Yaseen and which was published 1989 in Kuwait.

The time in Rostock and also his first years in Cottbus where he moved in 1993
were dominated by his research on the Entity-Relationship model, its theoretical
foundations, and its use for the design of information systems. Before Bernhard
started his research, the model was smiled at by most database researchers as a
rather simple, inexpressive model that has a place at best in sketching database
schemata before starting the real design work. Bernhard did not care about these
prejudices: the wide use of the model in industrial practice showed that the sim-
plicity of thinking in entities as the key elements about which data should be
stored and relationships between them appeals to users who require adequate
support from research. So he addressed the weak expressiveness by simply al-
lowing relationships over relationships and structured attributes. Despite other
attempts to develop “semantic data models” dedicated to high level database
modelling, Bernhard’s approach preserved the simplicity of the model, while

4 A. Düsterhöft, M. Klettke, and K.-D. Schewe

at the same time giving it a precise mathematical semantics. Furthermore, he
shifted dependency theory from the relational model to the extended Entity-
Relationship model and extended the theory towards cardinality constraints,
path constraints and others.

His third book on “Fundamentals of Entity-Relationship Modeling”, however,
took a long time to get published. The first version was almost finished in 1992,
but featherbrained comments from reviewers, who argued against the need to
have higher-order relationships or more than binary relationships, made Bern-
hard decide to add detailed counter-arguments in the book. So the book was only
published in 2000. Bernhard also widened the scope of the book significantly dis-
cussing also other developments in the area of database research and showing
that his model is ready to take these developments up. In this way he created a
true standard reference for the Entity-Relationship model. More recently, he was
awarded with the first-ever Peter-Chen-award for his achievements in conceptual
modelling and his long-lasting support for the ER conferences.

Another main line of research during his time in Rostock and Cottbus was
the advancement of database design. Following the success of his (DB)2 tool he
started a much more challenging project, which led to the RADD tool. He inte-
grated natural language processing as a method for developing skeleton schemata
first, and he developed a design theory based on design primitives, which were de-
fined by means of graph transformations. Many Ph.D. and Master theses resulted
from this research. For the RADD project he could benefit from his Moscow and
Kuwait experiences, where the confrontation with different languages such as
Russian and Arabic and their pragmatics of usage in everyday life in- and out-
side his work environment coined his sensibility and affinitity to natural language
processing. Consequently, in the sequel he also emerged as a major player and
supporter for the NLDB conferences.

However, the years in Rostock and partly also in Cottbus were not all sunny.
The German reunion led to a situation, where researchers in the East were all
distrusted and even more so when they were successful. Bernhard experienced
the incredible injustice that acceptance of a reasonably paid scholarship for his
studies in Moscow was suddenly interpreted as proof of exceeded loyalty to
the socialist party, whereas academic non-performance was easily excused, if
a researcher only pretended to have been oppressed and adopted the new major
disposition. Once again excellent researchers were pushed out of their jobs and
replaced by lesser colleagues from the West.

Bernhard Thalheim survived these humiliations, but they left an invisible
mark on him, as the former airiness with which he initiated scientific collabo-
rations was gone. Nonetheless, he was one of the first East-German researchers
who established collaboration ties with colleagues in the West. Bernhard’s con-
ference MFDBS was merged with the International Conference on Database
Theory (ICDT), he joined for a couple of years the executive committee of the
GI standing working group on foundations of information systems, and he be-
came the one to be contacted first, when East-West collaboration was sought.

Dedication to a Theory of Modelling 5

On the scientific side, Bernhard had to face another challenge, which he per-
ceived as deterioration of computer science culture. His fundamental results on
database theory, modelling and design were not picked up by the majority as
expected. Not only few researchers claiming to work in the area of conceptual
modelling had adopted the luxury attitude to ignore his results and to still hold
up claims that he had proven to be wrong. One example was the use of triggers
for consistency enforcement. He suffered being surrounded by many researchers
who declared themselves “practical”, but had never seen a real application. In-
stead, “practicality” merely meant the absence of theory, which Bernhard as a
learnt theoretician could not accept. Still Bernhard kept his sense of humour, and
he turned his experiences into satirical lectures and essays, which are a pleasure
to read.

Bernhard himself had left since long the realm of pure theoretical computer
science. He had not only established himself as an expert in database and in-
formation systems design with deep roots in theory, he had initiated many col-
laborations with industry including large companies such as Volkswagen, SAP,
Vattenfall and others. So he knew what he was talking about when he explained
what according to him would be the real research challenges, and in addition,
he kept the ties with theory. His well-frequented practitioner forum in Cottbus
was a proof of acceptance of his expertise by industrial users.

Around 1997 the world-wide web began to influence Bernhard’s work, and
he started another line of research, which soon turned out to be just another
extension of the work he had already done before. He addressed web information
systems, which were originally inspired by the desire to set up a city informa-
tion system for inhabitants and tourists. From the very beginning usability for
the end-user was a key issue: the system should be usuable without training
by everyone including elderly citizens who would not like to adopt new fancy
technology, and the system should not only run on the web, but also exploit
videotext on normal television. Over the years the research has led to a sub-
stantial number of scientific results on the design of web information systems,
though the book publication summarising all the achievements is still awaiting
completion and publication.

There are many who attempted to get a hold on the design of web information
systems and to bring order into this area that was easily occupied with many ad-
hoc solutions without deeper scientific grounding. What made Bernhard’s ideas
special is that he emphasised the needs of the users as starting point for design,
while themain trendwas to focus on content and presentation. Based on his knowl-
edge he had obtained from his classical school education, he drew the analogy to
story telling and consequently to classical drama and the successful methods in
movie production. The idea of “storyboarding” was born and later formalised.
What made Bernhard’s approach unique is that he created it in close connection
with more than thirty large application projects comprising other city informa-
tion sites, e-government and e-learning. More recently he took the storyboarding
approach further addressing pragmatics in web information systems, thus inves-
tigating systematically what a particular design would mean to users.

6 A. Düsterhöft, M. Klettke, and K.-D. Schewe

We have always experienced Bernhard Thalheim as a visionary person. He
has the ability to outline a big picture, where others would only deal with small
parts, and he suffered from the simple-mindedness around him. His big pictures
were understood by other collaborators like Egon Börger, who like Bernhard un-
derstood that the big and unconventional ideas are the main drivers of progress
and not the niggling on the detail. Over many years of collaboration with Bern-
hard we had often corrected little mistakes in his formalisations of detail, but
nonetheless his great ideas and his enthusiasm have always been very inspiring.
He has also been honoured for this by his appointment as honourary Kolmogorov
professor at Moscow State University.

Bernhard’s scientific works can almost all be contributed to the area of con-
ceptual modelling. Like no other he created a deep understanding of the data in-
volved, the functionality, the context, and the user needs. His work has proven to
be useful for applications, and it is grounded in theoretical foundations. Recently,
Bernhard has revealed his plans for the next decade, which are to approach a
general theory of modelling that draws not only on information systems, but
also borrows knowledge about modelling from various other disciplines. We are
confident that he will bring also this endeavour to success, and we wish him
the best for it including the necessary scientific and financial support. We are
looking forward to the time, where his dedication to developing such a theory of
modelling will produce the fruits and show their practical usefulness.

What about Constraints in RDF?

Jan Paredaens

University of Antwerp, Belgium
jan.paredaens@ua.ac.be

1 Dear Bernhard

Dresden, January 19-23, 1789, sorry 1987. The first MFDBS, Mathematical Fun-
damentals of Database Systems. There we met for the first time. To be still more
precise, I arrived with my car on Sunday January 18, around 5 pm. It could have
been 5.30 pm. This is the exact point in time we met. Bernhard, it is exactly 25
years ago. Another reason to celebrate! That meeting was the first one in a long
list that is surely not complete: Dresden, Berlin, Antwerp, New Jersey, Antwerp,
Rostock, Eindhoven, Visegrad, Antwerp, Sofia, ... Kuwait. Indeed I visited you
in Kuwait the week of November 9, 1989. I still remember that on that evening
I saw, with glass of wine that you produced yourself in your apartment, on your
TV set how the Berlin Wall felt down. An historical moment!!!

In preparing this contribution, I realized that you have more than 200 pa-
pers in DBLP. This is fantastic! But not only the quantity is important, also
the quality and the number of different subjects and areas: dependencies, con-
straints, normal forms, null values, data models, database design, object oriented
databases, conceptual models, semantics of databases, data warehouses, OLAP,
database schemes, Web information systems, Web based learning, component-
driven engineering of database applications, intention-driven screenography (what
the hell it may be), even a fixed-point query language for XML and this list is
again far from complete.

Also the number of coauthors, I am proud to be one of them! Bernhard we
have 9 papers together! This makes me think of our Erdos number. What is your
Erdos number? Mine is 5 to the best of my knowledge. But if yours is smaller
than 4, it makes mine better!

Bernhard, you wrote a lot of papers about dependencies and constraints.
You are surely the main specialist in the world who knows everything about
constraints and dependencies in the relational database model. Even your first
paper [11] in 1984 was on constraints. As you know, a constraint is a property
of the scheme of a database that has to be satisfied by every instance of the
database.

Dependencies and constraints are very important in the relational database
world mainly because

• they are the formal foundation for some very important notions, like keys
and referential integrity;

• they play a crucial role in the design of a database and the decomposition
of relations;

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 7–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

8 J. Paredaens

• they can help us to verify whether the content of the database contains
correct information; more specifically we can use them to detect some errors
in the tables;

• they are just interesting properties that help the user to understand the
meaning of the information in the database.

As far as I know or I can find in the literature, Bernhard, I do not think that
you have studied RDF (Resource Description Framework) or properties of RDF.
Unlike standard autonomous relational databases, data in semantic web reposi-
tories is meant to be linked to other data sources available on the web by means
of universal identifiers (usually in the form of Uniform Resource Identifiers or
URIs) and stored in schema-less repositories. Towards the instantiation and sup-
port of this vision, the World Wide Web Consortium (W3C) has proposed the
recommendation of the RDF data model and the SPARQL query language [10].

It is not at all easy to understand this complete data model. The current status
of RDF can be found on [7]. But this link contains hundreds of pages defining
the concepts, the abstract syntax, the RDF semantics, a primer, the vocabulary,
the RDF schema, RDF/XML Syntax specification and other material. Bref, too
long and too complex to study from a more fundamental and theoretical point of
view. But, isn’t this also the case for the relational model? Indeed, the relational
model can be defined in a few pages, while the documentation of the Oracle
Database 11g Release 2, also contains hundreds of pages.

So we first define in a few lines the RDF-model. Then we ask ourselves what a
constraint is in the context of RDF, and why constraints are important. It is not
because “they play a crucial role in the design of RDF and the decomposition
of RDF”. But the three other reasons of the above list still hold:

• they are the formal foundation for some very important notions, like RDFS;

• they can help us to verify whether the content of an RDF-document or RDF-
resource contains correct information; more specifically we can use them to
detect some errors;

• they are just interesting properties that help the user to understand the
meaning of the information in an RDF-resource.

We have been investigating in ADReM, my research group in the University
of Antwerp, dependencies and constraints in RDF, during recent months [1]. A
number of colleagues, also German colleagues, have studied constraints in RDF
[2,3,4,5,1]. I hope to give you an overview of some interesting constraints in
RDF, by defining them formally, giving examples and a motivation for their use.
Clearly, this is not a complete overview, nor do I give here more results and/or
theorems, algorithms and techniques, mainly because they are still under inves-
tigation. My goal is that the reader in general, but you Bernhard in particular,
will understand the importance of constraints in RDF and you and others will
contribute in understanding their properties, their role and techniques.

Let’s start with the interesting part!

What about Constraints in RDF? 9

2 The RDF-Model

The semantic web idea envisions the web as a large repository of semantic infor-
mation that can be accessed and queried by both, machines and human beings.
The RDF data model is similar to classic conceptual modeling approaches such
as Entity-Relationship or Class diagrams, as it is based upon the idea of making
statements about resources (in particular Web resources) in the form of subject-
property-object expressions [8]. These expressions are known as triples in RDF
terminology. The subject denotes the resource, and the property denotes traits
or aspects of the resource and expresses a relationship between the subject and
the object. RDF is an abstract model with several serialization formats (i.e.,
file formats), and so the particular way in which a resource or triple is encoded
varies from format to format.

The W3C published a specification of RDF’s data model and XML syntax
as a Recommendation in 1999. Work then began on a new version that was
published as a set of related specifications in 2004 [8,9].

RDF-resources (documents or databases) arrange data in simple triples of
subject, property and object. Triples represent assertions about certain predefined
domains consisting of resources. Resources are identified by URIs. The semantics
of (s, p, o) is that “the subject s has property p with value o”. Note that a subject
can have a same property with many values, which is represented by many triples.
RDF-resources are often conceptualized as defining a directed labeled graph,
where subjects and objects are nodes and the property represents a directed edge
between the subject and the object. From a logical stand, the W3C defines RDF
as “...[an] assertional logic, in which each triple expresses a simple proposition.
This imposes a fairly strict monotonic discipline on the language, so that it
cannot express closed-world assumptions, local default preferences, and several
other commonly used non-monotonic constructs”. While RDF-resources consist
of simple triples, they cannot be regarded as merely a ternary relation of the
relational model. Indeed, in RDF there is only one set of triples; RDF triples
are heterogeneous entities and as such semantically less structured than in the
relational model. Observe that a property in a triple can be the subject or the
object in another (or the same) triple. As a consequence the languages for RDF
are more pattern-based than in the relational counterpart.

Throughout this section and the rest of the paper we make references to Figure
1, which depicts an RDF-resource that stores information about publications,
authors and characters of books.

Subject and object are nodes of the graph, while edges represent properties.
For instance, triple (Literaria, sp,Magazine) states that subject Literaria is a
subproperty (sp) of the objectMagazine. Likewise, triple (Paper, sp,Journal)
asserts that subjectPaper is a subproperty of the object Journal. Observe that,
unlike the case of the relation model, a resource can be both a subject and a
property. Indeed, in Figure 1 it is the case that Don Quixote is the property in
triples (Sancho,Don Quixote,Sanchica) and (Sancho,Don Quixote,
Rocinante), and the subject in (Don Quixote, sp,Book). Similarly, Literaria
is the property in triple (Metaphysics,Literaria,Ethics), the object in triple

10 J. Paredaens

Don Quixote
Rocinante Sancho

Moral Quixote Literaria NYTimes

Ethics

MetaphysicsSanchica

Book Paper Magazine Newspaper

Publication

Journal

sp sp sp sp

sp

sp

sp sp

Review

sp

Fig. 1. RDF-Graph representing information about different types of publications

(NYTimes,Review,Literaria) and the subject in (Literaria, sp,Magazine).
This is one of the distinctive features of the RDF data model which makes the
definition of constraints into RDF not just a trivial migration of constraints from
the relational domain.

Hence an RDF-resource is just a finite set of triples (subject,property,object).
It is called in the literature an RDF-graph, although it is not formally a graph,
since we can have edges between edges, or edges between a node and another
edge, which is obviously impossible in a classical graph.

In what follows, we use the following vocabulary:

• U , is an infinite set of URI’s;
• L, is an infinite set of literals;
• V , an infinite set of variables denoted by prefixing them by $.

V , U and L are pairwise disjoint.

Definition 1 (RDF-graph). An RDF-graph G is a finite set of triples (s, p, o),
subject, property, object, s, o ∈ U ∪ L, p ∈ U1.

Figure 2 contains 14 triples.
We do not consider here blank nodes. This is not because they are not im-

portant! Indeed, they are one of the main concepts in the RDF-model but we
do not consider them here because their presence complicates the definitions of
constraints on the one hand and, to be honest Bernhard, they are still under
investigation, the moment I write this sentence.

3 Equality Generating and Triple Generating Constraints

Here there is really nothing new! We know what equality generating and tu-
ple generating constraints are in the relational model. Since an RDF-graph is

1 We denote UG (resp. LG) for the set of elements of U (resp. L) that occur in G.

What about Constraints in RDF? 11

formally nothing else than an untyped ternary table we obtain the analogous
constraints for RDF-graphs. To be complete, and to define the notation we give
here their formal definitions.

A term is an element of V ∪ U ∪ L.
In the following definition S is a finite set of terms. It will play the role of

pattern for the parts of the RDF-graph we are interested in.

Definition 2 (Embedding of a set of triples of terms in an RDF-graph
G). An embedding of a set S of triples of terms in an RDF-graph G is a total
function e : VS ∪ US ∪ LS → UG ∪ LG, such that

• e(u) = u, for each u ∈ US ;
• e(l) = l, for each l ∈ LS;
• If (t1, t2, t3) ∈ S then (e(t1), e(t2), e(t3)) ∈ G;

Definition 3 (EGC). An equality generating constraint is a pair (S,E)2, where

• S is a finite set of triples of terms;
• E is a finite set of equalities, each of the form (t1 = t2), with t1, t2 ∈ VS ∪
U ∪ L.

Definition 4 (EGC satisfaction). An RDF-graph G satisfies the EGC (S,E)
iff for every embedding e of S in G and every (t1 = t2) ∈ E holds that e(t1) =
e(t2).

Example 1. Figure 1. satisfies:

• C1 = ({(Sancho,Don Quixote, $y), (Don Quixote, sp, $t)}, {($t = Book)})
• C2 = ({(Book, sp, $y), (Journal, sp, $z)}, {($y = $z)})

Figure 1. does not satisfy:

• C3 = ({($x, sp, $z), ($z, sp, $u)}, {($u = Publication)})
• C4 = ({($x,Don Quixote, $y)}, {($y = Sanchica)})
• C5 = ({($x, sp, $z), ($v, $u, $x)}, {($u = sp)})

In [1] we define a set of deductive axioms for deriving EGCs.
Let EC be an arbitrary set of EGCs. We define in a syntactical way, by Rules
0-8 when EC � (S,E), and we prove that (S,E) is a logical consequence of EC
iff EC � (S,E).

The rules that define � are :

Rule 0 : EC � (S,E), for every (S,E) ∈ EC;
Rule 1 : EC � (S, {(t = t)}), for every finite set S of triples of terms and
t ∈ VS ∪ US ∪ LS ;

2 We denote US (resp. LS , VS) for the set of elements of U (resp. L, V) that occur in
S.

12 J. Paredaens

Rule 2 : EC � (S, {(t1 = t2)}) implies EC � (S, {(t2 = t1)});
Rule 3 : EC � (S, {(t1 = t2), (t2 = t3)} implies EC � (S, {(t1 = t3)};
Rule 4 : EC � (S,E) and E1 ⊆ E implies EC � (S,E1);
Rule 5 : EC � (S,E1) and EC � (S,E2) implies EC � (S,E1 ∪E2);
Rule 6 : EC � (S,E) and h is a homomorphism from S in S1 implies EC �
(S1, h(E));
Rule 7 : EC � (S, {(t = t′)}) and EC � (φt←↩t′(S), E) implies EC � (S,E);
Rule 8 : EC � (S, {(a = b)}) for a, b ∈ US ∪LS and a �= b implies EC � (S,E) for
all possible E.

Theorem 1. [1] The Rules 0-8 are sound, independent and complete.

Definition 5 (TGC). A triple generating constraint is a pair (S, S′), where
both S and S′ are finite sets of triples of terms.

Definition 6 (TGC satisfaction). An RDF-graph G satisfies the TGC (S, S′)
iff for every embedding e of S in G there exists an embedding e’ of (S ∪ S′) in G
such that (e(t1), e(t2), e(t3)) = (e′(t1), e′(t2), e′(t3)) for every (t1, t2, t3) ∈ S.

Example 2. Figure 1. satisfies:

• C6 = ({(Paper, sp,Journal)}, {(NYTimes, sp,Newspaper)})
• C7 = ({(Moral Quixote, sp, $y), ($y, sp,Journal)}, {(Journal, sp,Publication)})
• C8 = ({(Don Quixote, sp,Book)}, {(NYTimes, sp, $y), ($y, sp,Publication)})
• C9 = ({(Paper, $x,Publication)}, {($y, sp,Ethics)})

Figure 1. does not satisfy:

• C10 = ({(Paper, sp,Journal)}, {(NYTimes, sp,Publication)}).

4 RDFS

An RDF Schema (abbreviated as RDFS) is an extensible knowledge representa-
tion language, providing basic elements for the description of ontologies, called
RDF vocabularies, intended to structure RDF-resources. The first version was
published by W3C in April 1998, and the final W3C recommendation was re-
leased in February 2004 [6].

Basically RDFS defines a number of special RDF-properties, that are fre-
quently used in RDF-resources. In this section we will mention some of these
RDF-properties and formally define their semantics and inference rules by triple
generating constraints. This illustrates the use of the triple generating constraints
introduced above.

The RDF-properties of RDFS that we will consider are subproperty, subclass,
typing, domain and range. Consider the RDF-subjects or RDF-objects (that by
the way can also be RDF-properties) S1, S2, S3, the RDF-properties P1, P2, P3,
the classes of objects or subjects (or types) C1, C2 and C3.

What about Constraints in RDF? 13

Subproperty
The RDFS subproperty is denoted by sp. (P1, sp, P2) indicates that P1 is a
subproperty of P2. The semantics of sp says that

• if P1 is a subproperty of P2 and P2 is a subproperty of P3 then P1 is a
subproperty of P3; this is expressed by the triple generating constraint:

({($p1, sp, $p2), ($p2, sp, $p3)}, {($p1, sp, $p3)})

• if S1 has as property P1 with value S2 and P1 is a subproperty of P2 then
S1 has also as property P2 with value S2, formally:

({($s1, $p1, $s2), ($p1, sp, $p2)}, {($s1, $p2, $s2)})

• every property between a subject and an object is a subproperty of itself,
formally:

({($s1, $p, $s2)}, {($p, sp, $p)})
• if P1 is a subproperty of P2 then P1 and P2 are each a subproperty of itself,
formally:

({($p1, sp, $p2)}, {($p1, sp, $p1), ($p2, sp, $p2)})

Subclass
The RDFS subclass is denoted by sc. (C1, sc, C2) indicates that C1 is a subclass
of C2. The semantics of sc says that

• if C1 is a subclass of C2 and C2 is a subclass of C3 then C1 is a subclass of
C3, formally:

({($c1, sc, $c2), ($c2, sc, $c3)}, {($c1, sc, $c3)})

• if C1 is a subclass of C2 then C1 and C2 are each a subclass of itself, formally:

({($c1, sc, $c2)}, {($c1, sc, $c1), ($c2, sc, $c2)})

Typing, Domain, Range
The RDFS typing is denoted by type, the domain of a type by dom, its range by
range. (S1, type, C1) indicates that C1 is a type of S1. (P1,dom, C1) indicates
that C1 is the domain of P1. (P1, range, C1) indicates that C1 is the range of
P1. Their semantics says that

• if C1 is a subclass of C2 and C1 is a type of S1 than C2 is also a type of S1,
formally:

({($c1, sc, $c2), ($s1, type, $c1)}, {($s1, type, $c2)})

• if C1 is the domain P1, and S1 has property P1, then C1 is a type of S1,
formally:

({($p1,dom, $c1), ($s1, $p1, $s2)}, {($s1, type, $c1)})

14 J. Paredaens

• if C1 is the range of the P1, and S2 is a value of the property P1, then C1 is
a type of S1, formally:

({($p1, range, $c1), ($s1, $p1, $s2)}, {($s2, type, $c1)})

• if C1 is the domain of P1, P2 is a subproperty of P1 and S1 has property P2

with value S2 then C1 is a type of S1

({$p1,dom, $c1), ($p2, sp, $p1), ($s1, $p2, $s2)}, {($s1, type, $c1)})

• if C1 is the range of P1, P2 is a subproperty of P1 and S1 has property P2

with value S2 then C1 is a type of S2

({$p1, range, $c1), ($p2, sp, $p1), ($s1, $p2, $s2)}, {($s2, type, $c1)})

• sp, sc, dom, range, type are each a subproperty of itself, formally:

(∅, {v, sp,v)}),v ∈ {sp, sc,dom, range, type}

• every property that has a domain or a range is a subproperty of itself, for-
mally:

({($p,v, $y)}, {($p, sp, $p)}),v ∈ {dom, range}
• every class that is the domain, the range or a type is a subclass of itself,
formally:

({($x,v, $c)}, {($c, sc, $c)}),v ∈ {dom, range, type}

5 Functional Constraints

The functional constraints are similar to the functional dependencies. However
there are some major differences. They indicates that if some subjects, properties
or objects are equal in an RDF-graph then some other subjects, properties or
objects have to be equal.

Definition 7 (FC). A functional constraint is a pair (S,L→ R), where

• S is a finite set of triples of terms;
• L,R ⊆ VS.

Definition 8 (FC satisfaction). An RDF-graph G satisfies the FC (S,L→ R)
iff for every two embeddings of S in G that coincide3 on the variables of L, they
also coincide on the variables of R.

Example 3. Figure 1. satisfies:

• C11 = ({($x, sp, $y)}, {$x} → {$y})
• C12 = ({($x, sp, $y), ($y, sp, $z)}, {$x, $z} → {$y})
• C13 = ({(Sancho, $x, $y), ($x, sp, $z)}, ∅ → {$z})

3 Two embeddings e and e′ coincide on a variable $v iff e($v) = e′($v).

What about Constraints in RDF? 15

Figure 1. does not satisfy:

• C14 = ({($x, $y, $z), ($y, sp, $y1), ($y1, sp, $y2)}, ∅ → {$y2})
• C15 = ({($x, sp, $y)}, {$y} → {$x})
• C16 = ({($x,Don Quixote, $y)}, {$x} → {$y})
• C17 = ({($x, $y, $z)}, {$x} → {$y})
• C18 = ({($x, $y, $z)}, {$y} → {$x})
• C19 = ({($x, $y, $z), ($y, sp, $y1)}, {$x} → {$y, $y1})

Note that every functional constraint is equivalent with an equality generating
constraint, but not vice-versa. This is illustrated by the functional constraint
C20 = ({(a, $x, $y)}, {$x} → {$y}) which is equivalent with the equality gener-
ating constraint C21 = ({(a, $x1, $y1), (a, $x1, $y2)}, {($y1 = $y2)}), but on the
other hand the equality constraint C22 = ({($x, $y, $z)}, {($x = $y)} is equiva-
lent with no finite set of functional constraints, since the graph {(a, b, c)} does
not satisfy C22 but it satisfies all FCs.

6 Forbidding Constraints

While equality generating and functional constraint require properties for all
possible embeddings, forbidding constraints forbid some embeddings.

Definition 9 (FBC). A forbidding constraint has the form (S), where S is a
finite set of triples of terms.

Definition 10 (FBC satisfaction). An RDF-graph G satisfies the FBC (S)
iff there is no embedding of S in G.

Example 4. Figure 1. satisfies:

• C23 = ({($x, sp, $x)})

Figure 1. does not satisfy:

• C24 = ({($x, sp, $y)})

Forbidding constraints are rather independent from equality generating con-
straints. Indeed the forbidding constraint {(a, $x, $y)} nor its negation is equiv-
alent with a finite set of equality generating constraints. Furthermore the equality
generating constraint C25 = ({($x, $y, $z)}, {($x = $y), ($x = $z), ($x = a)} is
only satisfied by the graph {(a, a, a)}. So C25 nor its negation is equivalent to a
finite set of forbidding constraints.

Forbidding constraints are also rather independent from functional constraints.
Indeed, some forbidding constraints nor their negation are equivalent with a fi-
nite set of functional constraints, otherwise they would be equivalent with a
finite set of equality generating constraints. Furthermore the functional con-
straint C26 = ({($x, $y, $z)}, ∅ → {$x, $y, $z}) is only satisfied by the singleton
graphs. So C26 nor its negation is equivalent to a finite set of forbidding.

16 J. Paredaens

In many RDF-resources “the number of levels of properties” is limited by a
constant. For instance consider persons that have accounts on banks, each
bank has an address and a list of employees, that can be found on separate
URLs, the address and the list of employees are subproperties of info. An
example of such an RDF-resource is given in Figure 2. The level of properties is

(per1,ban1,acc1), (per1,ban2, acc2), (ban1,add, t1), (ban1, loe,URL1),

(ban2, loe,URL2), (add, sp, info), (loe, sp, info)

Fig. 2. Example for levels of properties

here 3 since ban1 is a property, it has a property add and add has a property
sp. More formally, the level of properties of an RDF-graph G is the greatest
number n such that ∃a0, . . . , an,b1, . . . ,bn with

{(b0, a1,b1)} ∪ {(ai−1, ai,bi) | 1 < i ≤ n} ⊆ G

Let us express now that the level of properties of an RDF-graph may not exceed
2, this is expressed by the following forbidding constraint:

{($b0, $a1, $b1), ($a1, $a2, $b2), ($a2, $a3, $b3)}

7 Enumerable Constraints

Let us call the constraints that we defined above finite constraints since all
contain one or two fixed finite sets of triples of terms. But suppose we want
to specify a cycle or a non-regular pattern. To express this we can use so-called
e-sets, that are sets with one numerical parameter.

Every instantiation of an e-set S(n), for a particular value of n ≥ 0, is a finite
set. Let us give some examples of indexed sets.

Example 5. Indexed Sets

• A(n) = {2, 4, . . . , 2 ∗ n}; A(5) = {2, 4, 6, 8, 10} and A(0) = ∅ are two in-
stanstations of A;

• B(n) = {a,b, $x0, . . . , $xn};
• C(n) = {a,b, c};
• C(0) = C(24) = {a,b, c};
• D(n) = ∅;
• E(n) = {($x0, $p0, $x1), . . . , ($x2.n−1, $p2.n−1, $x2.n)}, which specifies a list
of even length of objects and subjects;

• F (n) = {($xn, $pn, $x0), ($x0, $p0, $x1), . . . , ($xn−1, $pn−1, $xn)}, which
specifies a cycle of objects and subjects;

What about Constraints in RDF? 17

• G(n) = {(a, $p0, $x1), ($x1, $p1, $x2), . . . , ($xn−1, $pn−1,b)}, which specifies
a sequence of objects and subjects that starts with a and ends with b;

• H(n) = {($p0 = a, . . . , $pn = a};

If in a finite constraint, S (S′,E,L,R) is replaced by an indexed-set, we call
it an enumerable constraint. An RDF-graph G satisfies an enumerable con-
straint (S(n), E) (resp. (S(n), S′(n)), (S(n), L(n)→ R(n)), (S(n))) if for every
non-negative value of v G satisfies all the finite constraints (S(v), E(v)) (resp.
(S(v), S′(v)), (S(v), L(v)→ R(v)), (S(v))).

A few examples can clarify this notion.

Example 6. Enumerable Constraints

• C27 = (F (n)), which is a forbidding constraint that forbids a cycle of objects
and subjects;

• C28 = (F (n), H(n)), which is an equality generating constraint that verifies
whether all the properties in a cycle are equal to a;

• C29 = (G(n), ∅ → {$x1}), which is a functional constraint that verifies
whether the second objects of two sequences, that start with a, end with
b and have equal length, are equal;

• C30 = ({($pn+1, $p0, $x0), ($p0, $p1, $x1), . . . , ($pn, $pn+1, $xn+1)}) is an in-
teresting forbidding constraint that, I guess, all RDF-graphs in concrete
applications satisfy. It forbids cycles in the levels of property.

8 Conclusion

We introduced in this paper some interesting definitions of classes of constraints
for RDF-resources. There are surely more. There are a lot of challenges: Which
are the interesting constraints for RDF-resources, what can we say about their
deduction mechanisms, what is the complexity to verify them, what is their
relationship with SPARQL, what is the semantics of blank nodes in all this, can
we deduce some interesting practical and theoretical results from them, etc.

It is our hope, dear Bernhard and other colleagues, that this contribution
opens a new world of research, that we will understand better the above con-
straints and their properties, that we can involve other typical RDF features
as blank nodes and RDFS, that we will discover other new interesting RDF-
constraints whose counterpart is not discussed in the relational model, because
of not interesting in that context and that Bernhard and I, very old but still
clever, will lean in our rocking chair, reading new and fascinating results on
RDF-constraints.

Bernhard, so long but not farewell!

Acknowledgment. Alvaro Cortes, a postdoc at the University of Antwerp, also
contributed to this project.

18 J. Paredaens

References

1. Akhtar, W., Cortés-Calabuig, Á., Paredaens, J.: Constraints in RDF. In: Schewe,
K.-D., Thalheim, B. (eds.) SDKB 2010. LNCS, vol. 6834, pp. 23–39. Springer,
Heidelberg (2011)

2. Arenas, M., Gutierrez, C., Pérez, J.: Foundations of RDF Databases. In: Tessaris,
S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt,
R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 158–204. Springer, Heidel-
berg (2009)

3. Lausen, G.: Relational Databases in RDF: Keys and Foreign Keys. In:
Christophides, V., Collard, M., Gutierrez, C. (eds.) SWDB-ODBIS 2007. LNCS,
vol. 5005, pp. 43–56. Springer, Heidelberg (2008)

4. Lausen, G., Meier, M., Schmidt, M.: SPARQLng constraints for RDF. In: EDBT,
pp. 499–509 (2008)

5. Mart́ın, L., Anguita, A., Jiménez, A., Crespo, J.: Enabling cross constraint satisfac-
tion in RDF-based heterogeneous database integration. In: ICTAI (2), pp. 341–348
(2008)

6. RDF vocabulary description language 1.0: RDF schema (2004),
http://www.w3.org/TR/rdf-schema/

7. RDF current status, http://www.w3.org/standards/techs/rdf#w3c_all
8. RDF primer (2004), http://www.w3.org/TR/rdf-primer/
9. RDF semantics (2004), http://www.w3.org/TR/rdf-mt/

10. Sparql protocol and RDF query language (sparql) (2008),
http://www.w3.org/TR/rdf-sparql-query/

11. Thalheim, B.: A compelte axiomatization for full join dependencies in relations.
Bulletin of the EATCS 24, 109–114 (1984)

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/standards/techs/rdf#w3c_all
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-sparql-query/

Some Remarks on Relational Database Schemes
Having Few Minimal Keys

Joachim Biskup

Technische Universität Dortmund, Dortmund, Germany
joachim.biskup@cs.tu-dortmund.de

Abstract. Relational database schemes comprise semantic constraints
to formally capture at least part of the “real-world” semantics of an
application. Functional dependencies constitute a basic and widely stud-
ied class of such constraints. Accordingly, many properties of this class
are known, including the insight that the number of minimal keys – as
determined by a declared set of functional dependencies – might vary
extensively, from just one to exponentially many (in the number of the
underlying attributes). The case of just one minimal key is known to be
characterized by the set of extremal attributes forming a minimal key.
Starting from this result, the present work studies schemes having only a
few minimal keys. In particular, we consider the cases of schemes having
two and three minimal keys, and then suggest some research for dealing
with the more general case of n minimal keys. Furthermore we study
the impact of additionally requiring the schemes to be in Boyce-Codd
normal form or Third normal form.

Keywords: Boyce-Codd normal form, computational complexity,
extremal attribute, functional dependency, functional relationship, im-
plicational closure, logical implication, minimal key, minimal-key equiva-
lence, NP-completeness, object normal form, prime attribute, relational
database, relation scheme, semantic modeling, Sperner system, super-
prime attribute, Third normal form.

1 Introduction

Database technology enables a system administrator to formally express “real-
world” semantics of the pertinent application by using a Data Definition Lan-
guage, DDL. Such a language might be very expressive to deal with advanced
concepts of semantic modeling, as, e.g., originally suggested for the ER-model
by Chen [7] and later on further elaborated by Thalheim [20], who recently also
provided a critical review of the goals and the achievements of semantic mod-
eling [21], and by many others as well. The data definition language usually
features means to denote recognized “real-world” aspects by attributes, to group
attributes together, and then, for each resulting group, to specify functional re-
lationships as a simple kind of semantic constraints. A functional relationship
roughly requires that (the values of) a subset of grouped attributes uniquely
determines (the values of) another subset.

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 19–28, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

20 J. Biskup

In the setting of relational databases, applying these means results in forming
one or more relation schemes with functional dependencies. Though, evidently,
a relation scheme having only functional dependencies as declared semantic con-
straints only captures rather simple and thus restricted “real-world” semantics,
intensive research has indicated that the class of such schemes has a rich and non-
trivial structure raising challenging research problems, see, e.g., the compendium
by Thalheim [18], the monographs by Paredaens et al [16], Mannila/Räihä [15]
and Atzeni/De Antonellis [2], or the textbook summary by Abiteboul et al [1].

One direction of this research aims to study the set of minimal keys of a rela-
tion scheme with functional dependencies and, in particular, the number of dif-
ferent minimal keys, see the (temporally sorted) contributions [14,8,9,18,19,10,4]
of the (alphabetically sorted) authors Biskup, Demetrovics, Katona, Libkin, Luc-
chesi, Muchnik, Miklos, Osborn, Seleznjev and Thalheim, as well as many further
investigations. It fact, this number might vary extensively, from just one to ex-
ponentially many (in the number of the underlying attributes).

These “Remarks on . . . Few Minimal Keys” focus on relation schemes having
only a few minimal keys. Though restricting to relational databases, the pre-
sented insight might also have an impact on more expressive data models, all
of which comprise a suitably adapted notion of a minimal key while, e.g., ad-
mitting null values [17], more generally allowing incomplete data [11], dealing
with description logic (rather than first-order logic) [22], treating semi-structured
XML-data [6,12], or referring to RDF-items [13]. In fact, the intuitive notion of a
(minimal) key is a fundamental construct of any approach to semantic modeling
in general and the various formalized data models in particular.

2 Basic Notations and Results

In this section we briefly introduce the basic notation for relation schemes, func-
tional dependencies and minimal keys, see, e.g., the volumes [1,2,15,16,18] al-
ready cited above, and we summarize the fundamental results about schemes
having a unique minimal key, see [4].

We consider a single (relation) scheme RS = 〈U, Σ〉, where the universe U is a
finite set of attributes with |U | = n, and Σ is a finite set of semantic constraints
on U , which we assume to be functional dependencies – the most prevalent kind
of local constraints in form of data dependencies in actual relational databases.

An instance r of a relation scheme is a finite set of tuples over the universe U
satisfying Σ, in the sense of first-order logic considering an instance as a finite
Herbrand interpretation. The values ci of a tuple μ = (c1, . . . , cn) are elements
of an infinite set of constants, and the value of an attribute a ∈ U in a tuple μ is
referred to by μ[a]. Similarly, the values of a set of attributes X ⊆ U in a tuple
μ are denoted by μ[X].

Let X, Y ⊆ U be sets of attributes, then r satisfies the functional dependency
(FD) X → Y if for any two tuples μ1, μ2 of r it holds that μ1[Y] = μ2[Y] when-
ever μ1[X] = μ2[X]. K ⊆ U is a key of RS (in some work called a “superkey”)
if K → U is logically implied by Σ. If additionally K is ⊆-minimal with this

Schemes Having Few Minimal Keys 21

property, it is a minimal key (in some work simply called a “key”). Obviously,
any two different minimal keys are not contained in each other, and thus the set
of all minimal keys forms a Sperner system, as first observed in [8,9].

A scheme RS is in Boyce-Codd normal form (BCNF) if for each FD X → Y
logically implied by Σ and with Y �⊆ X , X is a key. If an attribute a ∈ U is an
element of some minimal key, it is called prime; otherwise, if it is not contained
in any minimal key, it is called nonprime. In general strictly less restrictive than
BCNF, a scheme RS is in Third normal form (3NF) if for each FD X → a
logically implied by Σ and with a being a nonprime attribute1 such that a �∈ X ,
X is a key. As shown in [23], if a scheme is in 3NF but not in BCNF, then there
exists a pair of overlapping minimal keys.

Logical implication among (sets of) functional dependencies is denoted by |=.
If Π |= X → Y , we also write X → Y ∈ Π+. To avoid trivial cases (where
an instance may have at most one tuple), throughout these remarks we only
consider schemes RS = 〈U, Σ〉 such that ∅ → U �∈ Σ+.

An implication of a functional dependency X → Y by a set of functional
dependencies Π can be decided by computing the closure Π [X] of the set of
attributes X under the functional dependencies in Π , the Π-closure of X for
short, and then checking whether Y ⊆ Π [X]:

Π |= X → Y iff Y ⊆ Π [X] . (1)

A set of attributes X is closed under a set of functional dependencies Π , if
Π [X] = X .

Some of the concepts mentioned can be efficiently computed, but others are of
high computational complexity. We can efficiently determine the Π-closure of X
by exhaustively using the FDs in Π as conditional production rules: the output
item is initialized with the argument X , and then an FD in Π of the form R → S
adds the attributes in S to the output item under the condition that R has been
a subset of the output item before. Accordingly, basically by (1), implications
of FDs and the minimal key property of attribute sets can be treated efficiently
as well. Moreover, somehow surprisingly, BCNF for a full scheme 〈U, Σ〉 can be
tested efficiently too, since it suffices to only consider the elements in Σ (rather
than all those that are in Σ+).

In contrast, we are faced with the possibility that a scheme might have expo-
nentially many minimal keys. Moreover, to test the primality of an attribute we
might be forced to consider essentially all of the potentially many minimal keys.
In fact, the primality property is NP-complete, where a nondeterministic affir-
mative test just guesses a suitable minimal key and then efficiently confirms the
required properties. Furthermore, the problem whether a scheme admits a min-
imal key of cardinality less than m is NP-complete as well. Finally – in contrast
to the efficiency result stated above – BCNF-testing for a subscheme defined by a
strict subset X �⊆ U of the universe U requires us to project the given FDs on X
potentially leading to substantial computational costs. Note that such tests are
1 Following common conventions, we will omit set brackets for singleton sets and

occasionally use other abbreviations for operations on sets of attributes.

22 J. Biskup

part of the well-known decomposition algorithm to stepwise transform a given
relation scheme into a collection of subschemes each of which being in BCNF.

3 Schemes Having One Minimal Key

As recalled above, a relation scheme can possess a highly complex structure,
though the witnessing examples are mainly obtained by purely theoretical con-
structions that will rarely reflect the semantic model of some practical appli-
cation. However, while modeling and formalizing “real-world” aspects of an ad-
vanced and comprehensive application, an administrator might well be faced with
both application-intrinsic complexities like overlapping minimal keys or cyclic
functional relationships and model-specific challenges resulting from a limited
expressiveness of the available formal means. Clearly, as far as possible, an ad-
ministrator will aim at avoiding to declare schemes that exhibit an unnecessary
degree of complexity.

In the simplest and best manageable case, there exists just one minimal key
for each scheme considered. This case can be efficiently recognized and treated
as described in the remainder of this section.

Given a scheme 〈U, Σ〉, an attribute a ∈ U is called extremal if U\a → a �∈ Σ+,
i.e., U \ a is closed under Σ. The set E of all extremal attributes is contained in
each minimal key; conversely, if an attribute a is superprime in the sense that it
belongs to all the minimal keys, then it is extremal (Lemma 1 and Cor. 1 of [4]):

a is extremal iff a is superprime. (2)

Moreover, a scheme has exactly one minimal key if and only if the set of extremal
attributes forms a (minimal) key (Thm. 1 of [4]), i.e.:

〈U, Σ〉 has a unique minimal key iff {a | U \ a → a �∈ Σ+} → U ∈ Σ+. (3)

We can characterize such schemes in an alternative way by considering the at-
tributes that do not trivially appear in the right hand side of any FD in Σ
(Thm. 3.4 of [2]), i.e.,

〈U, Σ〉 has a unique minimal key iff (U \
⋃

X→Y ∈Σ

Y \ X) → U ∈ Σ+. (4)

Finally, consider a scheme 〈U, Σ〉 with Σ being a minimal cover – i.e., containing
only elementary FDs (with singleton right-hand sides) and being redundancy-
free both element-wise (with minimal left-hand sides) and globally (without an
FD implied by the remaining ones) – and the set E of its extremal attributes
being the unique minimal key. Then this scheme is in BCNF (actually the scheme
then is in Object normal form [3]) if and only if Σ = {E → b | b ∈ U \E} (Thm. 3
of [4]).

Schemes Having Few Minimal Keys 23

4 Schemes Having Two Minimal Keys

As recalled in Section 3, a scheme 〈U, Σ〉 with Σ[E] = U has exactly one minimal
key, namely E. We will now start considering the case that Σ[E] �= U , which
implies that there are at least two minimal keys. Let us assume that E �= ∅,
and we define D := Σ[E] \ E to be the set of dependent attributes, and I :=
U \ ED �= ∅ the set of independent attributes.

We first observe that each attribute a ∈ D is nonprime, i.e., it cannot be
contained in any minimal key (since, if it was an element of a minimal key K,
then E ⊆ K by (2) and thus a could be dropped from K without affecting K
being a key; thus the minimality of K would be violated). Furthermore, I must
contain at least two elements (since otherwise, the single element a ∈ I would
be extremal; thus E ∩ I = ∅ would be violated).

So let us assume that I = {a, b} for a �= b. Then the proposition presented
below states that – under the assumptions made so far – there are exactly two
minimal keys. Afterwards we argue that – essentially – the converse statement
also holds.

Proposition 1. Let RS = 〈U, Σ〉 be a scheme such that E �= ∅, Σ[E] �= U , and
I = {a, b} for a �= b. Then RS has exactly two minimal keys, namely E ∪ a and
E ∪ b.

Proof. According to the assumptions, E is not a minimal key by (3), and thus,
by (2), a minimal key has the form E ∪ a, E ∪ b or E ∪ ab. Considering these
options in turn, we will show that the third option is not possible, and that the
remaining two options only occur together.

Case 1, E ∪ a is a minimal key: Then E ∪ ab is a key but not minimal.
Furthermore, assume indirectly that E ∪ b is not a minimal key. Then E ∪ b →
a �∈ Σ+, and thus also E ∪ D ∪ b → a �∈ Σ+, where we have E ∪ D ∪ b = U \ a.
Thus a is extremal, a contradiction to a �∈ E.

Case 2, E ∪ b is a minimal key: Analogously.
Case 3, E ∪ a is not a minimal key and E ∪ b is not a minimal key: Then

E ∪ ab is the unique minimal key, and thus both attributes a and b are extremal
by (2), a contradiction to a, b �∈ E. ��
Conversely, consider a scheme 〈U, Σ〉 that has exactly two minimal keys K1 �=
K2. Then E = K1∩K2 by (2), and E∪(K1\K2) → U ∈ Σ+ and E∪(K2\K1) →
U ∈ Σ+. Comparing this situation with that of Proposition 1, we see that the
nonempty set K1 \ E corresponds to the single attribute a, and the nonempty
set K2 \ E to the single attribute b.

To capture these correspondences more precisely, for a given scheme RS we
define that attributes a and b of the universe are (RS -)minimal-key equivalent,
a ∼mk b, if for all minimal keys K of the scheme we have that a ∈ K iff b ∈ K.
Obviously, ∼mk is an equivalence relation over U , where, in particular, the set
E of all extremal attributes forms an equivalence class, and so does the set N
of all nonprime attributes, provided these sets are nonempty. Also note that the
relation ∼mk – and thus its corresponding set {[a]∼mk

| a ∈ U} of equivalence

24 J. Biskup

classes [a]∼mk
– reflects the intersection structure of the set of all minimal keys.

Accordingly, we might also consider the notion of an attribute being l-prime,
meaning that it is an element of exactly l minimal keys.

Minimal-key equivalence seems to be of high computational complexity in
general. However, if the scheme is in BCNF and specified by a minimal cover
(which can always be found efficiently), then the set of all minimal keys coincides
with the set of all left-hand sides of functional dependencies occurring in the
minimal cover. For, if L is a left-hand side, by the BCNF property, L must
contain a minimal key K ⊆ L, where K �= L would violate the minimal cover
condition; conversely, if K is a minimal key, then K �= U , since Σ[E] �= U , and
thus there is an FD L → a in the minimal cover such that L ⊆ K, in fact by
the BCNF property we have L = K. Accordingly, then a ∼mk b can be easily
decided by checking whether for all left-hand sides L occurring in the minimal
cover we have that a ∈ L iff b ∈ L.

Applying the notions introduced above to the comparison of the special situ-
ation of Proposition 1 with the more general case, we see the following. Each of
the attributes a and b of the special situation is 1-prime and forms a singleton
∼mk-equivalence class; correspondingly, in the general situation each of the sets
K1 \E and K2 \E consists of 1-prime attributes and forms an ∼mk-equivalence
class.

Summarizing and formalizing the arguments given so far, the general situation
of schemes having exactly two minimal keys is fully characterized by the following
Theorem 1 and visualized in Figure 1.

D E

 I1

I2

 dependent extremal independent
 attributes attributes attributes

K1

K2

 (nonprime) (superprime)

(1-prime)

(1-prime)

 (n
on

pr
im

e)

Fig. 1. Dependency structure of schemes having exactly two minimal keys

Schemes Having Few Minimal Keys 25

Theorem 1. Let RS = 〈U, Σ〉 be a scheme. Then RS has exactly two minimal
keys K1 �= K2 iff (1) Σ[E] �= U , and (2) ∼mk has exactly two equivalence classes
I1 and I2 that are different from E and N , and (3) K1 = E ∪̇I1 and K2 = E ∪̇I2,
and thus then I1 = K1 \ K2 and I2 = K2 \ K1.

Proof. Immediate from the consideration presented before the theorem. Note
that property (1) is redundant since it follows from property (2). ��
Finally, we indicate requirements for a scheme with exactly two different keys
K1 �= K2 being in BCNF. If either E = ∅ or both E �= ∅ and D = ∅, then BCNF
is achievable by Σ = {K1 → b | b ∈ U \K1}∪ {K2 → a | a ∈ U \K2}, which is a
minimal cover. However, in the remaining case, i.e., E �= ∅ and D �= ∅, BCNF is
not achievable, since the FD E → D would be implied thereby violating BCNF.

By the same reason, that remaining case is not compatible with 3NF either.
Furthermore we observe the following: if the scheme is in 3NF but not in BCNF,
then K1 and K2 are overlapping by the result of [23], and thus we have both
E �= ∅ and D = ∅; the scheme 〈{e, a, b}, {ea → b, b → a}〉 with keys ea and eb is
a well-known example of this situation.

5 Schemes Having Three Minimal Keys

Let us now assume that I has exactly three elements, say I = {a, b, c}. If we do
not have the situation described by Theorem 1, then the proposition presented
below states that there are exactly three minimal keys. Afterwards we again
argue that – essentially – the converse statement also holds.

Proposition 2. Let RS = 〈U, Σ〉 be a scheme such that E �= ∅, Σ[E] �= U , RS
has more than two minimal keys, and I = {a, b, c} has cardinality 3. Then RS
has exactly three minimal keys, namely either E ∪ a, E ∪ b and E ∪ b or E ∪ ab,
E ∪ bc and E ∪ ca.

Proof. According to the assumptions, E is not a minimal key by (3), and fur-
thermore, similarly to the argument of Case 3 of the proof of Proposition 1,
E ∪ abc cannot be a minimal key, since then it would be unique and thus we
would have a, b, c ∈ E. Thus, by (2), a minimal key has the form E ∪ a, E ∪ b,
E ∪ ab, E ∪ ab, E ∪ bc or E ∪ ca.

Since minimal keys may not include each other, besides the cases mentioned
in the proposition only combinations of two keys of the form E ∪ x and E ∪ yz
are possible, which however would violate the assumption that there are more
than two minimal keys. ��
Note that in both cases mentioned in Proposition 2, each of the attributes a,
b and c forms a singleton ∼mk-equivalence class, each of these attributes being
1-prime in the first case, but 2-prime in the second case. Conversely, consider
now a scheme 〈U, Σ〉 that has exactly three minimal keys K1, K2 and K3. Then
E = K1 ∩ K2 ∩ K2 by (2), and the characterization stated in Theorem 1 does
not hold. Comparing this situation with that of Proposition 2, we see that the

26 J. Biskup

D
E

dependent extremal attributes E (superprime)
attributes D and independent attributes I

K1

K2 K3

 (nonprime) (
no

np
rim

e)

I2

I1

I3

Fig. 2. Dependency structure of schemes having exactly three minimal keys

minimal keys K1, K2, K3 corresponds to either {a}, {b}, {c} or {a, b}, {b, c},
{c, a}. As in Section 4, a single attribute in Proposition 2 might have a set
of equally treated (i.e., ∼mk-equivalent) attributes as a counterpart. Moreover,
without the restriction of having exactly three elements in I, besides the cases
of having either no (nonempty) intersections at all or all possible intersections,
the remaining cases might appear as well.

Summarizing, the general situation of schemes having exactly three minimal
keys is fully characterized by the following Theorem 2 – where again property
(1) is redundant since it follows from property (2) – and visualized in Figure 2.

Theorem 2. Let RS = 〈U, Σ〉 be a scheme. Then RS has exactly three minimal
keys K1, K2 and K3 iff (1) Σ[E] �= U , and (2) ∼mk has at least three and at
most six equivalence classes that are different from E and N , where (3) of those
classes at most three consist of 1-prime attributes, at most three consist of 2-
prime attributes, and none consists of l-prime attributes with l > 3.

Proof. The “only-if part ” is easily verified by inspecting Figure 2. The “if-part”
is justified by distinguishing the four main cases that there are j equivalence
classes, for j = 3, 4, 5, 6, and for each of them the subcases according to the
contribution of the classes with 1-prime and 2-prime elements, respectively. For
j = 3, we recognize the situations described in Proposition 2. For j = 6, the
situation as shown in Figure 2 arises, assuming that each set Ii has “private”
(1-prime) attributes and nonempty intersections with the other Ijs. For j = 4
and j = 5, some of the “private” parts are missing or some of the intersections
are empty: in all cases however, we can form exactly three different I1, I2 and
I3 that do not contain one another, and thus each of them together with E is a
minimal key. ��

Schemes Having Few Minimal Keys 27

Finally, like in the preceding sections, to achieve BCNF while having exactly
three minimal keys, a minimal cover Σ must have exactly three left-hand sides
L1, L2 and L3, none of them containing another, and each of them serving as a
minimal key, i.e., Σ =

⋃
i=1,2,3{Li → x | x ∈ U \ Li}.

Again, as with two minimal keys, the case that both E �= ∅ and D �= ∅ is
excluded for 3NF, and thus for BCNF as well. Moreover, if the scheme is in
3NF but not in BCNF, at least two of the three keys must have a nonempty
intersection, by the result of [23].

6 Conclusion

Our remarks on few minimal keys are not too surprising: sets of minimal keys and
Sperner systems correspond to each other, and thus there are only a few options
to construct them if the underlying set is small or the cardinality of the system
is small. Somehow astonishing, however, is the observation that our charac-
terizations of schemes having two or three minimal keys, respectively, appear to
be a bit clumsy. In fact, we would like to employ a simple criterion for deciding
whether an attribute a appears in exactly l minimal keys, in particular for a small
value of l. Similarly, we would like to characterize minimal-key equivalence in a
simple way. Such characterizations could then be employed to describe schemes
having exactly n minimal keys, for n > 3. There seems to be no explicit studies
on such problems so far, but we expect that they are not efficiently computable,
given the complexity results on key-related problems cited before.

Besides of interest to an administrator charged to declare a “good” database
scheme capturing a specification that results form semantic modeling, the sit-
uations analyzed in these remarks might also be relevant for a security officer
attempting to protect confidential information from being inferable from query
answers and a publicly known schema declaration, as exemplarily studied in [5].

Acknowledgments. I would like to sincerely thank both an anonymous re-
viewer for highly constructive remarks and suggestions, which led to a substan-
tial improvement of the presentation, and Ralf Menzel for carefully reading and
commenting the manuscript. Moreover, I am gratefully indebted to Bernhard
Thalheim: both his great scientific achievements about semantic modeling and
database theory and a most fruitful and challenging personal tradition of dis-
cussing these and other topics with him as a colleague and friend – in particular
spanning the conference series MFDBS, ICDT and FoIKS – inspired not only
this article but many further work of mine as well.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Atzeni, P., Antonellis, V.D.: Relational Database Theory. Benjamin/Cummings,
Redwood City (1993)

28 J. Biskup

3. Biskup, J.: Boyce-Codd normal form and object normal forms. Inf. Process.
Lett. 32(1), 29–33 (1989)

4. Biskup, J., Demetrovics, J., Libkin, L., Muchnik, I.B.: On relational database
schemes having unique minimal key. Elektronische Informationsverarbeitung und
Kybernetik 27(4), 217–225 (1991)

5. Biskup, J., Embley, D.W., Lochner, J.-H.: Reducing inference control to access
control for normalized database schemas. Inf. Process. Lett. 106(1), 8–12 (2008)

6. Buneman, P., Davidson, S.B., Fan, W., Hara, C.S., Tan, W.C.: Reasoning about
keys for XML. Inf. Syst. 28(8), 1037–1063 (2003)

7. Chen, P.P.: The entity-relationship model – toward a unified view of data. ACM
Trans. Database Syst. 1(1), 9–36 (1976)

8. Demetrovics, J.: On the number of candidate keys. Inf. Process. Lett. 7(6), 266–269
(1978)

9. Demetrovics, J.: On the equivalence of candidate keys with Sperner systems. Acta
Cybern. 4, 247–252 (1980)

10. Demetrovics, J., Katona, G.O.H., Miklós, D., Seleznjev, O., Thalheim, B.: Asymp-
totic properties of keys and functional dependencies in random databases. Theor.
Comput. Sci. 190(2), 151–166 (1998)

11. Hartmann, S., Leck, U., Link, S.: On Codd families of keys over incomplete rela-
tions. Comput. J. 54(7), 1166–1180 (2011)

12. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 34(2) (2009)

13. Lausen, G., Meier, M., Schmidt, M.: SPARQLing constraints for RDF. In: Kem-
per, A., et al. (eds.) International Conference on Extending Database Technology,
EDBT 2008. ACM International Conference Proceeding Series, vol. 261, pp. 499–
509. ACM, New York (2008)

14. Lucchesi, C.L., Osborn, S.L.: Candidate keys for relations. J. Comput. Syst.
Sci. 17(2), 270–279 (1978)

15. Mannila, H., Räihä, K.-J.: The Design of Relational Databases. Addison-Wesley,
Wokingham (1992)

16. Paredaens, J., Bra, P.D., Gyssens, M., Gucht, D.V.: The Structure of the Relational
Database Model. Springer, Heidelberg (1989)

17. Thalheim, B.: On semantic issues connected with keys in relational databases
permitting null values. Elektronische Informationsverarbeitung und Kyber-
netik 25(1/2), 11–20 (1989)

18. Thalheim, B.: Dependencies in Relational Databases. Teubner, Stuttgart (1991)
19. Thalheim, B.: The number of keys in relational and nested relational databases.

Discrete Applied Mathematics 40(2), 265–282 (1992)
20. Thalheim, B.: Entity-Relationship Modeling – Foundations of Database Technol-

ogy. Springer, Heidelberg (2000)
21. Thalheim, B.: Towards a Theory of Conceptual Modelling. In: Heuser, C.A., Pernul,

G. (eds.) ER 2009. LNCS, vol. 5833, pp. 45–54. Springer, Heidelberg (2009)
22. Toman, D., Weddell, G.E.: On keys and functional dependencies as first-class citi-

zens in description logics. J. Autom. Reasoning 40(2-3), 117–132 (2008)
23. Vincent, M.W., Srinivasan, B.: A note on relation schemes which are in 3NF but

not in BCNF. Inf. Process. Lett. 48(6), 281–283 (1993)

Random Databases with Correlated Data

Gyula O.H. Katona

Rényi Institute, Budapest, Hungary
ohkatona@renyi.hu

Dedicated to Professor Bernhard Thalheim for his 60th birthday

Abstract. A model of random databases is given, with arbitrary corre-
lations among the data of one individual. This is given by a joint distribu-
tion function. The individuals are chosen independently, their number m
is considered to be (approximately) known. The probability of the event
that a given functional dependency A → b holds (A is a set of attributes,
b is an attribute) is determined in a limiting sense. This probability is
small if m is much larger than 2H2(A→b)/2 and is large if m is much
smaller than 2H2(A→b)/2 where H2(A → b) is an entropy like functional
of the probability distribution of the data.

1 Introduction

Consider the data of a class in a school (in Europe), it can be supposed that
the last name is a key, that is all other data are functionally dependent on it.
Considering the whole school, the probability of having two students with the
same last name is pretty high, so the last name cannot be taken as a key. But,
very likely the first and last names together from a key. It will be certainly not
true for the data of a large city.

The example above illustrates that, considering the database to be random,
the size (number of rows) largely determines which functional dependencies can
be considered valid. The aim of the present paper is to give a model of this
situation. The first attempts in this directions were the papers of Demetrovics,
Katona, Miklós, Seleznjev and Thalheim [1], [2]. There the authors supposed
that the data of one individual are probabilistically independent. It was shown
even in this case that a set of constant times the logarithm of the size of the
database many columns will functionally determine a given other column with
high probability. Their model however was not able to include ”real” functional
dependencies or situations like ”very probably functionally dependent”. The aim
of the present paper is to extend the results in this direction.

Let Ω be the set of attributes, |Ω| = n. The set of all possible entries is
denoted by E. (If the distinct attributes have different sets of entries then E is
their union.) Let one row of the database is the random vector (ξ1, ξ2, . . . , ξn)
where the ξs are not necessarily independent, the distribution is given by the
probabilities

Pr(ξ1 = u1, ξ2 = u2, . . . , ξn = un) (1)

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 29–35, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

30 G.O.H. Katona

for all possible entries u1, u2, . . . , un ∈ E. Let A ⊂ Ω, b ∈ Ω. We say that b
functionally depends on A with probability one if the probabilities

Pr(ξi = ui(i ∈ A), ξb = ub)

are zero for all but one ub ∈ E for any choice of entries ui ∈ E(i ∈ A). On
the other hand the individuals, the rows are chosen independently. In terms of
probability theory, consider m (totally) independently chosen realizations of the
random vector whose probabilities are determined by (1).

An entropy like function is needed to our further investigations. Let ξ and
η be two, not necessarily independent random variables. The probability of the
event that ξ = k and η = � is pk,�, the probability of ξ being k is pk =

∑
� pk�.

Define

H2(ξ → η) = − log2

⎛

⎝
∑

k

p2k −
∑

k,�

p2k,�

⎞

⎠ . (2)

This quantity is related to the Rényi entropy of order 2 (see [4] and [5]).
Let A ⊂ Ω, b ∈ Ω, b �∈ A. The random vector of the coordinates ξi(i ∈ A) will

be denoted by α. The probability of the event that α is equal to the kth sequence
is denoted by pk(A). Moreover, the probability of the event that α is equal to the
kth sequence and ξb has the �th entry is pk,�(A, b). Our crucial notion is defined
in the following way:

H2(A→ b) = H2(α→ ξb). (3)

The Heuristic Version of the Theorem. The functional dependency A→ b
”seems to hold” (there are no two rows equal in the entries belonging to A and
different in the column of b) with large probability in a random database of size
m if and only if 2 log2m is much smaller than H2(A→ b).

The statement above will be made more clear by analyzing two special cases.
First let us suppose that all the ξ’s are independent in (1) and each of them has
a probability distribution (q1, q2, . . . , qR). Then the probabilities in question are

Pr(ξi = ui(i ∈ A), ξb = ub) =
∏

i∈A

qui · qub
.

These probabilities will pay the role of pk� in (2), while pk will be

Pr(ξi = ui(i ∈ A)) =
∏

i∈A

qui .

It is easy to see that in this case (deleting the arguments A and b)

∑

k

p2k −
∑

k,�

p2k� =
∑

k

p2k −
∑

k

p2k
∑

�

r2� =

(
∑

k

p2k

)
−
(
1−
∑

�

r2�

)
. (4)

On the other hand,

∑

�

r2� =

(
∑

i

q2i

)|A|
. (5)

Random Databases with Correlated Data 31

Using (2), (3), (4) and (5) we obtain

H2(A→ b) = |A| ·H2(q1, q2, . . . qR)− log2

(
1−
∑

�

q2�

)

where H2(q1, q2, . . . qR) = log2
∑

i q
2
i is the Rényi entropy of order 2 ([4], [5]).

Here the first term tends to infinity with |A| while the second term is constant.
H2(A → b) is close to |A| · H2(q1, q2, . . . qR). The Theorem means in this case
that A → b holds for a random database of size m if 2 log2m is less than

|A| ·H2(q1, q2, . . . qR), that is, for the As satisfying |A| > 2 log2 m
H2(q1,q2,...qR) . This was

proved in [2].
The other important special case is when b is really functionally dependent

on A. Then pk� = pk for a uniquely determined � = �(k), all other pk�s are zero.
Therefore the last term in (2) is equal to

∑
k p

2
k, (2) is plus infinity. The Theorem

says in this case that A→ b holds when 2 log2m is less than ∞, that is always.

2 The Exact Forms of the Theorem

It will be supposed that the database consists of m (totally) independently cho-
sen rows of the random vector defined by the probability distribution (1). Our
result is of asymptotic nature, it is valid for large matrices, large number of
columns and rows. More precisely we will assume that n = |Ω|, |A| depend on
m what tends to infinity. It may seem more natural to take n to be the main
variable and to suppose that the other quantities depend on it while it tends to
infinity. However the size of the asymptotical existence of A→ b is independent
on n it only depends on the relation of m and H2(A → b). This is why it is
better to consider m as the basic variable.

It will be supposed that the distribution (1) for n′ is the ”continuation” of
the one for n, that is, the probabilities in (1) can be obtained by summing the
probabilities for n′ for ξn+1, . . . , ξn′ . The column b is fixed, while |A| tends to
infinity by adding newer and newer columns (distinct from b) to A.

Some more definitions are needed to the formulation of the theorem. The
probability of the of the event that A→ b (A ⊂ Ω, b ∈ Ω) holds in a database
of size m is denoted by Pr(A → b,m). Let p(α, ξb, I) denote the probability
of the event that the pair of two independent copies (α1, ξb,1), (α2, ξb,2) gives
a counter-example, that is, Pr(α1 = α2, ξb,1 �= ξb,2). Similarly p(α, ξb, V) de-
notes the probability of the event that the triple (α1, ξb,1), (α2, ξb,2), (α3, ξb,3)
gives two counter-examples in the following way: α1 = α2 = α3, ξb,1 �= ξb,2 �=
ξb,3. Finally p(α, ξb, N) is the probability of the event that the quadruple
(α1, ξb,1), (α2, ξb,2), (α3, ξb,3), (α4, ξb,4) gives three counter-examples forming a
path: α1 = α2 = α3 = α4, ξb,1 �= ξb,2 �= ξb,3 �= ξb,4.

The first exact form of the Theorem is a repetition/implementation of the
main theorem in [3]. This theorem is stated for two random variables. The only
novelty here is that one of these variables is a random vector α. But this causes
no real change. Therefore the theorem below needs no proof here. The interested
reader is referred to [3].

32 G.O.H. Katona

Theorem 1

Pr(A→ b,m)→

⎧
⎨

⎩

0 if 2 log2m−H2(A→ b)→ +∞,

e−2a−1

if 2 log2m−H2(A→ b)→ a,
1 if 2 log2m−H2(A→ b)→ −∞.

under the assumptions that

p(α, ξb, V)2

p(α, ξb, I)3
→ 0 (6)

and
p(α, ξb, N)

p(α, ξb, I)2
→ 0 (7)

hold.

Although this is the most general form of the statement, known to us, it is
difficult to check if the conditions (6) and (7) hold. However, exploiting the
matrix structure in this case we can give weaker, but more natural conditions.
Let pκ(A) denote the probability of the event that α = κ. Moreover, pκ,�(A, b)
denotes the probability of the event that α = κ, ξb = �.

Theorem 2

Pr(A→ b,m)→

⎧
⎨

⎩

0 if 2 log2m−H2(A→ b)→ +∞,

e−2a−1

if 2 log2m−H2(A→ b)→ a,
1 if 2 log2m−H2(A→ b)→ −∞.

under the following assumptions:
(i)

maxκ pκ(A)√∑
κ p

2
κ(A)

→ 0, (8)

(ii) There is a constant 0 < u < 1 independent of A such that
∑

κ,� p
2
κ,�(A, b)∑

κ p
2
κ(A)

≤ u (9)

hold.

Proof. We have to prove that (i) and (ii) imply both (6) and (7). Let us start
with some elementary lemmas. The first two of them prove that if a sequence
of non-negative numbers is given with a fixed sum and an upper bound c is
given on them then the sum of their squares is maximized for a choice with (one
exception) all members = c or 0. We give the proof for sake of completeness.

Lemma 1. Let the real numbers 0 ≤ a, b, c satisfy the inequalities b ≤ a ≤ c ≤
a+ b. Then

a2 + b2 ≤ c2 + (a+ b− c)2 (10)

holds.

Random Databases with Correlated Data 33

Proof. Consider the function x2 + (a + b − x)2. It is increasing from a+b
2 . The

conditions of the lemma imply (10), considering the values x = a and x = c. ��

Lemma 2. Let a1, a2, . . . , aN be non-negative real numbers with sum
∑

i a = s.
If ai ≤ c holds for all 1 ≤ i ≤ N then

∑

i

a2i ≤
⌈s
c

⌉
c2 (11)

is true.

Proof. We use induction over N . The case N = 1 is trivial. Order the numbers
in the following way: a1 ≤ a2 ≤ . . . ≤ aN ≤ c. If aN = c then delete this
member and use the inductional hypothesis. Otherwise, if aN < c two cases
will be distinguished. Firstly, if c ≤ aN−1 + aN then apply Lemma 1 with a =
aN , b = aN−1. Replacing aN by c and aN1 by aN−1 + aN − c a new sequence of
numbers is obtained with the the same sum and non-decreased sum of squares.
It is sufficient to prove the statement for this sequence, but this follows from the
previous case, since it contains aN = c. Secondly, if c > aN−1 + aN then apply
Lemma 1 with b = aN−1, a = aN , c = aN−1 + aN . The so obtained inequality,
a2N−1+a2N ≤ (aN−1+aN)2+02 (what can be directly seen) shows that replacing
aN−1 and aN by aN−1+aN and 0 the sum is unchanged, the sum of the squares
is non-decreased. Since this sequence contains a 0, omitting this the induction
can be used, again. ��

Lemma 3. Let q1, q2, . . . , qN be non-negative real numbers, where all of these
(including N) depend on n what tends to the infinity. Then

maxk qk∑
k qk

→ 0 (12)

implies ∑
k q

2
k

(
∑

k qk)
2 → 0. (13)

Proof. Use (11) of Lemma 2 with c(n) = maxk qk and s =
∑

k qk:

∑
k q

2
k

(
∑

k qk)
2 ≤

(∑
k qk

c(n) + 1
)
c2(n)

(
∑

k qk)
2 =

c(n)∑
k qk

+

(
c(n)∑
k qk

)2

shows that (12) really implies (13). ��
Return to the proof of Theorem 2. Lemma 3 will be applied for the values p2κ(A)
in place of qi. Condition (12) becomes exactly (8), therefore (13) gives

∑
κ p

4
κ(A)

(
∑

κ p
2
κ(A))

2 → 0. (14)

34 G.O.H. Katona

Let us now give a lower estimate on p(α, ξb, I) using (ii) (that is (9))

p(α, ξb, I) =
∑

κ

p2κ(A)−
∑

κ,�

p2κ,�(A, b) ≥ (1− u)
∑

κ

p2κ(A). (15)

Recall that p(α, ξb, N) is the probability of the event that the quadruple
(α1, ξb,1), (α2, ξb,2), (α3, ξb,3), (α4, ξb,4) gives three counter-examples forming a
path: α1 = α2 = α3 = α4, ξb,1 �= ξb,2 �= ξb,3 �= ξb,4. This is a subevent of the
event that α1 = α2 = α3 = α4. The probability of the latter one is

∑
κ p

4
κ(A).

Hence we have
p(α, ξb, N) ≤

∑

κ

p4κ(A). (16)

(15) and (16) give an upper bound on the left hand side of (7):

p(α, ξb, N)

p(α, ξb, I)2
≤

∑
κ p

4
κ(A)

(1 − u)2 (
∑

κ p
2
κ(A))

2 . (17)

The right hand side tends to 0 by (14), proving (7).
The left hand side of (6) can be similarly upperbounded:

p(α, ξb, V)2

p(α, ξb, I)3
≤

(∑
κ p

3
κ(A)
)2

(1− u)3 (
∑

κ p
2
κ(A))

3 . (18)

Apply the well-known Cauchy-Bunyakovsky-Schwarz inequality

(
∑

i

aibi

)2

≤
(
∑

i

a2i

)(
∑

i

b2i

)

with pκ(A) and p2κ(A):

(
∑

κ

p3κ(A)

)2

≤
(
∑

κ

p2κ(A)

)(
∑

κ

p4κ(A)

)
.

This latter inequality implies

(∑
κ p

3
κ(A)
)2

(
∑

κ p
2
κ(A))

3 ≤
∑

κ p
4
κ(A)

(
∑

κ p
2
κ(A))

2 . (19)

(18), (19) and (14) prove (6). ��

3 Remarks, Future Work

Related earlier work. In addition to the papers [1], [2], mentioned in the
introduction, one should mention the important works of Seleznjev and Thalheim
[6], [7] on the probabilistic-statistical properties of databases.

Random Databases with Correlated Data 35

On the conditions of Theorem 2. Condition (i) is a rather weak one, it
is satisfied in a very wide range. However it is stronger than the condition
maxκ pκ(A) → 0. An example when the latter one holds but (i) does not is
the following. Let N denote the total number of members (probabilities), and
choose the largest one to be 1√

N
, the other ones are equal, and add up to 1.

Then the limit in (8) is 1
2 , not 0.

On the other hand, condition (ii) (that is (9)) is strong. It excludes e.g. the
case when b is ”very probably functionally dependent” on A. We are sure that
(6) and (7) can be proved under (8) and a much weaker condition than (9). It
needs a deeper analysis of the situation. For instance, the rough estimate (16)
is not sufficient in this more general case.

Future work. Besides the analytic work suggested in the previous paragraph,
one should consider a more general setting of the whole problem. Already the
present setting has a certain ”data mining” nature. We investigated here that
when (at what size?) a hidden, weak statistical dependence becomes visible.
A possible more general setting is when the following question is investigated.
Given the statistical dependence a certain number of examples can be expected.
At what size have we at least (say) half of this number. Another possible step
forward if the ”quality” of the examples is also taken into consideration.

References

1. Demetrovics, J., Katona, G.O.H., Miklós, D., Seleznjev, O., Thalheim, B.: Asymp-
totic properties of keys and functional dependencies in random databases. Theoret-
ical Computer Sciences 190, 151–166 (1998)

2. Demetrovics, J., Katona, G.O.H., Miklós, D., Seleznjev, O., Thalheim, B.: Func-
tional dependencies in random databases. Studia Sci. Math. Hungar. 34, 127–140
(1998)

3. Katona, G.O.H.: Testing functional connection between two random variables.
Prokhorov Festschrift (accepted)

4. Rényi, A.: Some fundamental questions of information theory. MTA III Oszt.
Közl. 10, 251–282 (1960) (in Hungarian)

5. Rényi, A.: On measures of information and entropy. In: Proc. of the 4th Berkeley
Symposium on Mathematics, Statistics and Probability, pp. 547–561 (1960/1961)

6. Seleznjev, O., Thalheim, B.: Average Case Analysis in Database Problems. Method-
ology and Computing in Applied Probability 5(4), 395–418 (2003)

7. Seleznjev, O., Thalheim, B.: Random Databases with Approximate Record Match-
ing. Methodology and Computing in Applied Probability 12(1), 63–89 (2010)

Statistical Inference for Rényi Entropy

Functionals

David Källberg1, Nikolaj Leonenko2, and Oleg Seleznjev1

1 Department of Mathematics and Mathematical Statistics,
Ume̊a University, SE-901 87 Ume̊a, Sweden
2 School of Mathematics, Cardiff University,
Senghennydd Road, Cardiff CF24 4YH, UK

Abstract. Numerous entropy-type characteristics (functionals) general-
izing Rényi entropy are widely used in mathematical statistics, physics,
information theory, and signal processing for characterizing uncertainty
in probability distributions and distribution identification problems. We
consider estimators of some entropy (integral) functionals for discrete
and continuous distributions based on the number of epsilon-close vec-
tor records in the corresponding independent and identically distributed
samples from two distributions. The proposed estimators are general-
ized U -statistics. We show the asymptotic properties of these estimators
(e.g., consistency and asymptotic normality). The results can be ap-
plied in various problems in computer science and mathematical statis-
tics (e.g., approximate matching for random databases, record linkage,
image matching).

AMS 2000 subject classification: 94A15, 62G20

Keywords: entropy estimation, Rényi entropy, U -statistics, approxi-

mate matching, asymptotic normality.

1 Introduction

Let X and Y be d-dimensional random vectors with discrete or continuous dis-
tributions PX and PY , respectively. In information theory and statistics, there
are various generalizations of Shannon entropy (Shannon, 1948), characterizing
uncertainty in PX and PY , for example, the Rényi entropy (Rényi, 1961, 1970),

hs = hs(PX) :=
1

1− s
log

(∫

Rd

pX(x)sdx

)
, s �= 1,

and the (differentiable) variability for approximate record matching in random
databases

v = v(PX ,PY) := − log

(∫

Rd

pX(x)pY (x)dx

)
,

where pX(x), pY (x), x ∈ Rd, are densities of PX and PY , respectively (see Se-
leznjev and Thalheim, 2003, 2008). Henceforth we use log x to denote the natural

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 36–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Statistical Inference for Rényi Entropy Functionals 37

logarithm of x. More generally, for non-negative integers r1, r2 ≥ 0, r := (r1, r2),
and r := r1 + r2, we consider Rényi entropy functionals

qr = qr(PX ,PY) :=

∫

Rd

pX(x)r1pY (x)
r2dx,

and for the discrete case, PX = {pX(k), k ∈ Nd} and PY = {pY (k), k ∈ Nd},

qr = qr(PX ,PY) :=
∑

k

pX(k)r1pY (k)
r2 .

Moreover, introduce the functionals

hr = hr(PX ,PY) :=
1

1− r
log qr, r �= 1.

Then, for example, the Rényi entropy hs = hs,0 and the variability v = h1,1.
Let X1, . . . , Xn1 and Y1, . . . , Yn2 be mutually independent samples of indepen-
dent and identically distributed (i.i.d.) observations from PX and PY , respec-
tively. We consider the problem of estimating the entropy-type functionals qr,
hr, and related characteristics for PX and PY from the samples X1, . . . , Xn1 and
Y1, . . . , Yn2 .

Various entropy applications in statistics (e.g., classification and distribu-
tion identification problems) and in computer science and bioinformatics (e.g.,
average case analysis for random databases, approximate pattern and image
matching) are investigated in, e.g., Kapur (1989), Kapur and Kesavan (1992),
Leonenko et al. (2008), Szpankowski (2001), Seleznjev and Thalheim (2003,
2008), Thalheim (2000), Baryshnikov et al. (2009), and Leonenko and Seleznjev
(2010). Some average case analysis problems for random databases with entropy
characteristics are investigated also in Demetrovics et al. (1995, 1998a, 1998b).

In our paper, we generalize the results and approach proposed in Leonenko
and Seleznjev (2010), where inference for the quadratic Rényi entropy is studied
for one sample. We consider properties (consistency and asymptotic normality)
of kernel-type estimators based on the number of coincident (or ε-close) obser-
vations in d-dimensional samples for a more general class of entropy-type func-
tionals. These results can be used, e.g., in evaluation of asymptotical confidence
intervals for the corresponding Rényi entropy functionals.

Note that our estimators of entropy-type functionals are different form those
considered by Kozachenko and Leonenko (1987), Tsybakov and van der Meulen
(1996), Leonenko et al. (2008), and Baryshnikov et al. (2009) (see Leonenko and
Seleznjev, 2010, for a discussion).

First we introduce some notation. Throughout the paper, let X and Y be
independent random vectors in Rd with distributions PX and PY , respectively.
For the discrete case, PX = {pX(k), k ∈ Nd} and PY = {pY (k), k ∈ Nd}. In the
continuous case, let the distributions be with densities pX(x) and pY (x), x ∈ Rd,
respectively. Let d(x, y) = |x − y| denote the Euclidean distance in Rd and
Bε(x) := {y : d(x, y) ≤ ε} an ε-ball in Rd with center at x, radius ε, and

38 D. Källberg, N. Leonenko, and O. Seleznjev

volume bε(d) = εdb1(d), b1(d) = 2πd/2/(dΓ (d/2)). Denote by pX,ε(x) the ε-ball
probability

pX,ε(x) := P{X ∈ Bε(x)}.
We write I(C) for the indicator of an event C, and |D| for the cardinality of a
finite set D.

Next we define estimators of qr when r1 and r2 are non-negative integers
with r1 + r2 ≥ 2. In order to include the one-sample case, we assume without
loss of generality that r1 ≥ r2. So, we have that r1 ≥ 1. Denote n := (n1, n2),
n := n1 + n2, and say that n→∞ if n1, n2 →∞. For r2 �= 0, let pn := n1/n→
p, 0 < p < 1, as n→ ∞. When r2 = 0, we put n = n1, i.e., p := pn = 1. For an
integer k, denote by Sm,k the set of all k-subsets of {1, . . . ,m}. For S ∈ Sn1,r1 ,
T ∈ Sn2,r2 , and i ∈ S, define

ψ(i)
n (S;T) = ψ(i)

n,r,ε(S;T) := I(d(Xi, Xj) ≤ ε, d(Xi, Yk) ≤ ε, ∀j ∈ S, ∀k ∈ T),

i.e., the indicator of the event that all elements in {Xj, j ∈ S} and {Yk, k ∈ T }
are ε-close to Xi. Note that by conditioning we have

Eψ(i)
n (S;T) = EpX,ε(X)r1−1pY,ε(X)r2 =: qr,ε,

say, the ε-coincidence probability. Let a generalized U -statistic for the functional
qr,ε be defined as

Qn,r = Qn,r,ε :=

(
n1

r1

)−1(
n2

r2

)−1 ∑

S∈Sn1,r1

∑

T∈Sn2,r2

ψn(S;T),

where the symmetrized kernel

ψn(S;T) = ψn,r,ε(S;T) :=
1

r1

∑

i∈S

ψ(i)
n (S;T),

and by definition, Qn,r is an unbiased estimator of qr,ε = EQn,r. Define for
discrete and continuous distributions

ζ1,0 = ζ1,0,r := Var(pX(X)r1−1pY (X)r2) = q2r1−1,2r2 − q2r1,r2 ,

ζ0,1 = ζ0,1,r := Var(pX(Y)r1pY (Y)r2−1) = q2r1,2r2−1 − q2r1,r2 , r2 ≥ 1,

and for the one- and two sample case, let

κr :=

{
p−1r21ζ1,0 + (1− p)−1r22ζ0,1, r2 ≥ 1,
r21ζ1,0, r2 = 0.

Denote by
D→ and

P→ convergence in distribution and in probability, respectively.
The paper is organized as follows. In Section 2, we consider estimation of Rényi

entropy functionals for discrete and continuous distributions. In Section 3, we
discuss some applications of the obtained estimators in average case analysis for
random databases (e.g., for join optimization with approximate matching), in
pattern and image matching problems, and for some distribution identification
problems. Several numerical experiments demonstrate the rate of convergence in
the obtained asymptotic results. Section 4 contains the proofs of the statements
from the previous sections.

Statistical Inference for Rényi Entropy Functionals 39

2 Main Results

2.1 Discrete Distributions

In the discrete case, set ε = 0, i.e., exact coincidences are considered. Then Qn,r

is an unbiased estimator of the ε-coincidence probability

qr,0 = qr = EI(X1 = Xi = Yj , i = 2, . . . , r1, j = 1, . . . , r2) = EpX(X)r1−1pY (X)r2 .

Let Qn,r := Qn,r,0 and

Kn,r :=

{
p−1
n r21(Qn,2r1−1,2r2 −Q2

n,r) + (1− pn)
−1r22(Qn,2r1,2r2−1 −Q2

n,r), r2 ≥ 1,
r21(Qn,2r1−1,2r2 −Q2

n,r), r2 = 0,

and kn,r := max(Kn,r, 1/n), an estimator of κr. Denote by
Hn,r := log(max(Qn,r, 1/n))/(1− r), an estimator of hr.

Remark 1 (Remark). Instead of 1/n in the definition of a truncated estimator, a
sequence an > 0, an → 0 as as n→∞, can be used (cf. Leonenko and Seleznjev,
2010).

The next asymptotic normality theorem for the estimator Qn,r follows straight-
forwardly from the general U -statistic theory (see, e.g., Lee, 1990, Koroljuk and
Borovskich, 1994) and the Slutsky theorem.

Theorem 1. If κr > 0, then

√
n(Qn,r − qr)

D→ N(0, κr) and
√
n(Qn,r − qr)/k

1/2
n,r

D→ N(0, 1);
√
n(1− r)Qn,r(Hn,r − hr)/k

1/2
n,r

D→ N(0, 1) as n→∞.

2.2 Continuous Distributions

In the continuous case, denote by Q̃n,r := Qn,r/bε(d)
r−1 an estimator of qr. Let

q̃r,ε := EQ̃n,r = qr,ε/bε(d)
r−1 and v2n := Var(Q̃n,r).

Henceforth, assume that ε = ε(n)→ 0 as n → ∞. For a sequence of random
variables Un, n ≥ 1, we say that Un = OP(1) as n → ∞ if for any ε > 0 and n
large enough there exists A > 0 such that P (|Un| > A) ≤ ε, i.e., the family of
distributions of Un, n ≥ 1, is tight, and for a numerical sequence wn, n ≥ 1, say,
Un = OP(wn) as n → ∞ if Un/wn = OP(1) as n → ∞. The following theorem
describes the consistency and asymptotic normality properties of the estimator
Q̃n,r.

Theorem 2. Assume that pX(x) and pY (x) are bounded and continuous or with
a finite number of discontinuity points.

(i) Then EQ̃n,r → qr as n → ∞ and if nεd(1−1/r) → a, 0 < a ≤ ∞, then

v2n = O(n−1εd(1/r−1)). Hence, if nεd(1−1/r) → ∞, then Q̃n,r is a consistent
estimator of qr.

40 D. Källberg, N. Leonenko, and O. Seleznjev

(ii) If κr > 0 and nεd →∞, then

√
n(Q̃n,r − q̃r,ε)

D→ N(0, κr) as n→∞.

In order to evaluate the functional qr, we denote by H(α)(C), 0 < α ≤ 2, C > 0,
a linear space of bounded and continuous in Rd functions satisfying α-Hölder
condition if 0 < α ≤ 1 or if 1 < α ≤ 2 with continuous partial derivatives
satisfying (α− 1)-Hölder condition with constant C. Furthermore, let

Kn,r :=

{
p−1
n r21(Q̃n,2r1−1,2r2,ε − Q̃2

n,r,ε) + (1− pn)
−1r22(Q̃n,2r1,2r2−1,ε − Q̃2

n,r,ε), r2 ≥ 1,

r21(Q̃n,2r1−1,2r2,ε − Q̃2
n,r,ε), r2 = 0,

and define kn,r := max(Kn,r, 1/n). It follows from Theorem 2 and the Slutsky
theorem that kn,r is a consistent estimator of the asymptotic variance κr. Denote

by Hn,r := log(max(Q̃n,r, 1/n))/(1−r), an estimator of hr. Let L(n) be a slowly
varying function. We obtain the following asymptotic result.

Theorem 3. Let pX(x), pY (x) ∈ H(α)(C).
(i) Then the bias |q̃r,ε − qr| ≤ C1ε

α, C1 > 0.
(ii) If 0 < α ≤ d/2 and ε ∼ cn−α/(2α+d(1−1/r)), 0 < c <∞, then

Q̃n,r − qr = OP(n
−α/(2α+d(1−1/r))) and Hn,r − hr = OP(n

−α/(2α+d(1−1/r))) as n→∞.

(iii) If κr > 0, α > d/2, ε ∼ L(n)n−1/d, and nεd →∞, then

√
n(Q̃n,r − qr)

D→ N(0, κr) and
√
n(Q̃n,r − qr)/k

1/2
n,r

D→ N(0, 1);
√
n(1− r)Q̃n,r(Hn,r − hr)/k

1/2
n,r

D→ N(0, 1) as n→∞.

3 Applications and Numerical Experiments

3.1 Approximate Matching in Stochastic Databases

Let tables (in a relational database) T1 and T2 be matrices with m1 and m2

i.i.d. random tuples (or records), respectively. One of basic database operations,
join, combines two tables into a third one by matching values for given columns
(attributes). For example, the join condition can be the equality (equi-join) be-
tween a given pairs of attributes (e.g., names) from the tables. Joins are es-
pecially important for tieing together pieces of disparate information scattered
throughout a database (see, e.g., Kiefer et al. 2005, Copas and Hilton, 1990,
and references therein). For the approximate join, we match ε-close tuples, say,
d(t1(j), t2(i)) ≤ ε, tk(j) ∈ Tk, k = 1, 2, with a specified distance, see, e.g., Selezn-
jev and Thalheim (2008). A set of attributes A in a table T is called an ε-key
(test) if there are no ε-close sub-tuples tA(j), j = 1, . . . ,m. Knowledge about
the set of tests (ε-keys) is very helpful for avoiding redundancy in identification

Statistical Inference for Rényi Entropy Functionals 41

and searching problems, characterizing the complexity of a database design for
further optimization, see, e.g., Thalheim (2000). By joining a table with itself
(self-join) we identify also ε-keys and key-properties for a set of attributes for a
random table (Seleznjev and Thalheim, 2003, Leonenko and Seleznjev, 2010).

The cost of join operations is usually proportional to the size of the interme-
diate results and so the joining order is a primary target of join-optimizers for
multiple (large) tables, Thalheim (2000). The average case approach based on
stochastic database modelling for optimization problems is proposed in Selezn-
jev and Thalheim (2008), where for random databases, the distribution of the
ε-join size Nε is studied. In particular, with some conditions it is shown that the
average size

ENε = m1m2q1,1,ε = m1m2ε
db1(d)(e

−v + o(1)) as ε→ 0,

that is the asymptotically optimal (in average) pairs of tables are amongst the
tables with maximal value of the functional v = h1,1 (variability) and the corre-
sponding estimators of h1,1 can be used for samples X1, . . . , Xn1 and Y1, . . . , Yn2

from T1 and T2, respectively. For discrete distributions, similar results from The-
orem 1 for ε = 0 can be applied.

3.2 Image Matching Using Entropy Similarity Measures

Image retrieval and registration fall in the general area of pattern matching
problems, where the best match to a reference or query image I0 is to be found
in a database of secondary images {Ii}ni=1 . The best match is expressed as
a partial re-indexing of the database in decreasing order of similarity to the
reference image using a similarity measure. In the context of image registration,
the database corresponds to an infinite set of transformed versions of a secondary
image, e.g., rotation and translation, which are compared to the reference image
to register the secondary one to the reference.

LetX and Y be d-dimensional random vectors and let pX(x) and pY (x) denote
densities for X and Y . In the sequel, X is a feature vector constructed from the
query image and Y corresponding feature vector for a secondary image in an
image database. When the features are discrete valued the pX(x) and pY (x) are
probability mass functions.

The basis for entropy methods of image matching is a measure of similarity
between image densities pX(x) and pY (x). A general entropy similarity measure
is the Rényi s-divergence, also called the Rényi s-relative entropy,

Ds(pX , pY) :=
1

s− 1
log

∫

Rd

pY (x)

(
pX(x)

pY (x)

)s

dx =
1

s− 1
log

∫

Rd

pX(x)spY (x)
1−sdx, s �= 1.

When the density pX(x) is supported on a compact domain and Y is uniformly
distributed over this domain, the Rényi s-divergence reduces to the Rényi s-
entropy

hs =
1

1− s
log

(∫

Rd

pX(x)sdx

)
.

42 D. Källberg, N. Leonenko, and O. Seleznjev

Another important example of statistical distance between distributions is given
by the following nonsymmetric Bregman distance (see, e.g., Pardo, 2006)

Bs = Bs(pX , pY) :=

∫

Rd

[
pY (x)

s +
1

s− 1
pX(x)s − s

s− 1
pX(x)pY (x)

s−1

]
dx, s �= 1,

or its symmetrized version

Ks = Ks(pX , pY) :=
1

s
[Bs(pX , pY) +Bs(pY , pX)]

=
1

s− 1

∫

Rd

[pX(x) − pY (x)][pX(x)s−1 − pY (x)
s−1]dx.

For s = 2, we get the second order distance

B2 = K2 =

∫

Rd

[pX(x)− pY (x)]
2dx.

Observe that, e.g.,

Bs = q0,s + qs,0/(s− 1)− sq1,s−1/(s− 1).

So, for an integer s, applying Theorems 1 and 3 one can obtain an asymptoti-
cally normal estimator of the Rényi s-entropy and a consistent estimator of the
Bregman distance.

3.3 Entropy Maximizing Distributions

For a positive definite and symmetric matrix Σ, s �= 1, define the constants

m = d+ 2/(s− 1), Cs = (m+ 2)Σ,

and

As =
1

|πCs|1/2
Γ (m/2 + 1)

Γ ((m− d)/2 + 1)
.

Among all densities with mean μ and covariance matrix Σ, the Rényi entropy
hs, s = 2, . . . , is uniquely maximized by the density (Costa et al. 2003)

p∗s(x) =
{
As(1− (x− μ)TC−1

s (x− μ))1/(s−1), x ∈ Ωs

0, x /∈ Ωs,
(1)

with support
Ωs = {x ∈ Rd : (x− μ)TC−1

s (x− μ) ≤ 1}.
The distribution defined by p∗s(x) belongs to the class of Student-r distributions.
Let K be a class of d-dimensional density functions p(x), x ∈ Rd, with pos-
itive definite covariance matrix. By the procedure described in Leonenko and
Seleznjev (2010), the proposed estimator of hs can be used for distribution iden-
tification problems, i.e., to test the null hypothesis H0 : X1, . . . , Xn is a sample
from a Student-r distribution of type (1) against the alternative H1 : X1, . . . , Xn

is a sample from any other member of K.

Statistical Inference for Rényi Entropy Functionals 43

3.4 Numerical Experiments

Example 1. Figure 1 shows the accuracy of the estimator for the cubic Rényi en-
tropy h3 of discrete distributions in Theorem 1, for a sample from a d-dimensional
Bernoulli distribution and n observations, d = 3, n = 300, with Bernoulli Be(p)-
i.i.d. components, p = 0.8. Here the coincidence probability q3 = (p3+(1−p)3)3

and the Rényi entropy h3 = − log(q3)/2. The histogram for the normalized

residuals r
(i)
n := 2

√
nQn,r(Hn,r − hr)/k

1/2
n,r , i = 1, . . . , Nsim are compared to the

standard normal density, Nsim = 500. The corresponding qq-plot and p-values
for the Kolmogorov-Smirnov (0.4948) and Shapiro-Wilk (0.7292) tests also sup-
port normality hypothesis for the obtained residuals.

Histogram of res

res

De
ns

ity

−4 −2 0 2 4

0.0
0.1

0.2
0.3

0.4

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

Normal Q−Q Plot

Theoretical Quantiles

Sa
mp

le
Qu

an
tile

s

Fig. 1. Bernoulli d-dimensional distribution; d = 3, Be(p)-i.i.d. components, p = 0.8,
sample size n = 200. Standard normal approximation for the empirical distribution
(histogram) for the normalized residuals, Nsim = 500.

Example 2. Figure 2 illustrates the performance of the approximation for the
differentiable variability v = h1,1 in Theorem 3, for two one-dimensional samples
from normal distributions N(0, 3/2) and N(2, 1/2), with the sample sizes n1 =
100, n2 = 200, respectively. Here the variability v = log(2

√
πe). The normalized

residuals are compared to the standard normal density, Nsim = 300. The qq-plot
and p-values for the Kolmogorov-Smirnov (0.9916) and Shapiro-Wilk (0.5183)
tests also support the normal approximation.

Example 3. Figure 3 shows the accuracy of the normal approximation for the
cubic Rényi entropy h3 in Theorem 3, for a sample from a bivariate Gaussian
distribution with N(0, 1)-i.i.d. components, and n = 300 observations. Here the
Rényi entropy h3 = log(

√
12π). The histogram, qq-plot, and p-values for the

Kolmogorov-Smirnov (0.2107) and Shapiro-Wilk (0.2868) tests allow to accept
the hypothesis of standard normality for the residuals, Nsim = 300.

44 D. Källberg, N. Leonenko, and O. Seleznjev

Histogram of res

res

De
ns

ity

−4 −2 0 2 4

0.0
0.1

0.2
0.3

0.4

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

Normal Q−Q Plot

Theoretical Quantiles

Sa
mp

le
Qu

an
tile

s

Fig. 2. Two Gaussian distributions; N(0, 3/2), N(2, 1/2), n1 = 100, n2 = 200, ε =
1/10. Standard normal approximation for the empirical distribution (histogram) for
the normalized residuals, Nsim = 300.

Example 4. Figure 4 demonstrates the behaviour of the estimator for the
quadratic Bregman distance B2(pX , pY) = 1/2 for two exponential distribu-
tions pX(x) = β1e

−β1x, x > 0, and pY (x) = β2e
−β2x, x > 0, with rate param-

eters β1 = 1, β2 = 3, respectively, and equal sample sizes. The empirical mean
squared error (MSE) based on 10000 independent simulations are calculated for
different values of n.

4 Proofs

Lemma 1. Assume that pX(x) and pY (x) are bounded and continuous or with
a finite number of discontinuity points. Let a, b ≥ 0. Then

bε(d)
−(a+b)E(pX,ε(X)apY,ε(X)b)→

∫

Rd

pX(x)a+1pY (x)
bdx as ε→ 0.

Proof: We have

bε(d)
−(a+b)E(pX,ε(X)apY,ε(X)b) = E(gε(X)),

where gε(x) := (pX,ε(x)/bε(d))
a(pY,ε(x)/bε(d))

b. It follows by definition that
gε(x) → pX(x)apY (x)

b as ε → 0, for all continuity points of pX(x) and pY (x),
and that the random variable gε(X) is bounded. Hence, the bounded convergence
theorem implies

E(gε(X))→ E(pX(X)apY (X)b) =

∫

Rd

pX(x)a+1pY (x)
bdx as ε→ 0.

�

Statistical Inference for Rényi Entropy Functionals 45

Histogram of res

res

De
ns

ity

−4 −2 0 2 4

0.0
0.1

0.2
0.3

0.4

−3 −2 −1 0 1 2 3

−2
−1

0
1

2
3

Normal Q−Q Plot

Theoretical Quantiles

Sa
mp

le
Qu

an
tile

s

Fig. 3. Bivariate normal distribution with N(0, 1)-i.i.d. components; sample size n =
300, ε = 1/2. Standard normal approximation for the empirical distribution (histogram)
for the normalized residuals, Nsim = 300.

Proof of Theorem 2: (i) The asymptotic unbiasedness EQ̃n,r → qr follows from
Lemma 1. Note that we can assume without loss of generality that ζ1,0 > 0.
Recall that we always have r1 ≥ 1. In addition, first let r2 ≥ 1 and ζ0,1 > 0. We
use the conventional results from the theory of U -statistics (see, e.g., Lee, 1990,
Koroljuk and Borovskich, 1994). For l = 0, . . . , r1, and m = 0, . . . , r2, define

ψl,m,n(x1, . . . , xl; y1, . . . , ym) := Eψn(x1, . . . , xl, Xl+1, . . . , Xr1 ; y1, . . . , ym, Ym+1, . . . , Yr2)

=
1

r1

r1∑
i=1

Eψ(i)
n (x1, . . . , xl, Xl+1, . . . , Xr1 ; y1, . . . , ym, Ym+1, . . . , Yr2), (2)

and

σ2
l,m,ε := Var(ψl,m,n(X1, . . . , Xl;Y1, . . . , Ym)).

Let S1, S2 ∈ Sn1,r1 and T1, T2 ∈ Sn2,r2 have l and m elements in common,
respectively. By properties of U -statistics, we have

v2n = Var(Q̃n,r) = bε(d)
−2(r−1)

r1∑

l=0

r2∑

m=0

(
r1
l

)(
r2
m

)(
n1−r1
r1−l

)(
n2−r2
r2−m

)
(
n1

r1

)(
n2

r2

) σ2
l,m,ε, (3)

and

σ2
l,m,ε = Cov(ψn(S1;T1), ψn(S2;T2)). (4)

From (4) we get that 0 ≤ σ2
l,m,ε ≤ E(ψn(S1;T1)ψn(S2;T2)), which is a finite

linear combination of P (A
(1)
i ∩ A

(2)
j), i ∈ S1, j ∈ S2, where, for u = 1, 2,

A
(u)
i := {d(Xi, Xk) ≤ ε, d(Xi, Ys) ≤ ε, ∀k ∈ Su, ∀s ∈ Tu}, i ∈ Su.

46 D. Källberg, N. Leonenko, and O. Seleznjev

500 1000 1500 2000

0.
0

0.
1

0.
2

0.
3

0.
4

n

M
S

E

a=.2
a=2
a=20
a=200

Fig. 4. Bregman distance for Exp(β1) and Exp(β2), β1 = 1, β2 = 3. The empirical
MSE obtained for the U -statistic estimator with nε = a, for different values of a.

When l �= 0 or m �= 0, the triangle inequality implies that

A
(1)
i ∩A

(2)
j ⊆ Fi := {d(Xi, Xk) ≤ 3ε, d(Xi, Ys) ≤ 3ε, ∀k ∈ S1 ∪ S2, ∀s ∈ T1 ∪ T2}.

Since |S1 ∪ S2| = 2r1− l and |T1 ∪ T2| = 2r2 −m, it follows by conditioning and
from Lemma 1 that

P (A
(1)
i ∩ A

(2)
j) ≤ P (Fi) = E(pX,3ε(Xi)

2r1−l−1pY,3ε(Xi)
2r2−m)

∼ 3d(2r−l−m−1)bε(d)
2r−l−m−1q2r1−l,2r2−m as n→∞.

We conclude that

σ2
l,m,ε = O(bε(d)

2r−l−m−1) as n→∞. (5)

Now, for l = 0, . . . , r1, m = 0, . . . , r2, and some constant Cl.m, (5) implies that

bε(d)
−2(r−1)

(
r1
l

)(
r2
m

)(
n1−r1
r1−l

)(
n2−r2
r2−m

)
(
n1

r1

)(
n2

r2

) σ2
l,m,ε ∼ Cl,m

bε(d)
−(2r−l−m−1)σ2

l,m,ε

nl+mεd(l+m−1)

= O

(
1

nl+mεd(l+m−1)

)
as n→∞,

(6)

and note that, for k = 1, . . . , r,

nkεd(k−1) = (nεd(1−1/k))k ≥ (nεd(1−1/r))k. (7)

Statistical Inference for Rényi Entropy Functionals 47

Hence, since nεd(1−1/r) → a, 0 < a ≤ ∞, as n→∞, it follows from (3), (6), and
(7), that v2n = O((nεd(1−1/r))−1). So, when nεd(1−1/r) →∞, we get that

E(Q̃n,r − qr)
2 = v2n + (E(Q̃n,r − qr))

2 → 0 as n→∞,

and the assertion follows.
(ii) Let

h(1,0)
n,r (x) := ψ1,0,n(x)/bε(d)

r−1 − q̃r,ε, h(0,1)
n,r (x) := ψ0,1,n(x)/bε(d)

r−1 − q̃r,ε.

The H-decomposition of Q̃n,r is given by

Q̃n,r = q̃r,ε + r1H
(1,0)
n,r + r2H

(0,1)
n,r +Rn, (8)

where

H(1,0)
n,r :=

1

n1

n1∑

i=1

h(1,0)
n,r (Xi), H(0,1)

n,r :=
1

n2

n2∑

i=1

h(0,1)
n,r (Yi).

The terms in (8) are uncorrelated, and since Var(h
(1,0)
n,r (X1)) = bε(d)

−2(r−1)σ2
1,0,ε

and Var(h
(0,1)
n,r (Y1)) = bε(d)

−2(r−1)σ2
0,1,ε, we obtain from (3) that

Var(Rn) = Var(Q̃n,r)−Var(r1H
(1,0)
n,r)−Var(r2H

(0,1)
n,r)

= Var(Q̃n,r)− bε(d)
−2(r−1)r21n

−1
1 σ2

1,0,ε − bε(d)
−2(r−1)r22n

−1
2 σ2

0,1,ε

= K1,nbε(d)
−2(r−1)n−1σ2

1,0,ε +K2,nbε(d)
−2(r−1)n−1σ2

0,1,ε

+ bε(d)
−2(r−1)

∑

E

(
r1
l

)(
r2
m

)(
n1−r1
r1−l

)(
n2−r2
r2−m

)
(
n1

r1

)(
n2

r2

) σ2
l,m,ε, (9)

where E := {(l,m) : 0 ≤ l ≤ r1, 0 ≤ m ≤ r2, l+m ≥ 2}, and

K1,n := r21pn

((
n1−r1
r1−1

)(
n2−r2

r2

)
(
n1−1
r1−1

)(
n2

r2

) − 1

)
, K2,n := r22(1−pn)

((
n1−r1

r1

)(
n2−r2
r2−1

)
(
n1

r1

)(
n2−1
r2−1

) − 1

)
.

Note that K1,n,K2,n = O(n−1) as n→∞ so if nεd → a, 0 < a ≤ ∞, then (5),
(6), and (9) imply that Var(Rn) = O((n2εd)−1) as n → ∞. In particular, for
a =∞,

Var(Rn) = o(n−1)⇒ n1/2Rn
P→ 0 as n→∞. (10)

By symmetry, we have from (2)

ψ1,0,n(x) =
1

r1

(
pX,ε(x)

r1−1pY,ε(x)
r2 + (r1 − 1)E(ψ

(2)
n (x,X2, . . . , Xr1 ;Y1, . . . , Yr2))

)
.

(11)

48 D. Källberg, N. Leonenko, and O. Seleznjev

Let x be a continuity point of pX(x) and pY (x). Then, changing variables y =
x+ εu and the bounded convergence theorem give

E(ψ(2)
n (x,X2, . . . , Xr1 ;Y1, . . . , Yr2) = E(E(ψ(2)

n (x,X2, . . . , Xr1 ;Y1, . . . , Yr2)|X2))

=

∫

Rd

I(d(x, y) ≤ ε)pX,ε(y)
r1−2pY,ε(y)

r2pX(y)dy

= εd
∫

Rd

I(d(0, u) ≤ 1)pX,ε(x+ εu)r1−2pY,ε(x+ εu)r2pX(x+ εu)du

(12)

∼ bε(d)
r−1pX(x)r1−1pY (x)

r2 as n→∞.

From (11) we get that

ψ1,0,n(x) ∼ bε(d)
r−1pX(x)r1−1pY (x)

r1 as n→∞,

and hence

lim
n→∞h(1,0)

n,r (x) = pX(x)r1−1pY (x)
r2 − qr, (13)

and similarly,

lim
n→∞h(0,1)

n,r (x) = pX(x)r1pY (x)
r2−1 − qr. (14)

Let max(pX(x), pY (x)) ≤ C, x ∈ Rd. Then max(pX,ε(x), pY,ε(x)) ≤ bε(d)C, x ∈
Rd. It follows from (11) and (12) that ψ1,0,n(x) ≤ bε(d)

r−1Cr−1, x ∈ Rd, and

hence h
(1,0)
n,r (x) ≤ 2Cr−1, x ∈ Rd. Similarly, we have that h

(0,1)
n,r (x) ≤ 2Cr−1,

x ∈ Rd. Therefore, h
(1,0)
n,r (X1) and h

(0,1)
n,r (Y1) are bounded random variables.

Hence, from (13), (14), and the bounded convergence theorem we obtain

Var(h(1,0)
n,r (X1))→ ζ1,0, Var(h(0,1)

n,r (Y1))→ ζ0,1 as n→∞.

Let Zn,i := n
−1/2
1 h

(1,0)
n,r (Xi), i = 1, . . . , n1, and observe that, for δ > 0,

n1∑

i=1

EZ2
n,i = Var(h(1,0)

n,r (X1))→ ζ1,0 > 0 as n→∞,

lim
n→∞

n1∑

i=1

E(|Zn,i|2I(|Zn,i| > δ)) = lim
n→∞E(|h(1,0)

n,r (X1)|2I(|h(1,0)
n,r (X1)| > δn

1/2
1))

≤ lim
n→∞ 4C2(r−1)E(I(|h(1,0)

n,r (X1)| > δn
1/2
1)) = 0,

where the last equality follows from the boundedness of h
(1,0)
n,r (X1). The

Lindeberg-Feller theorem (see, e.g., Theorem 4.6, Durrett, 1991) gives that

Zn,1 + . . .+ Zn,n1 = n
1/2
1 H(1,0)

n,r
D→ N(0, ζ1,0) as n→∞,

Statistical Inference for Rényi Entropy Functionals 49

and similarly n
1/2
2 H

(0,1)
n,r

D→ N(0, ζ0,1) as n → ∞. Hence, by independence we
get that

n1/2(r1H
(1,0)
n,r + r2H

(0,1)
n,r)

=
r1

p
1/2
n

n
1/2
1 H(1,0)

n,r +
r2

(1− pn)1/2
n
1/2
2 H(0,1)

n,r
D→ N(0, κr) as n→∞.

So, (10) and the Slutsky theorem imply

n1/2(Q̃n,r − q̃r,ε)

= n1/2(r1H
(1,0)
n,r + r2H

(0,1)
n,r) + n1/2Rn

D→ N(0, κr) as n→∞.

Corresponding results for the one-sample case r2 = 0 and when ζ0,1 = 0 follow
in a similar way. This completes the proof. �

Proof of Theorem 3: The proof is similar to that of the corresponding result in
Leonenko and Seleznjev (2010) so we give the main steps only. First we evaluate
the bias term Bn := q̃r,ε − qr. Let V := (V1, . . . , Vd)

′ be an auxiliary random
vector uniformly distributed in the unit ball B1(0), say, V ∈ U(B1(0)). Then by
definition, we have

Bn =

∫

Rd

pX,ε(x)
r1−1pY,ε(x)

r2pX(x)dx −
∫

Rd

pX(x)r1pY (x)
r2dx = E(Dε(X)),

where

Dε(x) := pX,ε(x)
r1−1pY,ε(x)

r2 − pX(x)r1−1pY (x)
r2

= pX,ε(x)
r1−1(pY,ε(x)

r2 − pY (x)
r2) + pY (x)

r2(pX,ε(x)
r1−1 − pX(x)r1−1).

It follows by definition that

Dε(x) = P1(x)(pY,ε(x)− pY (x)) + P2(x)(pX,ε(x)− pX(x))

= E
(
P1(x)(pY (x − εV)− pY (x)) + P2(x)(pX(x− εV)− pX(x))

)

where P1(x) and P2(x) are polynomials in pX(x), pY (x),E(pX(x − εV)), and
E(pY (x − εV)). Now the boundedness of pX(x) and pY (x) and the Hölder con-
dition for the continuous differentiable cases imply

|Dε(x)| ≤ CC1ε
α, C1 > 0,

and the assertion (i) follows.
For ε ∼ cn−1/(2α+d(1−1/r)), 0 < c < ∞, α < d/2, by (i) and Theorem 1, we

have
B2

n + v2n = O(n−2α/(2α+d(1−1/r))).

Now for some C > 0 and any A > 0 and large enough n1, n2, we obtain

P
(
|Q̃n,r − qr| > An−α/(2α+d(1−1/r))

)
≤ n2α/(2α+d(1−1/r))B

2
n + v2n
A2

≤ C

A2
,

and the assertion (ii) follows. Similarly for α = d/2.
Finally, for α > d/2, ε ∼ L(n)n−1/d, and nεd →∞, the assertion (iii) follows

from Theorem 2 and the Slutsky theorem. This completes the proof. �

50 D. Källberg, N. Leonenko, and O. Seleznjev

Acknowledgment. The third author is partly supported by the Swedish Re-
search Council grant 2009-4489 and the project ”Digital Zoo” funded by the
European Regional Development Fund. The second author is partly supported
of the Commissions the European Communities grant PIRSES-GA 2008-230804
”Marie Curie Actions”.

References

Baryshnikov, Y., Penrose, M., Yukich, J.E.: Gaussian limits for generalized spacings.
Ann. Appl. Probab. 19, 158–185 (2009)

Copas, J.B., Hilton, F.J.: Record linkage: statistical models for matching computer
records. Jour. Royal Stat. Soc. Ser. A 153, 287–320 (1990)

Costa, J., Hero, A., Vignat, C.: On Solutions to Multivariate Maximum α-entropy
Problems. In: Rangarajan, A., Figueiredo, M.A.T., Zerubia, J. (eds.) EMMCVPR
2003. LNCS, vol. 2683, pp. 211–228. Springer, Heidelberg (2003)

Demetrovics, J., Katona, G.O.H., Miklós, D., Seleznjev, O., Thalheim, B.: The Av-
erage Length of Keys and Functional Dependencies in (Random) Databases. In:
Vardi, M.Y., Gottlob, G. (eds.) ICDT 1995. LNCS, vol. 893, pp. 266–279. Springer,
Heidelberg (1995)

Demetrovics, J., Katona, G.O.H., Miklós, D., Seleznjev, O., Thalheim, B.: Asymp-
totic properties of keys and functional dependencies in random databases. Theor.
Computer Science 190, 151–166 (1998)

Demetrovics, J., Katona, G.O.H., Miklós, D., Seleznjev, O., Thalheim, B.: Functional
dependencies in random databases. Studia Scien. Math. Hungarica 34, 127–140
(1998)

Durrett, R.: Probability: Theory and Examples. Brooks/Cole Publishing Company,
New York (1991)

Kapur, J.N.: Maximum-entropy Models in Science and Engineering. Wiley, New York
(1989)

Kapur, J.N., Kesavan, H.K.: Entropy Optimization Principles with Applications. Aca-
demic Press, New York (1992)

Kiefer, M., Bernstein, A., Lewis, P.M.: Database Systems: An Application-Oriented
Approach. Addison-Wesley (2005)

Koroljuk, V.S., Borovskich, Y.V.: Theory of U -statistics. Kluwer, London (1994)
Kozachenko, L.F., Leonenko, N.N.: On statistical estimation of entropy of random

vector. Problems Infor. Transmiss. 23, 95–101 (1987)
Lee, A.J.: U -Statistics: Theory and Practice. Marcel Dekker, New York (1990)
Leonenko, N., Pronzato, L., Savani, V.: A class of Rényi information estimators for

multidimensional densities. Ann. Stat. 36, 2153–2182 (2008); Corrections, Ann.
Stat. 38(6), 3837–3838 (2010)

Leonenko, N., Seleznjev, O.: Statistical inference for the ε-entropy and the quadratic
Rényi entropy. Jour. Multivariate Analysis 101, 1981–1994 (2010)

Pardo, L.: Statistical Inference Based on Divergence Measures. Chapman and Hall
(2006)

Rényi, A.: On measures of entropy and information. In: Proc. 4th Berkeley Symp.
Math. Statist. Prob., vol. 1 (1961)

Rényi, A.: Probability Theory. North-Holland, London (1970)
Seleznjev, O., Thalheim, B.: Average case analysis in database problems. Methodol.

Comput. Appl. Prob. 5, 395–418 (2003)

Statistical Inference for Rényi Entropy Functionals 51

Seleznjev, O., Thalheim, B.: Random databases with approximate record matching.
Methodol. Comput. Appl. Prob. 12, 63–89 (2008), doi:10.1007/s11009-008-9092-4
(2010) (published online, in print)

Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. Jour. 27,
379–423, 623–656 (1948)

Szpankowski, W.: Average Case Analysis of Algorithms on Sequences. John Wiley, New
York (2001)

Thalheim, B.: Entity-Relationship Modeling. In: Foundations of Database Technology.
Springer, Berlin (2000)

Tsybakov, A.B., Van der Meulen, E.C.: Root-n consistent estimators of entropy for
densities with unbounded support. Scandinavian Jour. Statistics 23, 75–83 (1996)

The Subject-Oriented Approach

to Software Design and the Abstract State
Machines Method

Egon Börger

Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

Abstract. In [32, Appendix] we have shown that the system which im-
plements the Subject-oriented approach to Business Process Modeling
(S-BPM) has a precise semantical foundation in terms of Abstract State
Machines (ASMs). The construction of an ASM model for the basic S-
BPM concepts revealed a strong relation between S-BPM and the ASM
method for software design and analysis. In this paper we investigate
this relation more closely. We use the analysis to evaluate S-BPM as an
approach to business process modeling and to suggest some challenging
practical extension of the S-BPM system.

1 Introduction

The recent book [32] on the Subject-oriented approach to Business Process
Modeling (S-BPM) contains a precise high-level definition, namely in terms of
Abstract State Machines (ASMs), of the semantics of business process models
developed using the S-BPM tool environment.1 The construction of an ASM
which rigorously describes the basic S-BPM concepts revealed an intimate re-
lation between on the one side S-BPM, whose conceptual origins go back to
Fleischmann’s software engineering book [30, Part II], and on the other side the
ASM method [26], a systems engineering method which too has been developed
in the 90’ies of the last century by a community effort building upon Gurevich’s
discovery of the notion of ASM [40] (at the time called by various names, in 1994
‘evolving algebras’, for the historical details see [11] or [26, Ch.9]).

In this paper we investigate the striking methodological and conceptual simi-
larities (Sect. 2) and some differences (Sect. 3) of these two independent develop-
ments. We propose to enhance the current S-BPM system by offering the modeler
tool support for the use of the full ASM-refinement method which generalizes
the refinement scheme S-BPM provides the software engineer with.

1 In the appendix, which is written in English, an ASM interpreter is defined for the
behavior of such business process models. The software used to transform the pdf-file
generated from latex sources into a Word document and printer-control-compatible
format produced a certain number of partly annoying, partly misleading mistakes
in the printed text. The interested reader can download the pdf-file for the correct
text from [63].

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 52–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Subject-Oriented Approach to Software Design 53

We use this analysis to evaluate S-BPM in terms of six well-known princi-
ples for reliable software development (Sect. 4), an evaluation which shows that
S-BPM provides practitioners with suitable means to precisely and faithfully
capture business scenarios and analyze, communicate and manage the resulting
models.2

What nowadays is called S-BPM is really a version tailored for the develop-
ment of business processes (BPs) of a more general subject-oriented software
engineering method and environment for the development of concurrent systems
proposed in [30, Part II] and called there SAPP/PASS: ‘Structured Analysis
of Parallel Programs’ with a subject-oriented modelling language named ‘Par-
allel Activities Specification Scheme’. We use invariably the today apparently
prevailing term S-BPM to refer to Fleischmann’s approach.

We assume the reader to have some knowledge of the basic concepts of at
least one of the S-BPM [32] or the ASM methods [26].

2 Common Features of S-BPM and the ASM Method

The S-BPM and ASM methods share their main goal, namely to reliably link
the human understanding of real-life processes to their execution by machines
via some implementing software. In fact the ASM method is introduced in [26,
p.1] by stating that

‘The method bridges the gap between the human understanding and for-
mulation of real-world problems and the deployment of their algorithmic
solutions by code-executing machines on changing platforms.’

Similarly, a recent presentation of the S-BPM approach states for the ‘trans-
formation process of model descriptions to executable ones’ [33, Sect.2, p.3-4]
that:

‘end-to-end control is what business stakeholders need to build process-
managed enterprise’ and that
‘Any mapping scheme should allow propagating the information from
a value chain perspective to a software-development perspective in a
coherent and consistent way’.

We explain in this section that as a consequence both methods share three major
methodological concerns for descriptions of (concurrent) processes:

the ground model concern (Sect. 2.1),
the refinement concern (Sect. 2.2),
the subject-orientation concern to make the executing agents and their dis-
tinct internal and external (communication) actions explicit (Sect. 2.3).

2 In [15] we showed that the OMG standard BPMN [48], the workflow patterns of
the Workflow Pattern Initiative [61] and their (academic) reference implementation
YAWL [59] fail to achieve this.

54 E. Börger

Also both come with ‘a simple scientific foundation, which adds precision to the
method’s practicality [26, p.1]’.

Although the two methods realize these three concerns differently, due to the
more focussed BPM target of the (current incarnation of the) S-BPM method
and the different definitions in the two methods of what constitutes agent behav-
ior (described by Subject Behavior Diagrams (SBDs) resp. ASMs, see Sect. 2.3),
and although their scientific foundation comes from different sources, the sim-
ilarities of the two approaches to software engineering are remarkable because
‘the ground model method for requirements capture, and the refinement method
for turning ground models by incremental steps into executable code’ form to-
gether with the concept of ASMs ‘the three constituents of the ASM method for
system design and analysis’ [26, p.13] through which the method

‘improves current industrial practice in two directions:

On the one hand by accurate high-level modeling at the level of
abstraction determined by the application domain ...
On the other hand by linking the descriptions at the successive stages
of the system development cycle in an organic and effectively main-
tainable chain of rigorous and coherent system models at stepwise
refined abstraction levels.’ [26, p.1]

2.1 Ground Model Concern

In the S-BPM literature there is no mention of the name ‘ground model’ (or
‘golden model’ as they are called in the semiconductor industry [55]) but the
ground model concern is present. The ASM ground model method [7,8,10,12,14]
is about constructing prior to code development, as specification for the code,
models which are

‘blueprints that describe the required application-content of programs
... in an abstract and precise form’ and are ‘formulated in terms of the
application domain and at a level of detailing that is determined by the
application domain’ [14, Sect.1].

Thus ground models satisfy needs of different stakeholders, in particular the
domain experts and the software designers. First of all the domain experts (e.g.
analysts or users of BPs) need ground models for a ‘correct development and
understanding by humans of models and their relation to the application view of
the to-be-modeled BP’ [15, Sect.5].3 Correctness as used here (together with its

3 The request in [33, Sect.1,p.1] of a minimal ‘semantic distance to human understand-
ing’ for S-BPM corresponds to the request for satisfactory ground model ASMs
of a ‘direct’, coding-free relation between the basic domain elements (agents, ob-
jects, functions, properties, operations) and the corresponding ASM ground model
items [8, Sect.6.2]. The ASM ground model method satisfies this request by offering
‘The freedom to choose how to represent the basic objects and operations of the
sytem under consideration’ and by its attention to ‘distinguish between concepts
(mathematical modelling) and notation (formalization)’ [8, Sect.5].

The Subject-Oriented Approach to Software Design 55

companion concept completeness) is intrinsically not a mathematical notion, but
an epistemological relation between a model and the piece of reality the model is
intended to capture, a relation the application experts have to understand and
only they (not the software technologists) can judge.

But then also the software designers need ground models, namely as a com-
plete specification, where the completeness—every behaviorally relevant feature
is stated—makes a correct implementation of the specification reliable. The re-
liability property links these two roles of ground models. It ‘means that the
appropriateness of the models can be checked by the application domain ex-
perts, the persons who are responsible for the requirements, and can be used by
the system developers for a stepwise detailing (by provably controllable ASM
refinement steps) to executable code.’ [22, p.1923]

Therefore an approach for building satisfactory (i.e. correct, complete and
consistent) ground models requires to have solved before ‘a language and com-
munication problem between the software designers and the domain experts or
customers ... the parties who prior to coding have to come to a common under-
standing of “what to build”’ [14, Sect.2.1.1]:

‘The language in which the ground model is formulated must be appro-
priate to naturally yet accurately express the relevant features of the
given application domain and to be easily understandable by the two
parties involved.4 This includes the capability to calibrate the degree of
precision of the language to the given problem, so as to support the con-
centration on domain issues instead of issues of notation.’(ibid.)(See also
the ‘language conditions for defining ground models’ formulated ibid.,
Sect.2.3.)

To solve this problem S-BPM starts from two observations of language the-
ory [33, Sect.3, p.5]:

‘When structuring reality, humans use subjects, predicates and objects.’
‘humans use natural language structures as primary means to ensure mutual
understanding’.

Consequently S-BPM aligns BP descriptions to those three constituents of el-
ementary sentences in natural languages and to the coordination role of com-
munication between subjects.5 To stay close to natural language, where domain
experts formulate process requirements, BP descriptions in S-BPM express the
behavior of each subject involved in the BP (read: the agents which perform the
described behaviors) as a sequence of possibly guarded basic (‘internal’) compu-
tation or (‘external’) communication actions of the following form (their content
is discussed in Sect. 2.3):

4 The S-BPM literature speaks about ‘duality of expressiveness’ which is needed for
the description language [33, Sect.2, p.4].

5 Notably communication and coordination appear as two of the seven categories of
the Great Principles of Computing [28].

56 E. Börger

SbpmAction(Condition, subject , action, object) =
if Condition(subject) then subject Performs(action) on object

These basic S-BPM actions mutatis mutandis correspond to basic ASM tran-
sitions, even if the two methods have a different view on what is allowed, in
general, to constitute an action and on their parallel resp. sequential execu-
tion (see Sect. 2.3 and 3.1). In fact in the S-BPM interpreter the ASM rule
Behavior(subj , state)—which formalizes the execution by the subj ect of the ac-
tion (called service(state)) associated with its SID-state—has exactly the above
form, as the reader can check in [32, p.351].

In this way in S-BPM BPs are modeled using a precise language which is
understandable by both parties, domain experts (analysts/managers/users) and
software developers: it is constituted by elementary sentences which can be un-
derstood as (not formalized) natural language sentences, but nevertheless have a
precise operational meaning (modulo a precise meaning of the constituent parts).
The resulting BP ground models are as close to the intended real-world pro-
cesses (read: their intuitive application-domain-views) as are the subjects, their
actions and the objects which are chosen by the analyst (as BP model designers
are called) to appear in the ground models. Thus the S-BPM approach offers for
BPs an interesting solution to a challenge listed in [22, p.1924], namely ‘support-
ing the extraction of ground model elements from natural language descriptions
of requirements’.

The ‘abstract operational’ character of ASM ground models, which makes
them directly executable, mentally by definition as well as mechanically by ap-
propriate execution engines, has been recognized in [8, Sect.7] as crucial for
the needed ‘experimental validation of the application-domain-based semantical
correctness for ground models ’ [14, p.226]. It is a key criterion also for S-BPM,
expressed as follows in [33, Sect.1, p.2]:

‘The novelty of the approach can be summarized by two key benefits,
resulting for stakeholders and organization developers:

1. Stakeholders need only to be familiar with natural language ... to
express their work behavior ...6

2. Stakeholder specifications can be processed directly without further
transformations, and thus, experienced as described’.

The ASM ground model method realizes the ground model concern in a simi-
lar way, but tailored for a more general system engineering setting, using the
more comprehensive notion of ASM compared to S-BPM’s SBDs as they are
used to describe the behavior of BP subjects, see below. Not to repeat for an
explanation of this difference what has been described in various articles on the
theme [7,8,10,12,14] we invite the reader to read the systematic epistemological
discussion of the method in [14]. We limit ourselves here to point to a typical

6 Obviously such a natural language expression of the work behavior has to be suffi-
ciently precise, in particular to avoid misunderstandings that may arise from cultural
differences among the stakeholders.

The Subject-Oriented Approach to Software Design 57

ASM ground model ‘at work’ S-BPM experts may be interested in, namely the
interpreter model for SBDs in [32, Ch.12 and Appendix] (see also [63]). It il-
lustrates the characteristic properties of ASM ground models by exhibiting the
direct, strikingly simple and easy to grasp correspondence between the S-BPM
concepts and their mathematical, operational formalization by ASMs.

Scientific Foundation. The just mentioned ASM ground model for an SBD-
interpreter constitutes the mathematical part of the scientific foundation of S-
BPM. The epistemological part of its foundation is rooted in language theory.
The ASM method has its simple scientific foundation directly in mathematical
logic and its epistemological roots in a generalized Church-Turing thesis (see
Sect. 2.3).

2.2 Refinement Concern

In S-BPM the specification of the processes which constitute a BP model is
done in two steps. For each process its SBD (also called PASS graph) describes
only the sequence in which the executing subject performs its basic actions. The
detailed content of these actions is specified by refinements which describe ‘the
local variables of a process and the operations and functions defined on the local
variables’ [30, p.206].

Four types of operations and functions are considered, reflecting the classifica-
tion of actions described in more detail in Sect. 2.3. Two types of communication
are specified by describing a) the parameters of the communicated messages and
b):

for to-be-received messages the state change they yield, i.e. their ‘effect ...
on the values of the local variables, depending on the values of the message
parameters and the current values of the loca variables’ (ibid.)7

for to-be-sent messages the definition of their content depending on the cur-
rent state, i.e. ‘how the values of the message parameters are obtained from
the values of the local variables’ (ibid.)8

So-called internal operations are specified by describing their update effect on
the current state (here the values of the local variables), where one is allowed
to use so-called internal functions (whose applications in the current version
of S-BPM are not distinguished any more as separate kind of operations), that
is mathematical (side-effect-free), in ASM terminology dynamic functions (i.e.
functions whose result for given arguments depends on the current state).

To define these specifications and their implementation in S-BPM the
approach ‘is open for the integration of existing and proved development meth-
ods’ [30, p.199] and in particular ‘all the object oriented concepts can be ap-
plied’ (ibid., p.206). These two programming-practice inspired refinement types

7 This is described in the S-BPM interpreter model by the RecordLocally subma-
chine of Async(Receive) and Sync(Receive) [32, p.367-368].

8 This is described in the S-BPM interpreter model by the functions composeMsg and
msgData of the PrepareMsgSend submachine [32, p.361].

58 E. Börger

in S-BPM (Pass graph refinement and its implementation) are instances of the
concept of ASM refinement.

The ASM refinement method was conceived in the context of modelling the
semantics of ISO Prolog by ASMs [4,5,6,17] (surveyed in [7]), when I was chal-
lenged by Michael Hanus to also develop an ASM for the Warren Abstract Ma-
chine (WAM)—an early virtual machine whose optimization techniques changed
the performance of Prolog to a degree that made practical applications feasible—
and to prove the compilation of ISO Prolog to WAM code to be correct. The chal-
lenge was solved by refining the Prolog interpreter model in 12 proven to be correct
refinement steps to a WAM interpreter model [23,24,25]. The adopted refinement
concept (which has been implemented in KIV for a machine verification of the
WAM correctness proof [53,54,50,51,52]) is described in detail in [13]. It

supports sequences of refinement steps whose length depends on the com-
plexity of the to be described system, and
links the refinement steps in a documented and precise way so that their
correctness can be objectively verified.9

Since the ASM refinement notion is in essence more general than the
programming-focussed one used in S-BPM, we discuss the details in Sect. 3.2.

2.3 Subject-Orientation Concern

In this section we elucidate for the S-BPM and ASM methods the feature which
gave the name to S-BPM and is emphasized in the comparative analysis in [30,
Ch.5], [32, Ch.14],[33, Sect.4] as distinctive with respect to traditional system
description methods, namely the primary role of agents (called subjects) which
execute step by step two distinct kinds of actions following the ‘program’ (be-
havioral description) each agent is associated with: communications (‘external’
actions) and ‘internal’ actions on corresponding objects.

Agents. Subjects are placed into the center of S-BPM process descriptions as
the ‘active elements’ of a process which ‘execute functions offered by the passive
elements’ (i.e. objects of abstract data types) [30, p.199] and have to be identified
as first elements of any process description: ‘start with identifying the involved
subjects and after that define the behaviour specifications of acting parties’ [33,
Sect.3, p.8]. The ASM method shares this view: in the list of the six ‘Fundamental
Questions to be Asked’ when during requirements capture one starts to construct
an ASM ground model the first question is:

Who are the system agents and what are their relations? [26, p.88]

This corresponds to the fact that by its very definition an ASM is a family
of pairs (a,Pgm(a)) of different agents, belonging to a set (that may change
at runtime), and the (possibly dynamically associated) programs Pgm(a) each

9 It is an important aspect for certifiability that these verifications are documented
to become repeatable by mathematical ‘experiment’ (read: proof checking). See
Sect. 3.3.

The Subject-Oriented Approach to Software Design 59

agent executes [26, Def.6.1.1].10 S-BPM has the same definition: ‘An S-BPM
process ... is defined by a set of subjects each equipped with a diagram, called
the subject behavior diagram (SBD) and describing the behavior of its subject
in the process.’ [32, p.348] In both definitions we see multiple agents whose
behavior is to execute the (sequential) program currently associated with them.
Since this happens in a concurrent context, S-BPM and the ASM method both
classify the basic ‘actions’ an agent can perform in a program step by their role
for information exchange among the agents, as we are going to explain now.

Classification of Agent Actions. In S-BPM the ‘actions’ agents perform
when executing their program are of two kinds, to ‘exchange information and
invoke operations’ [30, p.372]. Information exchange is understood as sending
or receiving messages. The information exchange actions are named ‘external’
because they involve besides the executing subject also other, ‘external’ sub-
jects. The invoked other operations are understood as agent-‘internal’ (read:
communication-free) computations on given objects [30, p.205].

Similarly the ASM method explicitly separates agent-internal operations from
external data exchange operations (communication) with other cooperating
agents, namely through the so-called classification of locations (i.e. containers of
abstract data). Agent-internal operations come in the form of read/writes of so-
called controlled locations which are performed under the complete and exclusive
control of the executing agent. Data exchange (communication with cooperating
agents) comes in the two forms of a) reading so-called monitored locations that
are written by the cooperating agents (an abstract form of receiving messages
sent by other agents) and b) writing so-called output locations to be read by the
cooperating agents (an abstract form of sending messages to other agents).

In the interaction view of an S-BPM subject behavior diagram each internal
or communication action counts as one step of the corresponding subject , namely
to perform what is called the service associated with the subject in the given
state. In the detailed (refined) interpreter view of the subject as defined in [32,
Appendix, Sect.3] this ‘abstract’ interaction-view-step usually is rather complex
since it is constituted by the sequence of ‘detailed-view-steps’ performed by the
subject to execute the underlying internal or communication action— more pre-
cisely in the S-BPM interpreter it is the sequence of the Start and all Perform
steps made by the subject to execute its Behavior(subject , SID state), otherwise
stated the sequence of detailed steps subject performs from the moment when it
enters the SID state corresponding to the action (read: the associated service)
until the moment when it exits that state to enter the SID state ′ corresponding
to the next action, see [32, p.351].

The ASM method started out to provide in full generality the means to ab-
stract into one single-agent step an entire internal computation which may be
needed to perform an action in a given state. Therefore one has to separately de-
scribe the interaction the considered agent may have with the cooperating agents

10 To name the agent can be omitted (only) in the special case where a single ASM is
contemplated (which may interact with an environment that is considered as run by
one other agent).

60 E. Börger

in its environment to perform the action, namely receiving data from cooperating
agents before it starts the abstract step and sending data to cooperating agents
after (probably as a result of) the abstract step. The agent’s sending interac-
tions are collectively incorporated into its one abstract step, namely as updates
of all corresponding output locations; this is without loss of generality given the
parallel nature of a single ASM step which performs simultaneously an entire
set of location updates. Analogously the agent’s receiving interactions directly
preceding (and probably influencing) its abstract step are collectively described
by a separate so-called ‘environment’ step which precedes the agent’s abstract
step and is assumed to be executed by another agent representing the environ-
ment of the considered agent; this environment step performs simultaneously all
the relevant updates of the corresponding monitored locations, thus completing
the definition of the state in which the considered agent performs (the internal
part of) its abstract step (see the formal definition in [26, Def.2.4.22, p.75]).

The difference in the technical S-BPM/ASM realization of the identical concept
of distinguishing internal and external ‘actions’ is a result of the different origins
of the two methods. The motivating target of S-BPM was to incorporate in an ex-
plicit and practically feasible way into the software engineering techniques of the
time the missing high-level concept of communication between process agents, in
particular for developing BPs where communication is fundamental to control the
actions of the cooperating agents. Therefore it was natural to develop an orthog-
onal communication concept (inspired by CCS [47] and CSP [42]) which is com-
patible with the principal (at the time prevailingly object-oriented) programming
concepts and their implementation so that it can be integrated in a modular way
into any practical software engineering method. This led to the interesting input-
pool-based S-BPMnotion of a synchronous or asynchronous communication (send
or receive) ‘step’ as pendant to and à la pari with any internal computation ‘step’.
The notion of an ASM the development of the ASMmethod started from grew out
of an epistemological concern, namely to sharpen the Church-Turing thesis for ‘an
alternative computation model which explicitly recognizes finiteness of comput-
ers’ [38,39] (see [11],[26, Ch.9] for the historical details). Therefore it was natural
to abstract for the definition of what constitutes an ASM step from any partic-
ular form of communication mechanism and to represent a communication (re-
ceive or send) action abstractly the same way as any other basic computational
action, namely as reading the value of an abstract ‘memory location’ resp. as up-
dating (writing) it—clearly at the price of having to define an appropriate prac-
tical communication model where needed, a task Fleischmann accomplished for
S-BPM with his input-pool concept. This concept provides an interesting contri-
bution to the challenge listed in [22, p.1923] to develop ‘practically useful patterns
for communication and synchronization of multi-agent ASMs, in particular sup-
porting omnipresent calling structures (like RPC, RMI and related middleware
constructs) and web service interaction patterns.’11

11 The various theoretical communication concepts surveyed in [41] appear to have been
defined to suit parallel and so-called interactive forms of the ASM thesis and seem to
have had no practical impact.

The Subject-Oriented Approach to Software Design 61

Behavior of Agents. In S-BPM the behavior of a single agent is represented
by a graph of the Finite State Machine (FSM) flowchart type (called SBD or
PASS graph) which ‘describes the sequences in which a process sends messages,
receives messages and executes functions and operations’ [30, p.207]. This cor-
responds exactly to the so-called control-state ASMs [26, Sect.2.2.6] and their
FSM-flowchart like graphical display12 so that not surprisingly the high-level S-
BPM interpreter in [32, Appendix, Sect.7] for the execution of SBDs is defined
as a control-state ASM.

3 Differences between S-BPM and the ASM Method

In this section we discuss three major differences between the S-BPM and the
ASM method. They concern the notion of state and state change (update) by
actions of agents (Sect. 3.1), the notion of refinement of models (Sect. 3.2) and
the verification concern which helps in the ASM method to increase the sys-
tem reliability and to reduce the amount of experimental system validations
(Sect. 4). Through these features the ASM method offers the practitioner ad-
ditional possibilities for certifiably correct design of software-intensive systems,
although we see no reason why they could not be included into S-BPM, as we
are going to suggest, to increase the degree of reliability of S-BPM-designed BPs
by certifiable correctness.

3.1 Notion of State and State Change

State. As we have seen in Sect. 2.2, S-BPM shares the traditional programming
view of states: ‘the values of all local variables define ... the local state of a
process’ [30, p.206]. In contrast, ‘the notion of ASM states is the classical notion
of mathematical structures where data come as abstract objects, i.e. as elements
of sets (also called domains or universes, one for each category of data) which
are equipped with basic operations (partial functions in the mathematical sense)
and predicates (attributes or relations).’[26, p.29] In logic these structures, which
have been formulated as a concept by Tarski [58] to define the semantics of first
order logic formulae, are also called Tarski structures.13 The relevant fact for the
modelling activity is that the sets and functions which form the state of an ASM
can be chosen in direct correspondence with the to-be-modelled items of the
application domain, tailored with ‘the greatest possible freedom of language’ [8,
Sect. 5] to the intended level of abstraction of the model and ‘avoiding the formal

12 Control-state ASMs have been introduced in [10] as ‘a particularly frequent class
of ASMs which represent a normal form for UML activity diagrams and allow the
designer to define machines which below the main control structure of finite state
machines provide synchronous parallelism and the possibility of manipulating data
structures.’ [26, p.44]

13 If predicates are considered to be canonically represented by their characteristic
functions, a Tarski structure becomes what is called an algebra. Viewed this way an
ASM state is a set of functions or Parnas tables [49,9].

62 E. Börger

system straitjacket’ (ibid.). Thus ASM states realize an advice from a great
authority: ‘Data in the first instance represent abstractions of real phenomena
and are preferably formulated as abstract structures not necessarily realized in
common programming languages.’ [62, p.10]

To provide a characteristic example we can refer to the abstract elements
and functions which appear in the ASM model for S-BPM [32, Appendix] as
part of the interpreter state, like all the SBD-graph structure related items, the
services associated with SID-states and their completion predicate Completed ,
inputPool with its related functions, the different sets providing Alternatives
together with their select ion functions, message related functions to composeMsg
from msgData, etc.

Also the object oriented slightly more complex version of the programming
view of states as defined above, which comes with the suggestion to use object
oriented techniques for the specification of PASS graph refinements [30, p.210],
is an instance of the ASM notion of state since ‘the instantiation of a relation or
function to an object o can be described by the process of parameterization of,
say, f to the function o.f , which to each x assigns the value f (o, x).’[26, p.29]14

State Change. The most general kind of a basic action to change a structure
or algebra (i.e. a set of functions) appears to be that of a function update, i.e.
change the value of a function at given arguments, which has the following form:

f (t1, . . . , tn) := t

Such updates, executed by an agent (denoted by self) under appropriate condi-
tions which guard the application of ASM rules:

AsmRuleself (Condition,Updates) = if Condition then Updates

are exactly what constitutes the basic action of an ASM agent in a state, where
f is an arbitrary n-ary function symbol15 and t1, . . . , tn are arbitrary terms
(expressions) at whose values in the current state the new value of the function
(which will be the value of the successor state of the current state) is set to
the value of t in the current state (if the indicated condition under which this
action is requested to be performed is true in the current state). Given the
abstract nature of the functions and objects (elements of the universe) which
constitute an ASM state one can express updates at any level of abstraction,
using corresponding functions f and expressions ti , t of given complexity or level
of abstraction.

This lifts variable assignment to destructive assignment at any level of ab-
straction and thus supports abstract operational modelling (providing what is
nowadays often called execution semantics of a system). A typical use is illus-
trated by the abstract yet precise definition of the two communication actions

14 Recently this parameterization facility for ASM states has been exploited to define
a general ambient concept in terms of ASMs [16].

15 0-ary functions f , i.e. where n = 0, are the variables of programming.

The Subject-Oriented Approach to Software Design 63

ComAct ∈ {Send ,Receive} of S-BPM agents by the interpreter submachines
Async(ComAct) and Sync(ComAct) in [32, Appendix,3.3.,3.4].

Expressivity Question. Due to its original epistemological goal the definition
of ASMs had to solve an expressivity issue for the proposed simple algorithmic
language, namely to guarantee that this language provides whatever may be
needed to ‘directly’ (coding-free and thus without extraneous overhead) model
any computational system. This is what the ASM thesis [38,39] was about and
explains why a) the states of ASMs have to be Tarski structures and why b)
differently from their static nature in mathematics and logic here these structures
must be treated as updatable by basic actions of ASM agents, namely by (a set
of simultaneous)16 updates.

By its focus on modelling BPs by sets of SBDs each of which is described
by constructs that are close to sentences of natural language, S-BPM derives
the guarantee to be expressive enough for modelling any desired BP from the
expressivity of natural language. The price paid is the focus of ground mod-
els on the level of abstraction of (sets of) SBDs which are reached by system
decomposition (using data flow diagram techniques) until every communicating
subject has become explicit,17 as will become clearer in the next section where
we compare the programming-oriented S-BPM refinement concept explained in
Sect. 2.2 with the more general ASM refinement notion.

A positive return is the ease with which an S-BPM model can be trans-
formed into a precise (though verbose) natural language text, essentially by
paraphrasing each SbpmAction in every SBD of the model by the obvious cor-
responding natural language sentence. Given the similarity between ASM rules
and SbpmActions, in a similar way such a transformation can also be defined
for ASM models, as has been illustrated in [20]. There the contributing authors
of the book [34] had been asked to formulate in natural language a precise and
complete set of requirements for a small case study by first defining a formal
specification which captures the given informal requirements and then retrans-
lating this specification into natural language. For S-BPM a converter has been
written which transforms S-BPM models into natural language texts [31] (see
also [56]). Although we believe that the methodological better way to explain
and document ASMs (and also S-SBM models) is to use a literate modeling style
in the spirit of Knuth’s literate programming [45], it could nevertheless be useful

16 The synchronous parallelism of single-agent actions in the ASM-computation model,
which differs from the sequential-program view of actions of S-BPM agents, provides
‘a rather useful instrument for high-level design to locally describe a global state
change, namely as obtained in one step through executing a set of updates’ and ‘a
convenient way to abstract from sequentiality where it is irrelevant for an intended
design’ [8, p.30].

17 This interesting termination criterion for the ‘decomposition of a system into
processes’—the first of the two major system development steps in the S-BPM
method—is a consequence of the communication focus (read: subject orientation):
‘Finally all processes and shared objects, the messages exchanged between processes
and the shared objects they use, are identified.’ [30, p.204 and Ch.10]

64 E. Börger

to write a similar Asm2NatLang converter to facilitate the integration of ASMs
into natural language S-BPM documents for users who are not familiar with
symbolic mathematical notations.

3.2 Refinement Concept

The conceptual distance between an SBD (PASS graph) to its refinement, which
represents an operational specification of the communication and internal ac-
tions the subject performs in the SBD, is not very large. The next step (which
we consider as another refinement step) consists in the coding of this specifica-
tion where the S-BPM method adopts ‘methods which are common in standard
sequential programming’ [30, p.296]. Therefore alltogether the ‘semantic gap’ be-
tween a user model (ground model PASS graph) for a BP and its code is judged
not to be very large. In fact it is claimed that ‘Once the interaction patterns
among actors (subjects) have been refined in terms of exchange of messages,
suitable program code can be generated automatically’ [33, Sect.1, p.2]; this has
to be understood cum grano salis, probably meant to hold for ‘the standard part
of the code’ [30, p.295] resp. for code meaning method headers.

This does not solve the problem in case the distance between a ground model
and the code is too large to be bridged in one or two steps in such a way
that a human can understand the refinement and verify its correctness. Such a
situation was at the origin of the ASM refinement method [13] and is typical
for its successful applications. Mentioning a few examples should suffice here to
illustrate the practical relevance of the ASM refinement notion.

The historically first example is the Prolog-to-WAM compiler verification
mentioned in Sect. 2.2 where we needed 12 refinement steps to explain Warren’s
ideas and to prove the main theorem. The refinement correctness proofs have
later been machine verified using the KIV system [53,54]. Interestingly enough
to enable the KIV machine to finish its proof, for one of the optimizations in
the WAM an additional refinement step had to be introduced into the hand-
written proof developed to convince ourselves and our peers. The elaboration of
the method for the Occam/Transputer parallel computation model (with non-
determinism) yielded 17 natural refinement steps [18] to explain the rationale
and prove the correctness of the standard (INMOS) compilation scheme.

Another real-life example to be mentioned (among many others concerning
architectures, control software, protocols, algorithms, etc. and surveyed in [26,
Ch.9]) is the stepwise refinement of ASM interpreters for Java and the JVM,
using both horizontal and vertical refinement steps. These models have been
used to verify various properties of interest for the language and its virtual
machine, like type safety, compiler correctness, soundness and correctness of the
bytecode verifier, soundness of thread synchronization, etc. The reader can find
the details in the JBook [57]. That the method could be applied also to C# [19]
and .NET CLR [35,37,36] should not come as a surprise.

A natural place to integrate into S-BPM the ASM refinement method is where
one has to code complex internal actions of a subject. It is still a challenge to pro-
vide tool support for the ASM refinement method, in particular in combination

The Subject-Oriented Approach to Software Design 65

with verifications of refinement correctness, e.g. building upon the implemen-
tation of the ASM refinement concept in [50] which has later been extended
and been used for numerous other verification projects, see www.informatik.uni-
augsburg.de/swt/projects/. Some first steps in this direction seem to appear in
the area of software product lines where feature-based modeling is linked to the
stepwise validation and verification of properties [60,44,3,27].

3.3 Verification Concern

The presentation of the ASM method quoted at the beginning of Sect. 2 continues
as follows:

‘It covers within a single conceptual framework both design and analy-
sis, for procedural single-agent and for asynchronous multiple-agent dis-
tributed systems. The means of analysis comprise as methods to support
and justify the reliability of software both verification, by reasoning tech-
niques, and experimental validation, through simulation and testing.’
[26, 1]

This shows how much the ASM method cares about both, verification by proving
model properties and validation by simulation and testing of models. However
it turned out to be an advantage for their use in systems engineering to prag-
matically separate these two activites from the modeling (design) activity [8,
Sect.4,5], differently from what do other methods (notably the conceptually very
close B-method [1,2]) which link design and verification (definition and proof)
to always go together.

The ASM method allows one to validate and/or verify properties of models
at any level of abstraction since by their definition

ASMs are mathematical objects so that they satisfy the rigour needed to
enter a mathematical or machine supported proof,
ASMs are conceptually executable, due to their operational character, and
have been made mechanically executable by various tools.18

Verification cannot replace validation, but as early design-error detection tech-
nique it can considerably reduce the amount of testing and error correction after
the system is built.

The SAPP/PASS approach shares the validation and verification concern. For
‘checking whether a process is correct’ two aspects are distinguished [30, p.312,
Sect.16.3]:

A system must have certain properties, e.g. livelock free, deadlock
free which are independent of the application. This is implicit cor-
rectness.19

18 See [26, Ch.8] for a survey of various ASM verification and validation tools and [29]
for the more recent CoreASM execution engine.

19 We have pointed out in [15, 4.2] that for BPs ‘implicit correctness’ properties are
less interesting than the ones for ‘explicit correctness’ which typically are ground
model properties to be preserved through refinement steps.

66 E. Börger

A specified system must do what a designer has intended. This is
explicit correctness.

Both aspects are reported to have been supported by prototypical Prolog-based
validation tools providing for each system modeled in PASS a sort of expert
system which ‘allow(s) the behavior of a process system to be analysed and can
determine whether a system does what it was intended to do’ (ibid., p.321).

However this verification concern seems not to be supported by the present S-
BPM tool set, although the validation concern is, namely by a testing mechanism
that allows one to feed concrete values for messages and function arguments and
values into the system to run BP scenarios prior to coding method bodies20.

We suggest to integrate into the current S-BPM system the possibility to

formulate application-specific BP properties of interest to the user or man-
ager, presumably ground model properties which go beyond the usual graph-
theoretic properties like liveness, fairness, deadlock fredom, etc.,
prove such properties for the ground model as well as their preservation
through ASM refinement steps of internal actions,
document the properties and their verifications so that they can be checked
(also by third parties like certification bodies) and used to certify the cor-
rectness of the BP implementation.

This could be realized for any of the reasoning techniques the ASM method
allows one to apply for the mathematical verification of system properties, at
different levels of precision and under various assumptions, e.g. [14, Sect.1]

outline of a proof idea or proof sketch whereby the designers communicate
and document their design idea,
mathematical proof in the traditional meaning of the term whereby a design
idea can be justified as correct and its rationale be explained in detail,
formalized proof within a particular logic calculus,
computer-checked (automated or interactive) proof.

Each technique comes with a different amount of tool support21 and of effort
and cost to be paid for the verification and provides a different level of objective,
content-based ‘certification’ of the professional quality of the analysed system.

4 Evaluation of S-BPM

In this section we evaluate S-BPM as an approach to BPM (Sect. 4.2) us-
ing six classical evaluation criteria for practical software engineering methods
(Sect. 4.1).

4.1 The Evaluation Criteria

The three major purposes of business process (BP) descriptions are the design
and analysis, the implementation and the use of models of BPs. For each purpose

20 This is exactly the method used in the Falko project at Siemens to validate the ASM
ground model for the given scenarios, see [21].

21 [26, 9.4.3] surveys some tool supported ASM verifications.

The Subject-Oriented Approach to Software Design 67

pursued by the various BP stakeholders the models play a specific role, namely
to serve a) as conceptual models (in particular for high-level development-for-
change and management support), b) as specification of software requirements
that are implemented by executable models and c) as user model for process
execution, monitoring and management. This is reflected in the following six
criteria (paraphrased from [15, Sect.5]) a satisfactory BPM system must satisfy:

Ground Model Support. Provide support for a correct development and un-
derstanding by humans of models and their relation to the application view
of the to-be-modeled BP, which is informally described by the process re-
quirements. This human-centered property is often neglected although it is
the most critical one for software development systems in general22 and in
particular for BPM systems. It is crucial to support such an understanding
for both model design and use because these models serve for the communi-
cation between

the BP expert, who has to explain the real-world BP that is to be im-
plemented,
the IT expert who needs a precise specification of the coding goal,
the BP user who applies or manages the implemented process and needs
to understand for his interaction with the system that his process view
corresponds to what the code does.

Refinement Support. Provide support for faithful implementations of models
via systematic, controlled (experimentally validatable and/or mathemati-
cally verifiable) refinements. This model-centered property is methodolog-
ically speaking the simpler one to achieve because an enormous wealth of
established refinement, transformation and compilation methods can be used
for this—if the construction of satisfactory (precise, correct, complete and
minimal) ground models is supported the implementation can start from.

Change Management. Provide support for effective change management of
models. This involves the interaction between machines and humans who
have to understand and evaluate machine executions for BP (ground or re-
fined) models, bringing in again conceptual (ground model and refinement)
concerns when it comes to adapt the system to evolutionary changes.

Abstraction. Provide support for abstraction to help the practitioner in two
respects:

in the daily challenge to develop abstract models (ground models and
their stepwise refinements) out of concrete, real-life problem situations.
This implies, in particular, the availability in the modeling language of
a rich enough set of abstract data types (sets of objects with operations
defined on them) to use so that one can

• express the application-domain phenomena to be modeled (objects
and actions) at the conceptual level without the detour of language-
dependent encodings;

22 See the discussion in [14] for the verified software challenge [43] originally proposed
by Hoare.

68 E. Börger

• refine the abstractions in a controlled manner by more detailed op-
erations on more specific data structures.

to develop coherent definitions of different system views (control-flow
view, data flow view, communication view, view of the actors, etc.).

Modularization. Provide support for modularization through rigorous
abstract behavioral interfaces to support structured system compositions
into easy-to-change components.23 For BPM it is particularly important that
modeling-for-change is supported at all three major stakeholders levels: at
the Ground Model and Change Management support levels because it is the
BP users and managers who drive the evolutionary adaptation of BP mod-
els, at the Refinement support level because the high-level model changes
have to be propagated (read: compiled) faithfully to the implementing code.

Practical Foundation. Come with a precise foundation a practitioner can
work with, i.e. understand and rely upon when questions come up about
the behavioral meaning of constructs used by the tool.

4.2 Applying the Criteria to S-BPM

In this section we recapitulate what has been said showing that S-BPM [32]
and its tool [46] support correct development and understanding, faithful im-
plementation and effective management of BP models via practical abstraction
and modularization mechanisms which are defined on the basis of a fundamental
epistemological and mathematically stable foundation.

S-BPM satisfies the Ground Model criterion, as shown in Sect. 2.1.
In Sect. 2.2 we have explained to which extent S-BPM satisfies the Refinement

criterion and in Sect. 3.2 how it can be enhanced to satisfy the full Refinement
criterion. Modulo the same remark S-BPM satisfies the Abstraction criterion.

The Change Management criterion is satisfied by S-BPM via its technique
to decompose BPs into sets of SBDs, for which in turn modeling for change is
supported by two model extension schemes which allow the modeler to smoothly
integrate into a given SBD some new (whether normal or interrupt) behavior [32,
Appendix, Sect.6].

To satisfy the Modularization criterion S-BPM contributes in various ways.
Besides the just mentioned constructs for extending normal or interrupt be-
havior actions can be atomic or composed. In particular structured alternative
actions are available. To accurately model alternative (whether asynchronous
or synchronous) communication actions it is sufficient to use an appropriate
selection function and the traditional iteration construct to loop through the
offered alternatives [32, Appendix, Sect.3.1]. For alternative internal actions a
structured split-join mechanism is used which allows the modeler to have the se-
lection simply as non-deterministic choice or to condition the choice by static or

23 These two features, abstraction and modularization, also appear in the Design sec-
tion of Great Principles Category Narrative in [28] listed under simplicity as one of
the five ‘driving concerns’ of software design and used to ‘overcome the apparent
complexity of applications’.

The Subject-Oriented Approach to Software Design 69

dynamic possibly data-related criteria (ibid., Sect.4). Further modular composi-
tion constructs include the rigorously defined use of macros, of a normalization to
interaction views of SBDs and support for process hierarchies (networks) (ibid.,
Sect.5).

Notably the model itself which defines the semantics of these features is for-
mulated in a modular way using stepwise ASM refinement (ibid.).

Last but not least S-BPM has a Practical Foundation via the accurate defi-
nition of its semantics using the language of ASMs—a mathematically precise,
wide-spectrum action description language which uses rules of the the same form
as guarded basic SBD actions (see Sect. 2.1) and thus is familiar to all BP stake-
holders.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press, Cambridge (2010)
3. Batory, D., Börger, E.: Modularizing theorems for software product lines: The

Jbook case study. Universal Computer Science 14(12), 2059–2082 (2008)
4. Börger, E.: A Logical Operational Semantics for Full Prolog. Part I: Selection Core

and Control. In: Börger, E., Kleine Büning, H., Richter, M.M., Schönfeld, W. (eds.)
CSL 1989. LNCS, vol. 440, pp. 36–64. Springer, Heidelberg (1990)

5. Börger, E.: A Logical Operational Semantics of Full Prolog. Part II: Built-in Pred-
icates for Database Manipulation. In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452,
pp. 1–14. Springer, Heidelberg (1990)

6. Börger, E.: A Logical Operational Semantics for Full Prolog. Part III: Built-in
Predicates for Files, Terms, Arithmetic and Input-Output. In: Moschovakis, Y.N.
(ed.) Logic From Computer Science. Berkeley Mathematical Sciences Research
Institute Publications, vol. 21, pp. 17–50. Springer, Heidelberg (1992)

7. Börger, E.: Logic programming: The Evolving Algebra approach. In: Pehrson, B.,
Simon, I. (eds.) IFIP 13th World Computer Congress. Technology/Foundations,
vol. I, pp. 391–395. Elsevier, Amsterdam (1994)

8. Börger, E.: Why Use Evolving Algebras for Hardware and Software Engineer-
ing? In: Bartosek, M., Staudek, J., Wiedermann, J. (eds.) SOFSEM 1995. LNCS,
vol. 1012, pp. 236–271. Springer, Heidelberg (1995)

9. Börger, E.: Evolving Algebras and Parnas tables. In: Ehrig, H., von Henke, F.,
Meseguer, J., Wirsing, M. (eds.) Specification and Semantics, Schloss Dagstuhl,
Int. Conf. and Research Center for Computer Science. Dagstuhl Seminar, No. 9626
(July 1996)

10. Börger, E.: High-level System Design and Analysis using Abstract State Machines.
In: Hutter, D., Stephan, W., Traverso, P., Ullmann, M. (eds.) FM-Trends 1998.
LNCS, vol. 1641, pp. 1–43. Springer, Heidelberg (1999)

11. Börger, E.: The origins and the development of the ASM method for high-level
system design and analysis. Universal Computer Science 8(1), 2–74 (2002)

12. Börger, E.: The ASM Ground Model Method as a Foundation of Requirements
Engineering. In: Dershowitz, N. (ed.) Verification (Manna Festschrift). LNCS,
vol. 2772, pp. 145–160. Springer, Heidelberg (2004)

13. Börger, E.: The ASM refinement method. Formal Aspects of Computing 15, 237–
257 (2003)

70 E. Börger

14. Börger, E.: Construction and analysis of ground models and their refinements as
a foundation for validating computer based systems. Formal Aspects of Comput-
ing 19, 225–241 (2007)

15. Börger, E.: Approaches to modeling business processes. A critical analysis of
BPMN, workflow patterns and YAWL. Software and Systems Modeling (2011),
doi:10.1007/s10270-011-0214-z

16. Börger, E., Cisternino, A., Gervasi, V.: Ambient Abstract State Machines with
applications. Computer and System Sciences (2011), Special Issue in honor of Amir
Pnueli, http://dx.doi.org/10.1016/j.jcss.2011.08.004

17. Börger, E., Dässler, K.: Prolog: DIN papers for discussion. ISO/IEC JTCI SC22
WG17 Prolog Standardization Document 58, National Physical Laboratory, Mid-
dlesex, England (1990)

18. Börger, E., Durdanović, I.: Correctness of compiling Occam to Transputer code.
Computer Journal 39(1), 52–92 (1996)

19. Börger, E., Fruja, G., Gervasi, V., Stärk, R.: A high-level modular definition of the
semantics of C#. Theoretical Computer Science 336(2-3), 235–284 (2005)

20. Börger, E., Gargantini, A., Riccobene, E.: Abstract State Machines. A method for
system specification and analysis. In: Frappier, M., Habrias, H. (eds.) Software
Specification Methods: An Overview Using a Case Study, pp. 103–119. HERMES
Sc. Publ. (2006)

21. Börger, E., Päppinghaus, P., Schmid, J.: Report on a Practical Application of
ASMs in Software Design. In: Gurevich, Y., Kutter, P., Odersky, M., Thiele, L.
(eds.) ASM 2000. LNCS, vol. 1912, pp. 361–366. Springer, Heidelberg (2000)

22. Börger, E., Prinz, A.: Quo Vadis Abstract State Machines? Universal Computer
Science 14(12), 1921–1928 (2008)

23. Börger, E., Rosenzweig, D.: From Prolog Algebras Towards WAM – a Mathematical
Study of Implementation. In: Schönfeld, W., Börger, E., Kleine Büning, H., Richter,
M.M. (eds.) CSL 1990. LNCS, vol. 533, pp. 31–66. Springer, Heidelberg (1991)

24. Börger, E., Rosenzweig, D.: WAM Algebras – a Mathematical Study of Implemen-
tation, Part 2. In: Voronkov, A. (ed.) RCLP 1990 and RCLP 1991. LNCS (LNAI),
vol. 592, pp. 35–54. Springer, Heidelberg (1992)

25. Börger, E., Rosenzweig, D.: The WAM – definition and compiler correctness. In:
Beierle, C., Plümer, L. (eds.) Logic Programming: Formal Methods and Practical
Applications. Studies in Computer Science and Artificial Intelligence, vol. 11, ch.
2, pp. 20–90. North-Holland (1995)

26. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

27. Delaware, B., Cook, W., Batory, D.: Product lines of theorems. In: Proc. OOPSLA
2011, Portland (October 2011)

28. Denning, P.J., Martell, C.: Great principles of computing (2007),
http://cs.gmu.edu/cne/pjd/GP/GP-site/welcome.html (consulted July 26,
2011)

29. Farahbod, R., et al.: The CoreASM Project, http://www.coreasm.org
30. Fleischmann, A.: Distributed Systems: Software Design and Implementation.

Springer, Heidelberg (1994)
31. Fleischmann, A.: Sbpm2NatLang converter. e-mail of September 8 to Egon Börger

(2011)
32. Fleischmann, A., Schmidt, W., Stary, C., Obermeier, S., Börger, E.: Subjektorien-

tiertes Prozessmanagement. Hanser-Verlag, München (2011); See [63] for a correct
version of the appendix

http://dx.doi.org/10.1016/j.jcss.2011.08.004
http://cs.gmu.edu/cne/pjd/GP/GP-site/welcome.html
http://www.coreasm.org

The Subject-Oriented Approach to Software Design 71

33. Fleischmann, A., Stary, C.: Whom to talk to? A stakeholder perspective on business
process development. Universal Access in the Information Society, pp. 1–26 (June
2011), doi:10.1007/s10209-011-0236-x

34. Frappier, M., Habrias, H. (eds.): Software Specification Methods: An Overview
Using a Case Study. HERMES Sc. Publ., Paris (2006)

35. Fruja, N.G.: Type Safety of C# and .NET CLR. PhD thesis, ETH Zürich (2006)
36. Fruja, N.G.: Towards proving type safety of .net cil. Science of Computer Program-

ming 72(3), 176–219 (2008)
37. Fruja, N.G., Börger, E.: Modeling the .NET CLR Exception Handling Mechanism

for a Mathematical Analysis. Journal of Object Technology 5(3), 5–34 (2006),
http://www.jot.fm/issues/issue_2006_04/article1

38. Gurevich, Y.: Reconsidering Turing’s Thesis: Toward more realistic semantics
of programs. Technical Report CRL-TR-36-84, EECS Department, University of
Michigan (September 1984)

39. Gurevich, Y.: A new thesis. Abstracts, American Mathematical Society 6(4), 317
(1985)

40. Gurevich, Y.: Evolving algebras 1993: Lipari Guide. In: Börger, E. (ed.) Specifica-
tion and Validation Methods, pp. 9–36. Oxford University Press (1995)

41. Gurevich, Y.: Interactive algorithms 2005 with added appendix. In: Goldin,
P.W.D., Smolka, S.A. (eds.) Interactive Computation: The New Paradigm, pp.
165–182. Springer, Heidelberg (2006)

42. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
43. Hoare, C.A.R., Misra, J., Leavens, G.T., Shankar, N.: The verified software initia-

tive: a manifesto. ACM Computing Surveys (2009)
44. Kim, C.H.P., Batory, D., Khurshid, S.: Reducing combinatorics in testing product

lines. In: Proc. Aspect Oriented Software Development Conference. ACM (2011)
45. Knuth, D.: Literate Programming. CSLI Lecture Notes, vol. 27. Center for the

Study of Language and Information, Stanford (1992)
46. Metasonic. Metasonic-suite, www.metasonic.de/metasonic-suite
47. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-

delberg (1980)
48. OMG. Business Process Model and Notation (BPMN) (2011),

http://www.omg.org/spec/BPMN/2.0 (formal, January 03, 2011)
49. Parnas, D.L., Madey, J.: Functional documents for computer systems. Sci. of Com-

put. Program. 25, 41–62 (1995)
50. Schellhorn, G.: Verifikation abstrakter Zustandsmaschinen. PhD thesis, Universität

Ulm, Germany (1999)
51. Schellhorn, G.: Verification of ASM refinements using generalized forward simula-

tion. Universal Computer Science 7(11), 952–979 (2001)
52. Schellhorn, G.: ASM refinement and generalizations of forward simulation in data

refinement: A comparison. Theoretical Computer Science 336(2-3), 403–436 (2005)
53. Schellhorn, G., Ahrendt, W.: Reasoning about Abstract State Machines: The WAM

case study. Universal Computer Science 3(4), 377–413 (1997)
54. Schellhorn, G., Ahrendt, W.: The WAM case study: Verifying compiler correctness

for Prolog with KIV. In: Bibel, W., Schmitt, P. (eds.) Automated Deduction – A
Basis for Applications, vol. III, pp. 165–194. Kluwer Academic Publishers (1998)

55. Semiconductor Industry Assoc., International technologoy roadmap for semicon-
ductors. Design (2005), http://www.itrs.net/Links/2005ITRS/Design2005.pdf

56. Sneed, S.H.: Exporting Natural Language: Generating NL Sentences Out of S-
BPM Process Models. In: Fleischmann, A., Schmidt, W., Singer, R., Seese, D.
(eds.) S-BPM ONE 2010. CCIS, vol. 138, pp. 163–179. Springer, Heidelberg (2011)

http://www.jot.fm/issues/issue_2006_04/article1
www.metasonic.de/metasonic-suite
http://www.omg.org/spec/BPMN/2.0
http://www.itrs.net/Links/2005ITRS/Design2005.pdf

72 E. Börger

57. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, Heidelberg (2001)

58. Tarski, A.: Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosoph-
ica 1, 261–405 (1936)

59. ter Hofstede, A., van der Aalst, W., Adams, M., Russell, N. (eds.): Modern Business
Process Automation. Springer, Heidelberg (2010)

60. Uzuncaova, E., Khurshid, S., Batory, D.: Incremental test generation for software
product lines. IEEE Transactions on Software Engineering 36(3), 309–322 (2011)

61. van der Aalst, W., ter Hofstede, A.: Workflow patterns home page, created and
maintained since (1999), http://www.workflowpatterns.com/

62. Wirth, N.: Algorithms & Data Structures. Prentice-Hall (1975)
63. Here the file for the correct text of the appendix of [32] can be downloaded,

http://www.hanser.de/buch.asp?isbn=978-3-446-42707-5&area=Wirtschaft,
http://www.di.unipi.it/~boerger/Papers/SbpmBookAppendix.pdf

http://www.workflowpatterns.com/
http://www.hanser.de/buch.asp?isbn=978-3-446-42707-5&area=Wirtschaft
http://www.di.unipi.it/~boerger/Papers/SbpmBookAppendix.pdf

BCNF via Attribute Splitting

Johann A. Makowsky1 and Elena V. Ravve2

1 Department of Computer Science
Technion - Israel Institute of Technology

Haifa 32000, Israel
janos@cs.technion.ac.il

2 Department of Software Engineering
ORT Braude College
Karmiel 21982, Israel
cselena@braude.ac.il

Abstract. Boyce-Codd-Heath introduced criteria for good database de-
sign, which can be formulated in terms of FD’s only. Classical design de-
composes relations iteratively using projections. BCNF can not be always
achieved using projections alone. 3NF was introduced as a compromise.
In this paper we summarize all the known characterizations of BCNF and
formulate a new one. In [MR96], attribute splitting was suggested as a
heuristics to achieve BCNF in case projections do not do the job. Here
we show how attribute splitting can be used to restructure a database
scheme iteratively such that the result will be in BCNF, is information
preserving and preserves the functional dependencies.

For Bernhard Thalheim on his 60th birthday

1 Introduction

Databases are designed in an interactive way between the database designer and
his client. Application driven design uses the language of Entity-Relationship
modeling, [MR92, Tha00]. Another approach consists in collecting the attributes
U of all the application, and requires from the client that he specifies the func-
tional dependencies F holding between those attributes. After several iterations
this results in a big relation R[U] and a set F of functional dependencies. In the
remaining design process, R[U] is decomposed using criteria such as avoiding (i)
null values, (ii) insertion, deletion and modification anomalies, (iii) redundancies,
and achieving optimal storage, while keeping U fixed.

Boyce-Codd-Heath Normal Form for relational databases was introduced
to formulate all these properties in terms of F and the key dependencies
derivable from F , [Cod70, Cod74, Cod72, Hea71]. The cumulative efforts of many
researchers are summarized in Theorem 1, to which we add one more character-
ization in terms of hidden bijections. We also note that for certain standardized
translations of the Entity-Relationship Model into the relational model, as given
in [MR92], the resulting relation schemes are always in BCNF.

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 73–84, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

74 J.A. Makowsky and E.V. Ravve

The classical approach to design is based on iteratively decomposing R[U]
using projection while keeping U fixed and preserving information and the func-
tional dependencies. Unfortunately, BCNF cannot always be achieved in this
way. As a compromise 3NF was formulated, which can always be achieved while
preserving information and the functional dependencies. However, not all the
FD’s follow from the key dependencies. In [MR97], an additional way of restruc-
turing a databases was introduced by splitting attributes: The relation scheme
is expanded by new attributes whose interpretation is in bijection with previous
attributes. The latter can be expressed using functional dependencies between
new and old attributes. The expanded relation scheme then is decomposed into
BCNF, preserving information and dependencies up to renaming. In [MR97] this
was presented as a heuristics. The suggested procedure always produces relations
in BCNF, if it terminates. It is a heuristics, because we could not guarantee ter-
mination of the procedure. In this paper we also show termination.

The idea of adding, rather than splitting attributes to achieve relation schemes
in BCNF was already discussed in [Sci86]. E. Sciore suggests that if a relation
scheme (R[U], F) is not in BCNF, then it is under specified, and its specification
can be completed by suitably adding functional dependencies. He then proposes
a heuristics how this should be done.

Design theory for relational databases fell out of fashion twenty years ago and
few papers were published on the topic. Notable exceptions are [Bis95a, Bis98,
VS93, Vin94, Vin98, VL97, FHK+11]. However, with the fashionable trend of
XML-driven databases, renewed interest in normal forms emerged, [AL04, AL05,
Sch05, MWV04, Tri09]. Hopefully, our approach can be used to formulate design
criteria for XML based databases.

We assume the reader is familiar with database theory as described in [AHV94,
LL99].

2 BCNF Reviewed

2.1 Functional Dependencies and Normal Forms

Let U = {A1, A2, . . . , Am} be a set of attributes, R[U] a relation scheme over
U , and F a set of functional dependencies for R[U] of the form X → Y with
X,Y ⊆ U . For simplicity we assume that all the attributes in U are different
from each other.

– A functional dependency X → Y is trivial if Y ⊆ X .
– F+ the deductive closure of F (with respect to the Armstrong axioms).
– K ⊆ U is a superkey for F if K → U ∈ F+.
– K ⊆ U is a (candidate) key for F if K is a superkey, but no K ′ ⊂ K is a

superkey.
– The set of key dependencies of F is defined by

Fkey = {K → U ∈ F+ : K is a key }.
– Let F be a set of functional dependencies for R[U] and and let S[U1] be a

relation scheme over U1 ⊆ U . We denote by F [U1] the set {X → Y : XY ⊆
U1 and X → Y ∈ F+}, and call it the projection of F on U1.

BCNF via Attribute Splitting 75

– We denote by triv(U) the set of trivial dependencies over U , i.e., the
dependencies of the form X → Y with X,Y ⊆ U and Y ⊆ X .

(R[U], F) is in Boyce-Codd Normal Form (BCNF) if (FKey)
+ = F+.

(R[U], F) is in Third Normal Form(3NF) if for every non-trivial X → Y ∈
F+ either X is a superkey or Y ⊂ K for some key K for F , i.e., K → U ∈ F+.
The latter is called a BCNF-violation for the key K.

Example 1
The relation scheme R[NCSZ] with

N (Nation), C (City), S (Street), Z (Zipcode)

and NCS → Z,NZ → C is in 3NF but not in BCNF: NCS is the key
NZ → C is a BCNF-violation (NSZ is another key).

Example 2
The relation scheme R[NSCAP] with

N (Name), S (Street), C (City) A (Areacode), P (Phone number)

and NSC → AP , SC → A, is not in 3NF: NSC is the only key.
R1[NSCP] with NSC → P , and R2[SCA] with SC → A, are both in BCNF.

2.2 Decompositions of Relation Schemes

Let R[U] be a relation scheme, F a set of functional dependencies.
(R[U1], F1) and (R[U2], F2) is a weak decomposition of (R[U], F) if U1 ∪

U2 = U , and furthermore Fi
+ ⊂ F [Ui]

+. It is a strong decomposition if
additionally Fi

+ = F [Ui]
+.

The decomposition (R[U1], F1) and (R[U2], F2) is information preserving,
if for all instances r of R satisfying F we have that r = πU1(r) �� πU2(r).

It is FD preserving, if (F1 ∪ F2)
+ = F+.

Remark 1. If (R[U1], F1) and (R[U2], F2) is an information and dependency pre-
serving decomposition of (R[U], F), A ∈ U1 ∩ U2, and r1 |= F1 and r2 |= F2, it
is not required that πAr1 = πAr2. This is only the case for an instance r |= F
and ri = πUir.

In the literature, decompositions require Fi = F [Ui], which is equivalent to
(Fi)

+ = F [Ui]. In our terminology they are strong decompositions.
The relation scheme R[ABCD] with F = {C → D,B → A,CD → B}

can be decomposed into (R[CD], F1) with F1 = {C → D}, (R[BCD], F2) with
F2 = {CD → B} and (R[AB], F3) with F3 = {B → A}. Note that C → D �∈ F2

but C → D ∈ F [BCD], so this is not a strong decomposition, but it preserves
information and dependencies.

We will make use of our relaxed notion of weak decomposition in Section 3.

76 J.A. Makowsky and E.V. Ravve

2.3 Redundancy

Let (R,F) be a relation scheme. R is F -redundant (F+-redundant) on XY
if there exists a relation r |= F and a non-trivial FD X → Y ∈ F (∈ F+),
and at least two distinct tuples t1, t2 ∈ r with t1[XY] = t2[XY]. R is F -
redundant (F+-redundant) if there is XY ⊂ U such that R is F -redundant
(F+-redundant) on XY .

We distinguish sets of attributes of the form XY as follows: If X → Y ∈ F
and not trivial, XY is called an explicit fact. If X → Y ∈ F+ − F and not
trivial, XY is called an implicit fact.

Now, R[U] is F -redundant (F+-redundant) on XY ⊂ U iff XY is a fact and
XY is not a superkey. The rationale behind redundancy is, that if R is redundant
on an explicit or implicit fact XY , the fact should be stored in a different table.
R is not F -redundant (F+-redundant) if every fact is a superkey.

2.4 Anomalies

Anomalies were introduced in [Fag79]. We are given a relation scheme R[U] and
a set of FD’s F with a set of candidate keys given by FKey. Let r be a relation
for R with r |= F . Let t[U] be a tuple we want to insert. We check whether
r ∪ {t[U]} |= FKey . If r ∪ {t[U]} |= FKey we accept, else we reject the insertion
of t[U]. If we accept, but r ∪ {t[U]} �|= F , we say that t[U] is an insertion
violation.

R,F has an insertion anomaly if there is an r and t[U], which is an insertion
violation.

Let t[U] ∈ r be a tuple we want to delete. Again we check whether r−{t[U]} |=
FKey . If r − {t[U]} |= FKey we accept, else we reject the deletion of t[U]. If we
accept, but r − {t[U]} �|= F , we say that t[U] is a deletion violation.

R,F has a deletion anomaly if there is an r and t[U], which is a deletion
violation.

However, let s ⊆ r be another relation for R. If r |= F , so also s |= F . Hence,
there are no deletion anomalies for FD’s.

Let r be a relation for R[U], F , t ∈ r, r |= F , K0 be a fixed candidate key for
F . Let t′ be a tuple such that (r − {t}) ∪ {t′} |= FKey and one of the following:

(i) t[K] = t′[K] for some candidate key for F ;
(ii) t[K0] = t′[K0] for the specifically chosen key K0;
(iii) t[K] = t′[K] for every candidate key for F ;

but (r − {t}) ∪ {t′} �|= F . Then r and t′ show a modification anomaly Mi,
Mii, Miii respectively.

Because Fkey |= F , we note that if R,F is in BCNF then it has no modification
anomaly Mi (and hence neither Mii and Miii).

2.5 Unpredictable Insertions

Unpredictable insertion were introduced in [BG80]. We use their terminology.
Up to logical equivalence within natural language their definition is really the

BCNF via Attribute Splitting 77

same as in [Fag79]. Let R[U], F be a relation scheme. An insertion of a tuple t
into r |= F is said to be F -valid, if r∪{t} |= F . A set of attributes X ⊆ U is said
to be unaffected by a valid insertion r′ = r ∪ {t} iff πX(r) = πX(r′). A valid
insertion is F -unpredictable (F+-unpredictable) if there exists a non-trivial
X → Y ∈ F (X → Y ∈ F+) such that XY is unaffected by it.

2.6 Storage Saving

Let r be an instance of the relation scheme (R[U], F). For V ⊆ U we define

nV (r) = |{t[V] : t ∈ r}|

and

sV (r) = |{t[V] : t ∈ r}| · |V |

nV (r) counts the number of tuples in r which are different on V , and sV (r) is
the size (in terms of attribute values) of πV (r).

Let πUiR = Ri[Ui] be a information preserving decomposition of R[U]
which is non-trivial, i.e., Ui �= U . We say that the decomposition is storage
saving if there are instances r =��i ri such that

∑
i sUi(πUir) ≤ sU (r).

Example 3
Consider R[ABCD] with
F3.1 = {A→ BCD,C → D} (not in BCNF) and
F3.2 = {A→ BCD,C → A} (in BCNF).
We decompose R into R1[ABC] and R2[CD] for F3.1 and S1[AC] and S2[ABD]
for F3.2. With F3.1 there may be fewer values for C than for A, but with F3.2

this is not possible.

More generally we have

Lemma 1. Let (R[U], F) be a relation scheme with U = KVW and K is a key,
i.e., K → U ∈ F+. Then for all instances r |= F we have

sKV (r) + sKW (r) > sU (r)

and

Lemma 2. Let (R[U], F) be a relation scheme with U = KVW and K is not a
superkey, in particular K → V �∈ F+. Then for every ε ∈ R there are instances
r |= F such that

sKV (r) + sKW (r)

sU (r)
≤ (1 + ε)

|KW |
|U |

Proof. For r with N tuples and only one value for K and W we have N values
for V . Therefore

sKV (r) + sKW (r)

sU (r)
=

N + 1

N

78 J.A. Makowsky and E.V. Ravve

which converges to 1. On the other hand we have

|KW |
|U | =

2

3
,

hence the lemma is proven. �

It is now easy to see, as was observed in [Bis95a, Bis98, VS93], that a relation
scheme (R,F) is in BCNF iff it has no storage saving decomposition.

2.7 Characterizing BCNF

The following summarizes the classical and less known characterization of BCNF,
cf. [Bis95b, LL99] and [Fag79, BG80, Bis95a, Bis98, VS93, Vin94, Vin98].

Theorem 1 (BCNF-characterization Theorem)
Let F be a set of functional dependencies over a relation scheme (R,F).
The following are equivalent:

(i) (R,F) is NOT in BCNF;
(ii) (R,F) is redundant with respect to F ;
(iii) (R,F) has an insertion anomaly with respect to F ;
(iv) (R,F) has a modification anomaly with respect to F .
(v) (R,F) has F -unpredictable insertions.
(vi) (R,F) has a storage saving information preserving decomposition.

2.8 Hidden Bijections

Let U1, U2 ⊆ U be two sets of attributes with functional dependencies U1 → U2

and U2 → U1. This establishes a bijection between the data in U1 and U2,
which can be viewed as yet another form of redundancy. We shall give one more
characterization of BCNF in terms of the absence of such bijections.

Let (R[U], F) be a relation scheme with V,X, Y ⊆ U sets of attributes and F
a set of FD’s. We say that F has a hidden bijection if V X ↔ V Y ∈ F+ and
at least one Y → X ∈ F+ − F+

key or X → Y ∈ F+ − F+
key or both hold. The

rôles of X and Y are not symmetric. Moreover, if Y → X ∈ F+ − F+
key then

w.l.o.g., we take X = {B}. In addition, V and Y can be assumed to be minimal
and V XY is not necessarily equal to U .

Remark 2. We call this a hidden bijection because X and Y are not in bijection,
but V X and V Y are.

Let us look again at Example 1 R[NCSZ] with

N (Nation), C (City), S (Street), Z (Zipcode)

and NCS → Z,NZ → C. The dependency NZ → C ∈ F+ − F+
key and the fact

that V = NS gives a hidden bijection. We note that NZ → C ∈ F+ −F+
key is a

BCNF-violation.

BCNF via Attribute Splitting 79

Theorem 2
(R[U], F) is in BCNF iff it has no hidden bijections.

Proof

– If (R[U], F) is in BCNF then F+−F+
key = triv(U) and there is no candidate

to hidden bijections.
– Conversely, if (R[U], F) is not in BCNF then F+−F+

key �= triv(U) and there

exists a non-trivial Y → B ∈ F+ − F+
key . Without loss of generality, we

assume that our scheme is in 3NF. It leads to two options:
(i) Y is a superkey and there exists a (minimal)1 key K such that K ⊂ Y .

In this case, Y → B ∈ F+ − F+
key is a hidden bijection with V Y ↔ V B,

where V = K.
(ii) B ∈ K, where K is a (minimal) key and Y �= K is not a superkey. In

this case, Y → B ∈ F+ − F+
key is a hidden bijection with V Y ↔ V B,

where V = K − {B}.
�

Remark 3. If we do not request V to be minimal then we take V = U − {B}.
So, we have: V B → Y ∈ F+ as V B = U and V Y → B ∈ F+ as Y → B ∈ F+.

3 Attribute Splitting

3.1 Motivating Example

The following analysis of the standard example from [Ull82] of a BCNF violation
is slightly modified and taken mostly from [MR96].

Example 1 of R[NCSZ] with N: Nation, C: City, S: Street, Z: Zipcode and
F = {NCS → Z, NZ → C} is in 3NF but not in BCNF. The only BCNF-
violation is NZ → C. We have added an additional attribute N such that the
left hand side of NZ → C is not a singleton.

We can modify it to be in BCNF in two ways:
Either we drop the BCNF-violation NZ → C altogether. This would make

sense if the character of postal distribution has changed and only new zip-codes
are introduced.

Otherwise, we split the zip-code, as is done in practice in many countries. This
allows us to keep the old data intact and store the modification in additional
tables. In further updates these tables do not have to be updated, if the new
zip-code is not related to any old zip-codes.

We split Z into Zcity and Zlocal with new FD’s NCS → Zlocal, NZcity → C,
NC → Zcity and a new relation scheme R′[NCSZlocalZcity].

Each tuple t in an instance r of R[NCSZ] is extended to a tuple
t′[NCSZcityZlocal] such that t′[NCS] = t[NCS] and t′[ZcityZlocal] = t[CZ].
Because NZcity and NC are in a bijection, we can decompose R′ in two ways.

1 In the standard textbooks there is some confusion: in some books keys are superkeys,
in other books keys are always minimal. We added minimal here in parentheses to
avoid this ambiguity.

80 J.A. Makowsky and E.V. Ravve

(i) Address1[NCSZlocal] with NCS → Zlocal, and
CityCode[NCZcity] with NZcity → C and NC → Zcity, or

(ii) ZipCode[NSZcityZlocal] with NSZcity → Zlocal, and
CityCode[NCZcity] with NZcity → C and NC → Zcity.

This gives as two tables instead of one. However, we can gain storage space
provided that ZCity is a short code for city names, and Zlocal is a short code for
sets of street names. Note that saving storage must be measured in number of
attribute values and tuples, not in the number of tuples. If we drop the BCNF-
violation from our requirements, we save even more storage. We can use the
unused zip-codes resulting from imbalances of city-size. For example, in USA,
New York has many zip-codes, say 001-0001 up to 001-9999, whereas Montauk
has very few, say 002-0001 up to 002-0009. With NZ → C the values 002-0010
up to 002-9999 are waisted. We can also gain by grouping small cities into bigger
areas with same first three digits.

In both cases the decomposition is information preserving, and all the relation
schemes are in BCNF with respect to their FD’s. However, the original zip-
code attribute Z is lost. It can be saved by adding a third relation scheme
ZipSplit[ZZcityZlocal] with FD’s Z → ZcityZlocal and ZcityZlocal → Z.

Do we preserve all the dependencies of the original design. In case (ii) this is
not the case because the attributes of NCS → Zlocal do not appear together in
a relation scheme. In case (i) we have to check whether F+ is contained in

{NCS → Zlocal, NZcity → C,NC → Zcity, Z → ZcityZlocal, ZcityZlocal → Z}+

The reader can check that this is not the case. In the simpler case where the
attribute N is omitted both from the original relation scheme and from all the
FD’s the FD’s are preserved.

In our attribute splitting example the relation schemes Address1[NCSZlocal],
CityCode[NCZcity] and ZipCode[NSZcityZlocal] are projections of R

′. However
ZipSplit[ZZcityZlocal] is not.

3.2 AB-Splitting

For the sequel we have to define substitution of attributes in sets of functional
dependencies. Let U be a set of attributes, A ∈ U and Anew �∈ U . For a set F of
dependencies over U we denote by F |AAnew

the set of dependencies in F where

each appearance of A is replaced by Anew. We note that (F |AAnew
)|Anew

A = F .
Let (R[U], F) be a relation scheme with Y ⊂ U a set of attributes, A,B ∈ U

attributes and F a set of FD’s, and Y → B ∈ F+ − F+
key , while A ∈ Y and

Y − {A} → B �∈ F+, and V is a key, such that B ∈ V .
We want to restructure (R[U], F) in such a way that the BCNF-violation

Y → B is eliminated without loss of information or dependencies, and without
introducing new BCNF-violations.

To achieve this we shall expand (R[U], F) by adding three new attributes
Anew, AA, AB to form R̄, F̄ in the following way:

BCNF via Attribute Splitting 81

(i) F̄ = F ∪ {AB → Anew , Anew → AB,AA → A,A→ AA, AB → B,B → AB}
(ii) Each instance r |= F is expanded into an instance r̄ for R̄, F̄ as follows: t ∈ r

is expanded to t̄ by setting t̄[U] = t[U] and t̄[AA] = t[A], t̄[AB] = t[B] and
t̄[Anew] = t[AB].

Proposition 1. (i) Every r |= F can be expanded to r̄ |= F̄ .
(ii) πU (r̄) = r and πU (r̄) |= F iff r̄ |= F̄ .

Now we decompose R̄ into three relation schemes:

(i) U1 = U − {A}Anew and (R1[U1], F1) with F1 = (F − {Y → B})+|AAnew
);

(ii) U2 = ABB and (R2[U2], F2) with F2 = {AB → B,B → AB}.
(iii) U3 = AnewAAAB and (R3[U3], F3) with

F3 = {Anew → AAAB, AAAB → Anew}

This is a weak decomposition of (R̄, F̄) but not a strong decomposition. Fur-
thermore, as (R,F) was not in BCNF there are instances r̄ |= F̄ such that

sU−{A},Anew
(r̄) + sABB(r̄) + sAnewAAAB (r̄) < sU (r̄) = sU (r)

In other words expanding (R,F) to (R̄, F̄) is still storage saving.
Interpretation: Instead of just forgetting Y → B, we restructure the at-

tribute A ∈ Y by replacing it by Anew and removing the BCNF-violation from
R1. The new relations (R2, F2) and (R3, F3) describe the restructuring and pre-
serve A ∈ Y implicitly in tables R2 and R3 which will be shown to be in BCNF.

Proposition 2. The decomposition of (R̄, F̄) into (R1, F1), (R2, F2), (R3, F3) is
information preserving, i.e., for every r̄ |= F̄ we have

πU−{A}Anew
r̄ �� πABB r̄ �� πAnewAAAB r̄ = πU−{A}r̄

Proof. The left join is on B and B is a key of R2. The right join is on Anew and
Anew is a key of R3. �

Proposition 3. Given (R,F), let (R̄, F̄) be the expansion defined above. The
decomposition of (R̄, F̄) into (R1, F1), (R2, F2), (R3, F3) preserves dependencies
in the following sense:

F+|AAnew
⊆ (F1 ∪ F2 ∪ F3)

+[U − {A}Anew]

Proof. We first prove Y − {A}Anew → B ∈ (F2 ∪ F3)
+.

Anew → AB ∈ F3. AB → B ∈ F2. By transitivity we get Anew → B. By
augmentation we conclude Y − {A}Anew → B ∈ (F2 ∪ F3)

+.
Next we observe that (F1∪{Y −{A}Anew → B})+|Anew

A = F+ or equivalently,
(F1 ∪ {Y − {A}Anew → B})+ = (F+)|AAnew

. �

Observation 1. (R2, F2) and (R3, F3) are in BCNF.

About the status of (R1, F1) we can say little in general. However, we observe
that,

82 J.A. Makowsky and E.V. Ravve

Proposition 4. If (R,F) is in 3NF, G is a minimal cover of F , and the depen-
dency Y → B ∈ G is a BCNF-violation, then G− {Y → B} is a minimal cover
of F ′ = F+ − {Y → B} and (R,F ′) is in 3NF and has fewer BCNF violations
than (R,F).

We can iterate this construction to achieve BCNF in the following way:

(i) Given a relation scheme (R0, F 0) we can always put it into 3NF using the
synthesis algorithm.

(ii) So without loss of generality we can assume that our (R,F) is one of the
relation schemes resulting from the synthesis algorithm which is in 3NF but
not in BCNF.

(iii) Furthermore, if (R,F) is not in BCNF, it has a minimal cover G of F which
contains a BCNF-violation, say Y → B and A ∈ Y .

(iv) We apply our AB-splitting to eliminate this BCNF violation in (R,F).
(v) Using Propositions 1 and 2 we see that we preserve information and the

dependencies.
(vi) Using Proposition 4 we reduce the number of BCNF-violations because G is

a minimal cover and Y → B ∈ G.
(vii) We did not introduce any BCNF-violations which were not in G+ because

we used a weak decomposition where F1 �= F [U1], more precisely the depen-
dency Y → B is in F [U1]− F1.

Remark 4. If Y = {A} is a singleton, we can simplify AB-splitting as follows:
We split A into AA, AB and define (Ri, Fi) by

(i) (R1[U − {A}, AA], F1) with F1 = (F − {A→ B})+|AAA
),

(ii) (R2[AB, B], F2) with F2 = {AB → B,B → AB},
(iii) (R3[A,AA, AB], F3) with F3 = {A→ AAAB, AAAB → A},
and r̄ is defined as before.

4 Conclusion

We have collected all the known characterizations of BCNF in terms of the un-
derlying functional dependencies, and we have added one more characterization
in terms of hidden bijections.

Given (R[U], F), it is not always possible to achieve BCNF using strong de-
composition only while keeping U fixed and preserving information and the
dependencies. Instead we restructure (R[U], F) by adding attributes to U which
are in bijection with some of the original attributes. We then decompose the
restructured database scheme into relations schemes, using a weak decomposi-
tion (R[Ui], Fi) in such a way that Fi ⊆ F [Ui]. In this way we finally get a
database scheme in BCNF which preserves information and the dependencies
are preserved up to renaming.

Acknowledgments. We would like to thank E. Fischer and Y. Kanza for discussing
drafts of this paper with us, and to Y. Kanza for reading carefully the current version
and suggesting expository improvements.

BCNF via Attribute Splitting 83

References

[AHV94] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Database. Addison Wesley
(1994)

[AL04] Arenas, M., Libkin, L.: A normal form for XML documents. ACM Transac-
tions on Database Systems 29(1), 195–232 (2004)

[AL05] Arenas, M., Libkin, L.: An information-theoretic approach to normal forms
for relational and XML data. Journal of ACM 52(2), 246–283 (2005)

[BG80] Bernstein, P.A., Goodman, N.: What does Boyce-Codd normal form do? In.
In: Sixth Conference on VLDB, pp. 245–259 (1980)

[Bis95a] Biskup, J.: Database Schema Design Theory: Achievements and Challenges.
In: Bhalla, S. (ed.) CISMOD 1995. LNCS, vol. 1006, pp. 14–44. Springer,
Heidelberg (1995)

[Bis95b] Biskup, J.: Grundlagen von Informationssystemen. Vieweg (1995)
[Bis98] Biskup, J.: Achievements of relational database schema design theory revis-

ited. In: Thalheim, B., Libkin, L. (eds.) Semantics in Databases, pp. 29–54.
Springer, Berlin (1998)

[Cod70] Codd, E.F.: A relational model of large shared data banks. Communications
of the ACM 13(2), 377–387 (1970)

[Cod72] Codd, E.F.: Further normalization of the data base relational models. In:
Rustin, R. (ed.) Data Base Systems, pp. 33–64. Prentice-Hall, Englewood
Cliffs (1972)

[Cod74] Codd, E.F.: Recent investigation in relational data base systems. In: IFIP
Proceedings, pp. 1017–1021 (1974)

[Fag79] Fagin, R.: Normal forms and relational database operators. In: Proceedings
of ACM-SIGMOD Conference on Management of Data, pp. 153–160 (1979)

[FHK+11] Ferrarotti, F., Hartmann, S., Köhler, H., Link, S., Vincent, M.: The Boyce-
Codd-Heath Normal Form for SQL. In: Beklemishev, L.D., de Queiroz, R.
(eds.) WoLLIC 2011. LNCS, vol. 6642, pp. 110–122. Springer, Heidelberg
(2011)

[Hea71] Heath, I.J.: Unacceptable file operations in a relational data base. In: Proc.
1971 ACM SIGFIDET Workshop on Data Description, Access, and Control,
San Diego, Ca., pp. 19–33 (1971)

[LL99] Levene, M., Loizou, G.: Guided Tour of Relational Databases and Beyond.
Springer, London (1999)

[MR92] Mannila, H., Räihä, K.J.: The Design of Relational Databases. Addison-
Wesley (1992)

[MR96] Makowsky, J.A., Ravve, E.: Translation Schemes and the Fundamental Prob-
lem of Database Design. In: Thalheim, B. (ed.) ER 1996. LNCS, vol. 1157,
pp. 5–26. Springer, Heidelberg (1996)

[MR97] Makowsky, J.A., Ravve, E.V.: Dependency preserving refinement and the
fundamental problem of database design. Data and Knowledge Engineer-
ing 24(3), 277–312 (1997)

[MWV04] Liu, C., Vincent, M.W., Liu, J.: Strong functional dependencies and their
application to normal forms in XML. ACM Transactions on Database Sys-
tems 29(3), 445–462 (2004)

[Sch05] Schewe, K.-D.: Redundancy, dependencies and normal forms for xml
databases. In: Dobbie, G., Williams, H. (eds.) Sixteenth Australasian
Database Conference (ADC 2005). Conferences in Research and Practice in
Information Technology, vol. 39, pp. 7–16. University of Newcastle, Newcastle
(2005)

84 J.A. Makowsky and E.V. Ravve

[Sci86] Sciore, E.: Comparing the universal instance and relational data models. In:
Kanellakis, P.C., Preparata, F. (eds.) The Theory of Databases. Advances in
Computing Research, vol. 3, pp. 139–163. JAI Press, Inc., Greenwich (1986)

[Tha00] Thalheim, B.: Entity-Relationship Modeling: Foundations of Database Tech-
nology. Springer, Heidelberg (2000)

[Tri09] Trinh, D.-T.: XML Functional Dependencies based on Tree Homomorphisms.
PhD thesis, Faculty of Mathematics/Informatics and Mechanical Engineer-
ing, Clausthal University of Technology, Clausthal, Germany (2009)

[Ull82] Ullman, J.D.: Principles of Database Systems, 2nd edn. Principles of Com-
puter Science Series. Computer Science Press (1982)

[Vin94] Vincent, M.W.: The Semantic Justification of Normal Forms in Relational
database Design. PhD thesis, Department of Computer Science, Monash Uni-
versity, Australia (1994)

[Vin98] Vincent, M.W.: Redundancy Elimination and a New Normal Form for Re-
lational Database Design. In: Thalheim, B., Libkin, L. (eds.) Semantics in
Databases 1995. LNCS, vol. 1358, pp. 247–264. Springer, Heidelberg (1998)

[VL97] Vincent, M.W., Levene, M.: Restructuring partitioned normal form rela-
tions without information loss. In: Proceedings of International Conference
on Management of Data (COMAD), Bombay, pp. 111–124 (1997)

[VS93] Vincent, M.W., Srinivasan, B.: A note on relation schemes which are in 3NF
but not in BCNF. Information Processing Letters 48, 281–283 (1993)

Foundations for a Fourth Normal Form over

SQL-Like Databases

Flavio Ferrarotti1, Sven Hartmann2, Henning Köhler3,
Sebastian Link4, and Millist W. Vincent5

1 School of Information Management, Victoria University of Wellington, New Zealand
2 Institut für Informatik, Technische Universität Clausthal, Germany

3 N-Squared Software, Palmerston North, New Zealand
4 Department of Computer Science, University of Auckland, New Zealand

5 School of Computer and Information Science, University of South Australia,
Australia

Abstract. In the relational model of data the Fourth Normal Form
condition guarantees the elimination of data redundancy in terms of
functional and multivalued dependencies. For efficient means of data
processing the industry standard SQL permits partial data and duplicate
rows of data to occur in database systems. Here, the combined class of
uniqueness constraints, functional and multivalued dependencies is more
expressive than the class of functional and multivalued dependencies it-
self. Consequently, the Fourth Normal Form condition is not suitable for
SQL databases. We characterize the associated implication problem of
the combined class in the presence of NOT NULL constraints axiomati-
cally, algorithmically and logically. Based on these results we are able to
establish a suitable Fourth Normal Form condition for SQL.

1 Introduction

In the relational model of data [4] a relation schema consists of a finite set
R of attributes A that have a countably infinite domain dom(A). A relation
over R is a finite set of tuples, i.e. elements of the cartesian product over the
domains. Data engineers specify finite sets Σ of integrity constraints over R to
restrict the relations to those considered meaningful to the application at hand.
A functional dependency (FD) over R is an expression X → Y with X,Y ⊆ R.
It restricts relations to those where every pair of tuples with the same values on
all the attributes in X also has the same values on all the attributes in Y . A
multivalued dependency (MVD) over R is an expression X � Y with X,Y ⊆ R.
It restricts relations to those where every pair of tuples with the same values on
all the attributes in X implies the existence of some tuple in the relation that
has the same values on all the attributes in XY as the first tuple, and the same
values on all the attributes in X(R−Y) as the second tuple. FDs and MVDs are
essential for database design and data processing: if there is an MVD X � Y
overR with X �= XY �= R, then either all the attributes ofR−X are functionally
dependent on X or there are relations with redundant data value occurrences.

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 85–100, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

86 F. Ferrarotti et al.

Redundancy can lead to inefficiencies with updates. A relation schema R with a
set Σ of FDs and MVDs is in Fourth normal form (4NF) [10], if for every MVD
X � Y implied by Σ, Y ⊆ X or XY = R or the FD X → R is implied by Σ.

Example 1. The schemaWork with attributes Employee, SSNo (Social Security
Number), and PassNo (Passport Number), is in 4NF with respect to the set Σ
consisting of the MVD Employee � SSNo, and FDs SSNo→ Employee, PassNo,
and PassNo→ Employee, SSNo. The relation r below satisfies Σ.

relation r
Employee SSNo PassNo

Dag M02 O38
Digedag M03 O39

table t1
Employee SSNo PassNo
Digedag ni O38
Digedag ni O39

table t2
Employee SSNo PassNo
Digedag M03 O39
Digedag M03 O39

No data value occurrence in r is redundant : if we conceal any single value, then
the remaining values and Σ do not uniquely determine the concealed value. ��

Commercial database systems deviate from the relational model of data. In the
data definition and query standard SQL [5] database instances are tables where
the column headers of the table correspond to attributes. The rows of the table
correspond to tuples, but a table can contain different rows that have the same
value in every column. Hence, an SQL table is a bag of rows. This feature lowers
the cost of data processing as duplicate elimination is considered expensive. Fur-
thermore, a so-called null value, marked ni, can occur in any column of any row
in an SQL table. The null value indicates either non-existing, or existing but
unknown, information. This feature of SQL makes it easy to enter new infor-
mation into the database, since information is not always complete in practice.
Null value occurrences can be forbidden for entire columns by declaring the cor-
responding column header NOT NULL. For example, every column of a primary
key is NOT NULL by default. We now revisit Example 1.

Example 2. Consider the SQL table definition Work from Example 1 with the
same set Σ of constraints and where the column headers Employee and PassNo
are NOT NULL. The table t1 from Example 1 satisfies Σ, according to the defini-
tions of FDs and MVDs in the context of the null value ni [2,20]. In particular, t1
illustrates that the FD Employee→ PassNo is not implied by Σ in the presence
of the NOT NULL constraints. Therefore, the NOT NULL constraints have a decisive
impact on the definition of a suitable normal form for SQL table definitions.

Suppose now we specify all column headers Employee, SSNo and PassNo NOT

NULL. Then table t2 also satisfies Σ, and the FD Employee → SSNo, PassNo is
implied by Σ in the presence of the NOT NULL constraints. Work satisfies the
original criteria to be in 4NF [10] with respect to Σ. However, these criteria are
still insufficient to guarantee the absence of redundant data value occurrences.
In fact, every individual data value occurrence in the table t2 can be determined
by the remaining data values and Σ. Therefore, duplicates have also a decisive
impact on the definition of a suitable normal form for SQL table definitions. ��

Foundations for a 4NF over SQL-Like Databases 87

Another important class of constraints over tables are uniqueness constraints
(UCs). The UC unique(X) restricts tables to those that do not have two different
rows that are non-null and equal on every column in X . In the relational model
UCs are not studied separately because any relation over R satisfies the UC
unique(X) if and only if it satisfies the FD X → R. However, this equivalence
does no longer hold over SQL table definitions T , as illustrated in Example 2.
Indeed, if X = {Employee}, then table t2 satisfies X → T , but not unique(X).
This means that, in the context of SQL tables, the combined class of UCs,
FDs and MVDs should be studied in the presence of NOT NULL constraints.
Moreover, Example 2 motivates our pursuit of a normal form condition for SQL
table definitions that eliminates redundant data value occurrences.

Contributions and Organization. We summarize previous work in Section
2. In Section 3 we point the reader to related work on constraints by Bernhard
Thalheim, to whom this volume is dedicated. We give basic definitions in Section
4. In Section 5 we establish a finite axiomatization for the combined class of
UCs, FDs, and MVDs in the presence of NOT NULL constraints, and show that
the associated decision problem can be decided in almost linear input time.
In Section 6 we show that the implication problem of this class is equivalent
to that of a fragment in Cadoli and Schaerf’s para-consistent family of S-3
logics. In Section 7 we propose a new syntactic normal form condition for SQL
table definitions. Finally, in Section 8 we justify our condition semantically by
showing that it is necessary and sufficient for the absence of redundant data
value occurrences in any SQL tables. We also show that our condition can be
checked in time cubic in the input, and is independent of the representation of
the constraints. We conclude in Section 10.

2 Related Work

Data dependencies and normalization are essential to the design of the target
database, the maintenance of the database during its lifetime, and all major data
processing tasks, cf. [36,42].

In the relational model, a UC unique(X) over relation schema R is satisfied
by a relation if and only if the relation satisfies the FD X → R. Hence, in
this context it suffices to study the class of FDs alone. Beeri, Fagin and Howard
established the first axiomatization for FDs and MVDs [3]. The associated impli-
cation problem can be decided in time almost-linear in the input [11]. Fagin [10]
introduced the Fourth normal form for relation schemata. Vincent showed that
4NF is a sufficient and necessary condition to eliminate all possible redundant
data value occurrences as well as several data processing difficulties in terms of
FDs and MVDs [45]. Arenas and Libkin also justified the 4NF condition in terms
of information-theoretic measures [1].

One of the most important extensions of the relational model [4] is incomplete
information [18]. This is mainly due to the high demand for the correct handling
of such information in real-world applications. While there are several possible
interpretations of a null value, many of the previous work on data dependencies

88 F. Ferrarotti et al.

is based on Zaniolo’s no information interpretation [47]. Atzeni and Morfuni
established an axiomatization of FDs in the presence of NOT NULL constraints
under the no information interpretation [2]. They did not consider bags, which
commonly appear in SQL, nor normalization. Köhler and Link investigated UCs
and FDs over bags, but considered neither null values nor MVDs [19]. Finally,
Hartmann and Link established the equivalence of the implication problem for
the combined class of FDs and MVDs in the presence of NOT NULL constraints
to that of a propositional fragment of Cadoli and Schaerf’s family of S-3 logics
[16]. However, they only looked at relations where UCs are subsumed by FDs and
did not consider neither bags nor normalization. Our equivalences cover those
by Sagiv et al. [24] established for the special case where S covers all variables.
SQL-like Armstrong databases have also been studied recently for classes of keys
[13] and functional dependencies [12].

3 Some of β’s Related Work on Database Constraints

Bernhard Thalheim has contributed largely to the theory of data dependencies
and database design. His 1991 book on dependencies in relational databases [36]
has had over 100 citations by the beginning of 2011. It provides a summary
of nearly 100 different classes of data dependencies. The book also contains
several of β’s own results. These include an axiomatization of full join depen-
dencies [30]. This class subsumes the class of MVDs, and forms an important
sub-class of join dependencies which are not finitely Hilbert-style axiomatizable,
but do enjoy a Gentzen-style axiomatization. Bernhard has been interested in
the class of keys in relational [6,28,29], nested [38] and incomplete databases
[35]. For the class of functional dependencies, Bernhard investigated indepen-
dency questions [7], spreadsheet [9] and graphical reasoning [8], as well as their
invariance against errors [17]. Finally, Bernhard has also contributed actively to
questions in database design [31,32,40,44] and encouraged research in database
theory [33,39]. More generally, Bernhard suggested the approach of consistency
enforcement in databases and formal program specification languages [21,22,27]
to overcome the limitations of triggers [26]. Being the inaugural recipient of the
Peter Chen Award in 2008, β is a pioneer and leading researcher in concep-
tual modeling. His millennium book on Entity-Relationship modeling has had
over 400 citations after 10 years. Most notably is the mathematical foundation
of conceptual modeling that Bernhard has established with his Higher-Order
Entity-Relationship model [34,41]. This includes, in particular, the correct han-
dling of constraints on the conceptual level such as cardinality constraints [37]
and multivalued dependencies [43].

4 SQL Table Definitions

We summarize the basic notions. Let A = {H1, H2, . . .} be a (countably) infi-
nite set of distinct symbols, called (column) headers. An SQL table definition
is a finite non-empty subset T of A. Each header H of a table definition T is

Foundations for a 4NF over SQL-Like Databases 89

associated with a countably infinite domain dom(H) which represents the pos-
sible values that can occur in the column H denotes. To encompass incomplete
information every column may have a null value, denoted by ni ∈ dom(H). The
intention of ni is to mean “no information”. This interpretation can therefore
model non-existing as well as existing but unknown information [2,47].

For header sets X and Y we may write XY for X ∪Y . If X = {H1, . . . , Hm},
then we may write H1 · · ·Hm for X . In particular, we may write simply H
to represent the singleton {H}. A row over T (T -row or simply row, if T is
understood) is a function r : T →

⋃
H∈T

dom(H) with r(H) ∈ dom(H) for all

H ∈ R. The null value occurrence r(H) = ni associated with a header H in a
row r means that no information is available about the header H for the row r.
For X ⊆ T let r[X] denote the restriction of the row r over T to X . An SQL
table t over T is a finite multi-set of rows over R. In particular, a table t over
T may contain two rows r1 and r2 such that r1 �= r2 and r1(H) = r2(H) for all
H ∈ T . For a row r over T and a set X ⊆ T , r is said to be X-total if for all
H ∈ X , r(H) �= ni. Similar, a table t over T is said to be X-total, if every row
r of t is X-total. A table t over T is said to be a total table if it is T -total.

Following the SQL standard a uniqueness constraint (UC) over an SQL table
definition T is an expression unique(X) where X ⊆ T . An SQL table t over T
is said to satisfy the uniqueness constraint unique(X) over T (|=t unique(X)) if
and only if for all rows r1, r2 ∈ t the following holds: if r1 �= r2 and r1 and r2
are both X-total, then there is some H ∈ X such that r1(H) �= r2(H).

Functional dependencies are important for the relational [4] and other data
models [14,15,46]. Following Lien [20], a functional dependency (FD) over T is a
statement X → Y where X,Y ⊆ T . The FD X → Y over T is satisfied by a table
t over T (|=t X → Y) if and only if for all r1, r2 ∈ t the following holds: if r1 and
r2 are X-total and r1[X] = r2[X], then r1[Y] = r2[Y]. We call X → Y trivial
whenever Y ⊆ X , and non-trivial otherwise. For total tables the FD definition
reduces to the standard definition of a functional dependency [36], and so is a
sound generalization. It is also consistent with the no-information interpretation
[2,20].

Following Lien [20], a multivalued dependency (MVD) over T is a statement
X � Y where X,Y ⊆ T . The MVD X � Y over T is satisfied by a table t
over T , denoted by |=t X � Y , if and only if for all r1, r2 ∈ t the following
holds: if r1 and r2 are X-total and r1[X] = r2[X], then there is some r ∈ t
such that r[XY] = r1[XY] and r[X(R − Y)] = r2[X(R − Y)]. We call X �
Y trivial whenever Y ⊆ X or XY = T , and non-trivial otherwise. For total
tables the MVD definition reduces to the standard definition of a multivalued
dependency [10,23], and so is a sound generalization. It is also consistent with
the no-information interpretation [20].

Following Atzeni and Morfuni [2], a null-free sub-definition (NFS) over the
table definition T is a an expression Ts where Ts ⊆ T . The NFS Ts over T is
satisfied by a table t over T (|=t Ts) if and only if t is Ts-total. SQL allows the
specification of column headers as NOT NULL. Hence, the set of headers declared
NOT NULL forms an NFS over the underlying SQL table definition.

90 F. Ferrarotti et al.

For a set Σ of constraints over some table definition T , we say that a table t
over T satisfies Σ (|=t Σ) if t satisfies every σ ∈ Σ. If for some σ ∈ Σ the table
t does not satisfy σ we say that t violates σ (and violates Σ) and write �|=t σ
(�|=t Σ). We are interested in the combined class C of UCs, FDs and MVDs in
the presence of an NFS.

Constraints interact with one another. Let T be an SQL table definition, let
Ts ⊆ T denote an NFS over T , and let Σ ∪{ϕ} be a set of UCs, FDs and MVDs
over T . We say that Σ implies ϕ in the presence of Ts (Σ |=Ts ϕ) if every table
t over T that satisfies Σ and Ts also satisfies ϕ. If Σ does not imply ϕ in the
presence of Ts we may also write Σ �|=Ts ϕ. For Σ we let Σ∗

Ts
= {ϕ | Σ |=Ts ϕ}

be the semantic closure of Σ, i.e., the set of all UCs, FDs and MVDs implied by
Σ in the presence of Ts. In order to determine the logical consequences we use
a syntactic approach by applying inference rules, e.g. those in Table 1. These
inference rules have the form

premise

conclusion
condition,

and inference rules without any premise are called axioms. An inference rule is
called sound, if whenever the set of constraints in the premise of the rule and the
NFS are satisfied by some table over T and the constraints and NFS satisfy the
conditions of the rule, then the table also satisfies the constraint in the conclusion
of the rule. We let Σ �R ϕ denote the inference of ϕ from Σ by R. That is, there
is some sequence γ = [σ1, . . . , σn] of constraints such that σn = ϕ and every σi
is an element of Σ or results from an application of an inference rule in R to
some elements in {σ1, . . . , σi−1}. For a finite set Σ, let Σ+

R = {ϕ | Σ �R ϕ} be
its syntactic closure under inferences by R. A set R of inference rules is said to
be sound (complete) for the implication of UCs, FDs and MVDs in the presence
of an NFS if for every table definition T , for every NFS Ts over T and for every
set Σ of UCs, FDs and MVDs over T we have Σ+

R ⊆ Σ∗
Ts

(Σ∗
Ts
⊆ Σ+

R). The
(finite) set R is said to be a (finite) axiomatization for the implication of UCs,
FDs and MVDs in the presence of an NFS if R is both sound and complete.

Example 3. The table t2 in Example 1 satisfies the FD Employee →
SSNo,PassNo, but violates the UC unique(Employee). The table t1 in Exam-
ple 1 satisfies the NFS {Employee,PassNo}, the UC unique(Employee, SSNo),
the FDs Employee → SSNo and SSNo → PassNo. The table violates the NFS
{SSNo}, the UC unique(Employee) and the FD Employee→ PassNo. ��

5 Axiomatic and Algorithmic Characterization

Let B denote the set of inference rules in Table 1. The soundness of the rules
in B is not difficult to show. For the completeness of B we use the result that
the set D resulting from B by removing the FD implication and null pullback
rules is sound and complete for FDs and MVDs in the presence of an NFS [16].
In fact, the completeness of B follows from that of D and the following lemma.

Foundations for a 4NF over SQL-Like Databases 91

For a set ΣUC of UCs and a set Σ′ of FDs and MVDs over table definition T
let ΣFD

UC = {X → T | unique(X) ∈ ΣUC} be the set of FDs associated with
ΣUC and let Σ[FM] := ΣFD

UC ∪Σ′ be the set of FDs and MVDs associated with
Σ = ΣUC ∪Σ′.

Lemma 1. Let T be an SQL table definition, Ts an NFS, and Σ a set of UCs,
FDs and MVDs over T . Then the following hold:

1. Σ |=Ts X → Y if and only if Σ[FM] |=Ts X → Y ,
2. Σ |=Ts X � Y if and only if Σ[FM] |=Ts X � Y ,
3. Σ |=Ts unique(X) if and only if Σ[FM] |=Ts X → T and there is some

unique(Z) ∈ Σ such that Z ⊆ XTs. ��

Table 1. Axiomatization B of UCs, FDs and MVDs in the presence of an NFS Ts

XY → Y

X → Y Z

X → Y
(reflexivity, RF) (decomposition, DF)

X → Y X → Z

X → Y Z
(FD union, UF)

X � Y

X � R − Y

X � Y X � Z

X � Y Z
(R-complementation, CT

M) (MVD union, UM)

X � W Y � Z

X � Z −W
Y ⊆ X(W ∩ Ts)

(null pseudo-transitivity, TM)

unique(X)

X → Y

X → Y unique(Y)

unique(X)
Y ⊆ XTs

(FD implication, IUF) (null pullback, PUF)

X → Y

X � Y

X � W Y → Z

X → Z −W
Y ⊆ X(W ∩ Ts)

(MVD implication, IFM) (null mixed pseudo-transitivity, TFM)

Theorem 1. The set B is a finite axiomatization for the implication of UCs,
FDs and MVDs in the presence of an NFS. ��

Lemma 1 establishes an algorithmic characterization of the associated implica-
tion problem. In fact, it suffices to compute the header set closure X∗

Σ[FM],Ts
:=

{H ∈ T | Σ[FM] �D X → H} and the dependency basis DepBΣ[FM],Ts
(X)

92 F. Ferrarotti et al.

of X with respect to Σ[FM] and Ts [16]. In particular, DepBΣ[FM],Ts
(X) is

the set of atoms for the Boolean algebra (Dep(X),⊆,∪,∩, (·)CT , ∅, T) where
Dep(X) = {Y ⊆ T | Σ[FM] �D X � Y }. The size ||ϕ|| of ϕ is the total
number of attributes occurring in ϕ, and the size ||Σ|| of Σ is the sum of ||σ||
over all elements σ ∈ Σ. For a set Σ of FDs and MVDs let kΣ denote the
number of MVDs in Σ, pΣ denote the number of sets in the dependency basis
DepBΣ,Ts

(X) of X with respect to Σ and Ts, p̄Σ denote the number of sets in
DepBΣ,Ts

(X) that have non-empty intersection with the right-hand side of ϕ,
and Σ[XTs] denote the set of FDs and MVDs in Σ where the left-hand side is
a subset of XTs. The following result follows from Lemma 1 and the upper time
bound established by Galil for relational databases [11].

Theorem 2. Let ϕ denote either the UC unique(X), the FD X → Y , or the
MVD X � Y over the SQL table definition T . The problem whether ϕ is im-
plied by a set Σ of UCs, FDs and MVDs in the presence of an NFS Ts over T
can be decided in O(||Σ||+min{kΣ[FM][XTs], log p̄Σ[FM][XTs]} × ||Σ[FM][XTs]||)
time. ��

Example 4. Let T denote the SQL table definition with column headers Em-
ployee, SSNo and PassNo, constraint set Σ with the MVD Employee � SSNo,
the FD PassNo → SSNo and the UC unique(SSNo). Furthermore, we have the
NFS Ts = {SSNo,PassNo}. The NFS allows us to apply the null pullback rule
PUF to the given FD and UC to infer the UC unique(PassNo). We can apply the
FD implication rule IUF to the given UC to infer the FD SSNo→ PassNo. The
NFS allows us to apply the null mixed pseudo-transitivity rule TFM to the given
MVD and the FD SSNo → PassNo to infer the FD Employee → PassNo. The
NFS allows us to apply the null pullback rule PUF to the FD Employee→ PassNo
and UC unique(PassNo) to infer the UC unique(Employee). By the sound-
ness of the inference rules in B it follows that both UCs unique(PassNo) and
unique(Employee) are implied by Σ in the presence of Ts. ��

6 Logical Characterization: Equivalence to S-3
Implication

Here we refine the correspondence between the implication of FDs and MVDs in
the presence of NFSs and the implication of a fragment in Cadoli and Schaerf’s
family of S-3 logics, established for tables that are sets of rows [16].
S-3 semantics. Schaerf and Cadoli [25] introduced S-3 logics as “a seman-

tically well-founded logical framework for sound approximate reasoning, which
is justifiable from the intuitive point of view, and to provide fast algorithms for
dealing with it even when using expressive languages”.

For a finite set L of propositional variables let L� denote the set of all literals
over L, i.e., L� = L ∪ {¬H ′ | H ′ ∈ L} ⊆ L∗ where L∗ denotes the propositional
language over L. Let S ⊆ L. An S-3 interpretation of L is a total function
ω̂ : L� → {F,T} that maps every variable H ′ ∈ S and its negation ¬H ′ into
opposite values (ω̂(H ′) = T if and only if ω̂(¬H ′) = F), and that does not

Foundations for a 4NF over SQL-Like Databases 93

map both a variable H ′ ∈ L−S and its negation ¬H ′ into F (we must not have
ω̂(H ′) = F = ω̂(¬H ′) for anyH ′ ∈ L−S). An S-3 interpretation ω̂ : L� → {F,T}
of L can be lifted to a total function Ω̂ : L∗ → {F,T} by means of simple rules
[25]. Since we are only interested in special formulae that are all in Negation
Normal Form we require only the following three rules for assigning truth values:
(1) Ω̂(ϕ′) = ω̂(ϕ′), if ϕ′ ∈ L�, (2) Ω̂(ϕ′ ∨ ψ′) = T, if Ω̂(ϕ′) = T or Ω̂(ψ′) = T,
and (3) Ω̂(ϕ′ ∧ ψ′) = T, if Ω̂(ϕ′) = T and Ω̂(ψ′) = T. An S-3 interpretation
ω̂ is a model of a set Σ′ of L-formulae, if Ω̂(σ′) = T holds for every σ′ ∈ Σ′.
We say that Σ′ S-3 implies an L-formula ϕ′, denoted by Σ′ |=3

S ϕ′, if every S-3
interpretation that is a model of Σ′ is also a model of ϕ′.

Mappings between constraints and formulae. In the first step, we define
the fragment of L-formulae that corresponds to UCs, FDs, MVDs in the presence
of an NFS Ts over a table definition T . Let φ : T → L denote a bijection between
T and the set L = {H ′ | H ∈ T } of propositional variables that corresponds
to T . For an NFS Ts over T let S = φ(Ts) be the set of propositional variables
in L that corresponds to Ts. Hence, the variables in S are the images of those
column headers of T declared NOT NULL. We now extend φ to a mapping Φ from
the set of UCs, FDs and MVDs over T . For a UC unique(H1, . . . , Hn) over T ,
let Φ(unique(H1, . . . , Hn)) denote the goal clause ¬H ′

1 ∨ · · · ∨ ¬H ′
n. For an FD

H1, . . . , Hn → H over T , let Φ(H1, . . . , Hn → H) denote the definite clause
¬H ′

1 ∨ · · · ∨ ¬H ′
n ∨ H ′. Finally, for an MVD H1, . . . , Hn � F1, . . . , Fm over T ,

let Φ(H1, . . . , Hn � F1, . . . , Fm) denote the formula ¬H ′
1 ∨ · · · ∨ ¬H ′

n ∨ (F ′
1 ∧

· · · ∧ F ′
m) ∨ (G′

1 ∧ · · · ∧ G′
k) where T = {H1, . . . , Hn, F1, . . . , Fm, G1, . . . , Gk}.

For the sake of presentation, but without loss of generality, we assume that FDs
have only a single column header on their right-hand side. As usual, disjunctions
(conjunctions) over zero disjuncts (conjuncts) are interpreted as F (T). In what
follows, we may simply denote Φ(ϕ) = ϕ′ and Φ(Σ) = {σ′ | σ ∈ Σ} = Σ′.

The equivalence. Our aim is to show that for every SQL table definition T ,
for every set Σ∪{ϕ} of UCs, FDs and MVDs and for every NFS Ts over T , there
is some Ts-total table t that satisfies Σ and violates ϕ if and only if there is an
S-3 model ω̂t of Σ

′ that is not an S-3 model of ϕ′. For an arbitrary table t it is
not obvious how to define the S-3 interpretation ω̂t. However, for deciding the
implication problem Σ |=Ts ϕ it suffices to examine two-row tables, instead of
arbitrary tables. For two-row tables {r1, r2} we define the special-3-interpretation
of L by

– ω̂{r1,r2}(H
′) = T and ω̂{r1,r2}(¬H ′) = F, if ni �= r1(H) = r2(H) �= ni,

– ω̂{r1,r2}(H
′) = T and ω̂{r1,r2}(¬H ′) = T, if r1(H) = ni = r2(H),

– ω̂{r1,r2}(H
′) = F and ω̂{r1,r2}(¬H ′) = T, if r1(H) �= r2(H)

for all H ′ ∈ L. If {r1, r2} is Ts-total, then ω̂{r1,r2} is an S-3 interpretation.

Theorem 3. Let Σ ∪ {ϕ} be a set of UCs, FDs and MVDs over the SQL table
definition T , and let Ts denote an NFS over T . Let L denote the set of proposi-
tional variables that corresponds to T , S the set of variables that corresponds to
Ts, and Σ′ ∪ {ϕ′} the set of formulae over L that correspond to Σ ∪ {ϕ}. Then
Σ |=Ts ϕ if and only if Σ′ |=3

S ϕ′. ��

94 F. Ferrarotti et al.

Example 5. Consider the table definition T , NFS Ts and constraint set Σ from
Example 4. Suppose we wonder if the UCs ϕ1 = unique(PassNo) and ϕ2 =
unique(Employee) are implied by Σ in the presence of Ts. According to Theorem
3 the problems Σ |=Ts ϕ1 and Σ |=Ts ϕ2 are equivalent to Σ′ |=3

S ϕ′
1 and

Σ′ |=3
S ϕ′

2 where S = {SSNo′,PassNo′}.
Suppose an S-3 interpretation ω̂ is not a model of ϕ′

1. Then ω̂(¬PassNo′) = F.
For ω̂ to be an S-3 model of Σ′ we must thus have ω̂(SSNo′) = T = ω̂(¬SSNo′),
but SSNo′ ∈ S. We conclude that Σ′ |=3

S ϕ′
1 and by Theorem 3 also Σ |=Ts ϕ1.

Suppose an S-3 interpretation ω̂ is not a model of ϕ′
2. Then ω̂(¬Employee′) =

F. For ω̂ to be an S-3 model of Σ′ we must thus have ω̂(SSNo′) = T or
ω̂(¬PassNo′) = T. Moreover, for ω̂ to be an S-3 model of Σ′ we must also
have ω̂(¬SSNo′) = T = ω̂(PassNo′). However, SSNo′,PassNo′ ∈ S. We conclude
that Σ′ |=3

S ϕ′
2 and by Theorem 3 also Σ |=Ts ϕ2. ��

Example 6. Let T denote the SQL table definition with column headers Em-
ployee, SSNo and PassNo, constraint set Σ with the MVD Employee � SSNo,
and the UCs unique(SSNo) and unique(PassNo). Furthermore, we have the NFS
Ts = {SSNo}. For ϕ = unique(Employee), Σ �|=Ts ϕ as the following SQL table
t demonstrates:

Employee SSNo PassNo
Digedag M03 ni

Digedag M01 ni

.

Indeed, the special S-3 interpretation ω̂t where for all L ∈ L�, ω̂t(L) = F iff
L ∈ {¬Employee′, SSNo′} is a model of Σ′ but not a model of ϕ′. ��

7 The Fourth Normal Form for SQL Table Definitions

Fagin [10] introduced a normal form condition on relation schemata that char-
acterizes the absence of redundant data value occurrences in any relation over
the schema, caused by FDs and MVDs [45]. To the best of our knowledge no
such normal form has been proposed yet for SQL table definitions.

Definition 1. Let T denote an SQL table definition, Ts a null-free subdefinition,
and Σ a set of UCs, FDs and MVDs over T . Then T is said to be in Fourth
Normal Form (4NF) with respect to Σ and Ts if and only if for all non-trivial
multivalued dependencies X � Y ∈ Σ+

B we have unique(X) ∈ Σ+
B. ��

Note that our axiomatization B enables us to state the 4NF condition in purely
syntactic terms. As we will see later, this results in a syntactic characterization
for the absence of redundant data value occurrences. Moreover, since the 4NF
condition is defined with respect to the syntactic closure, the property of being
in 4NF is independent of the representation of the given set of UCs, FDs and
MVDs. That is, for every set Σ′ that is equivalent to Σ it is true that T is in
4NF with respect to Σ and Ts if and only if T is in 4NF with respect to Σ′ and
Ts. Definition 1 subsumes Fagin’s classic 4NF condition for relation schemata,

Foundations for a 4NF over SQL-Like Databases 95

which is the special case where Ts = T and no duplicate rows are allowed to
occur in a table over T . Finally, every SQL table definition that is in 4NF with
respect to a set Σ of UCs, FDs, and MVDs and an NFS Ts over T is also in
Boyce-Codd-Heath Normal Form with respect to Σ and Ts. That is, for every
non-trivial FD X → Y ∈ Σ+

B we have X � Y ∈ Σ+
B by an application of the

implication rule IFM, and thus unique(X) ∈ Σ+
B by the 4NF criteria.

Example 7. The SQL table definition of Example 5 is indeed in 4NF with respect
to the given constraint set Σ and the given NFS Ts. However, the SQL table
definition of Example 6 is not in 4NF with respect to the given constraint set Σ
and the given NFS Ts. ��

8 Semantic Justification of 4NF

We will now justify our syntactic definition of 4NF semantically by showing that
the condition is sufficient and necessary for the absence of redundant data value
occurrences in any future tables. Following Vincent [45] we will make the notion
of data redundancy explicit. Let T be an SQL table definition, H a column
header of T , and r a row over T . A replacement of r(H) is a row r̄ over T that
satisfies the following conditions: i) for all H̄ ∈ T − {H} we have r̄(H̄) = r(H̄),
and ii) r̄(H) �= r(H). Intuitively, a data value occurrence in some Σ-satisfying
table is redundant if the occurrence cannot be replaced by any other data value
without violating some constraint in Σ.

Definition 2. Let T be an SQL table definition, H ∈ T a column header, Ts

an NFS and Σ a set of UCs, FDs and MVDs over T , t a table over T that
satisfies Σ and Ts, and r a row in t. We say that the data value occurrence
r(H) is redundant if and only if every replacement r̄ of r(H) results in a table
t̄ := (t−{r})∪{r̄} that violates Σ. We say that T is in Redundancy-Free Normal
Form (RFNF) with respect to Σ and Ts if and only if there is no table t over T
such that i) t satisfies Σ and Ts, and ii) t contains a row r such that for some
column header H of T the data value occurrence r(H) is redundant. ��

We show that the syntactic 4NF condition of Definition 1 captures the semantic
RFNF condition of Definition 2.

Theorem 4. Let T be an SQL table definition, Ts an NFS and Σ a set of UCs,
FDs and MVDs over T . Then T is in RFNF with respect to Σ and Ts if and
only if T is in 4NF with respect to Σ and Ts. ��

Example 8. Consider again Example 6. Here, the SQL table definition is not in
4NF with respect to Σ and Ts. In particular, unique(Employee) is not implied
by Σ in the presence of Ts. According to Theorem 4, T is not in RFNF with
respect to Σ and Ts. Indeed, both value occurrences in the column PassNo of
the table t in Example 6 are redundant. ��

96 F. Ferrarotti et al.

Definition 1 refers to the syntactic closureΣ+
B of Σ and Ts underB, which can

be exponential in the size of Σ. Therefore, the question remains if the problem
whether an SQL table definition is in 4NF with respect to Σ and Ts can be
decided efficiently.

Theorem 5. Let T be an SQL table definition, Ts an NFS and Σ a set of UCs,
FDs and MVDs over T . Then the following conditions are equivalent:

1. T is in 4NF with respect to Σ and Ts,
2. for all non-trivial FDs X → Y ∈ Σ and for all non-trivial MVDs X � Y ∈

Σ we have: unique(X) ∈ Σ+
B,

3. for all non-trivial FDs X → Y ∈ Σ and for all non-trivial MVDs X �
Y ∈ Σ we have: X → T ∈ Σ+

B and there is some unique(Z) ∈ Σ such that
Z ⊆ XTs. ��

The following result follows directly from Theorem 5 and Theorem 2.

Theorem 6. The problem whether an SQL table definition T is in Fourth Nor-
mal Form with respect to a set Σ of UCs, FDs and MVDs, and an NFS Ts over
T can be decided in O(||Σ||2 × |Σ|) time. ��

9 Challenges with Database Normalization

Finally, we will comment on the impact of duplicate and partial information on
achieving the 4NF condition. We start with some comments about well-known
facts from relational databases. If a relation satisfies the FD X → Y , then the
relation is the lossless join of its projection on the attribute sets XY and X(R−
Y). Hence, FDs provide a condition that is sufficient for lossless decompositions
of relations. MVDs provide a sufficient and necessary condition for relations to
be decomposable into two of its projections, i.e., a relation satisfies the MVD
X � Y if and only if the relation is the lossless join of its projections on XY
and X(R−Y). Indeed, this property was the original motivation for introducing
the concept of multivalued dependencies [10].

For tables we say that a row r̄ is subsumed by the row r, if for every column
header H , r̄(H) = ni or r̄(H) = r(H) [20]. If tables are restricted to those
that are subsumption-free, i.e. do not contain any two rows where one subsumes
the other, then the lossless decomposition properties are still valid for the X-
total sub-tables. That is, the X-total sub-table of a subsumption-free table that
satisfies the FD X → Y is the lossless join of the X-total sub-tables of its
projections on XY and X(R − Y). Furthermore, the X-total sub-table of a
subsumption-free table satisfies the MVD X � Y if and only if its X-total sub-
table is the lossless join of the X-total sub-tables of its projections on XY and
X(R−Y). Since projections of subsumption-free tables may not be subsumption-
free, subsumed rows are removed in this case [20]. These properties provide a
nice generalization of the concepts of FDs and MVDs to partial information
that is faithful to their original motivation. SQL table definitions T for which

Foundations for a 4NF over SQL-Like Databases 97

Σ implies a key in the presence of the NFS Ts, i.e. where for some X ⊆ T
we have Σ |=Ts unique(X) and X ⊆ Ts, only permit subsumption-free tables.
However, SQL does not require the existence of a key and tables can contain rows
that subsume one another. In particular, the removal of subsumed (in particular
duplicate) rows is considered an expensive operation. This situation raises new
challenges for the generalization of classic database normalization techniques. In
fact, MVDs do not even provide a sufficient condition for achieving a lossless
decomposition, even if different notions of projections are considered.

Example 9. The table t1 from Example 1 satisfies Employee � SSNo. If we do
not remove subsumed (including duplicate) rows, then we obtain:

projection of t1
on {Employee, SSNo}
Employee SSNo
Digedag ni

Digedag ni

projection of t1
on {Employee, PassNo}
Employee PassNo
Digedag O38
Digedag O39

.

A join of these two table projections results in a table different from t1. Consider
the table t2 below that satisfies the MVD Employee � SSNo. If we do remove
subsumed rows, then we obtain:

table t2
Employee SSNo PassNo
Digedag M02 O38
Digedag ni O38
Digedag ni O39
Digedag M02 O39

projection of t2
on {Employee, SSNo}
Employee SSNo
Digedag MO2

projection of t2
on {Employee, PassNo}
Employee PassNo
Digedag O38
Digedag O39

.

A join of these two table projections results in a table different from t2. Thus,
subsumed rows must be removed from projections only sometimes. ��

The example illustrates that the decomposition approach to database normaliza-
tion requires new attention when we consider the features of SQL. The presence
of duplicates requires UCs in addition to FDs, but UCs are not preserved when
performing joins. Hence, it is not clear what dependency-preservation means.
The presence of null values requires join attributes to be NOT NULL when loss-
less decompositions are to be achieved. Furthermore, projection becomes more
difficult to define when duplicates (more generally, subsumed rows) are to be
eliminated only sometimes.

10 Conclusion

The class of UCs is not subsumed by the class of FDs and MVDs over SQL tables,
in contrast to relations. For this purpose, we have characterized the implication
problem for the combined class of UCs, FDs and MVDs in the presence of NOT
NULL constraints axiomatically, algorithmically and logically. We have further

98 F. Ferrarotti et al.

proposed a syntactic Fourth Normal Form condition for SQL table definitions,
and justified this condition semantically. On one hand, the semantics of SQL
really calls for a comprehensive support to specify and maintain FDs and MVDs
to guarantee consistency and locate data redundancy. On the other hand, the
SQL features motivate a thorough study of database normalization.

References

1. Arenas, M., Libkin, L.: An information-theoretic approach to normal forms for
relational and XML data. J. ACM 52(2), 246–283 (2005)

2. Atzeni, P., Morfuni, N.: Functional dependencies and constraints on null values in
database relations. Information and Control 70(1), 1–31 (1986)

3. Beeri, C., Fagin, R., Howard, J.H.: A complete axiomatization for fds and mvds in
database relations. In: SIGMOD, pp. 47–61. ACM (1977)

4. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

5. Date, C., Darwen, H.: A guide to the SQL standard. Addison-Wesley Professional,
Reading (1997)

6. Demetrovics, J., Katona, G., Miklós, D., Seleznjev, O., Thalheim, B.: Asymptotic
properties of keys and functional dependencies in random databases. Theor. Com-
put. Sci. 190(2), 151–166 (1998)

7. Demetrovics, J., Katona, G.O.H., Miklós, D., Thalheim, B.: On the Number of
Independent Functional Dependencies. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006.
LNCS, vol. 3861, pp. 83–91. Springer, Heidelberg (2006)

8. Demetrovics, J., Molnár, A., Thalheim, B.: Graphical Reasoning for Sets of Func-
tional Dependencies. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.)
ER 2004. LNCS, vol. 3288, pp. 166–179. Springer, Heidelberg (2004)

9. Demetrovics, J., Molnár, A., Thalheim, B.: Relationship Design Using Spreadsheet
Reasoning for Sets of Functional Dependencies. In: Manolopoulos, Y., Pokorný, J.,
Sellis, T.K. (eds.) ADBIS 2006. LNCS, vol. 4152, pp. 108–123. Springer, Heidelberg
(2006)

10. Fagin, R.: Multivalued dependencies and a new normal form for relational
databases. ACM Trans. Database Syst. 2(3), 262–278 (1977)

11. Galil, Z.: An almost linear-time algorithm for computing a dependency basis in a
relational database. J. ACM 29(1), 96–102 (1982)

12. Hartmann, S., Kirchberg, M., Link, S.: Design by example for SQL table definitions
with functional dependencies. The VLDB Journal (2011), doi:10.1007/s00778-011-
0239-5

13. Hartmann, S., Leck, U., Link, S.: On Codd families of keys over incomplete rela-
tions. Comput. J. 54(7), 1166–1180 (2011)

14. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 34(2) (2009)

15. Hartmann, S., Link, S.: Numerical constraints on XML data. Inf. Comput. 208(5),
521–544 (2010)

16. Hartmann, S., Link, S.: When data dependencies over SQL tables meet the Logics
of Paradox and S-3. In: PODS, pp. 317–326 (2010)

17. Hartmann, S., Link, S., Schewe, K.-D.: Weak Functional Dependencies in Higher-
Order Datamodels. In: Seipel, D., Turull-Torres, J.M. (eds.) FoIKS 2004. LNCS,
vol. 2942, pp. 116–133. Springer, Heidelberg (2004)

Foundations for a 4NF over SQL-Like Databases 99

18. Imielinski, T., Lipski Jr., W.: Incomplete information in relational databases. J.
ACM 31(4), 761–791 (1984)

19. Köhler, H., Link, S.: Armstrong axioms and Boyce-Codd-Heath normal form under
bag semantics. Inf. Process. Lett. 110(16), 717–724 (2010)

20. Lien, E.: On the equivalence of database models. J. ACM 29(2), 333–362 (1982)
21. Link, S.: Consistency Enforcement in Databases. In: Bertossi, L., Katona, G.O.H.,

Schewe, K.-D., Thalheim, B. (eds.) Semantics in Databases 2001. LNCS, vol. 2582,
pp. 139–159. Springer, Heidelberg (2003)

22. Link, S., Schewe, K.-D.: An arithmetic theory of consistency enforcement. Acta
Cybern. 15(3), 379–416 (2002)

23. Paredaens, J., De Bra, P., Gyssens, M., Van Gucht, D.: The Structure of the
Relational Database Model. Springer, Heidelberg (1989)

24. Sagiv, Y., Delobel, C., Parker Jr., D.S., Fagin, R.: An equivalence between rela-
tional database dependencies and a fragment of propositional logic. J. ACM 28(3),
435–453 (1981)

25. Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artif. Intell. 74,
249–310 (1995)

26. Schewe, K.-D., Thalheim, B.: Limitations of rule triggering systems for integrity
maintenance in the context of transition specifications. Acta Cybern. 13(3), 277–
304 (1998)

27. Schewe, K.-D., Thalheim, B.: Towards a theory of consistency enforcement. Acta
Inf. 36(2), 97–141 (1999)

28. Selesnjev, O., Thalheim, B.: On the numbers of shortes keys in relational databases
on non-uniform domains. Acta Cybern. 8, 267–271 (1988)

29. Seleznjev, O., Thalheim, B.: Behavior of keys in random databases. In: SCCC, pp.
171–183 (1998)

30. Thalheim, B.: A compelte axiomatization for full join dependencies in relations.
Bulletin of the EATCS 24, 109–114 (1984)

31. Thalheim, B.: Deductive normal forms of relations. In: Mathematical Methods of
Specification and Synthesis of Software Systems, pp. 226–230 (1985)

32. Thalheim, B.: Design Tools for Large Relational Database Systems. In: Biskup, J.,
Demetrovics, J., Paredaens, J., Thalheim, B. (eds.) MFDBS 1987. LNCS, vol. 305,
pp. 210–224. Springer, Heidelberg (1988)

33. Thalheim, B.: Open Problems in Database Theory. In: Biskup, J., Demetrovics,
J., Paredaens, J., Thalheim, B. (eds.) MFDBS 1987. LNCS, vol. 305, pp. 241–247.
Springer, Heidelberg (1988)

34. Thalheim, B.: The Higher-Order Entity-Relationship model and (DB)2. In:
Demetrovics, J., Thalheim, B. (eds.) MFDBS 1989. LNCS, vol. 364, pp. 382–397.
Springer, Heidelberg (1989)

35. Thalheim, B.: On semantic issues connected with keys in relational databases per-
mitting null values. Elektronische Informationsverarbeitung und Kybernetik 25(1-
2), 11–20 (1989)

36. Thalheim, B.: Dependencies in relational databases. Teubner (1991)
37. Thalheim, B.: Fundamentals of Cardinality Constraints. In: Pernul, G., Tjoa, A.M.

(eds.) ER 1992. LNCS, vol. 645, pp. 7–23. Springer, Heidelberg (1992)
38. Thalheim, B.: The number of keys in relational and nested relational databases.

Discrete Applied Mathematics 40(2) (1992)
39. Thalheim, B.: An overview on database theory. Datenbank Rundbrief 10, 2–13

(1992)
40. Thalheim, B.: Database design strategies. In: CISM, pp. 267–285 (1993)

100 F. Ferrarotti et al.

41. Thalheim, B.: Foundations of Entity - Relationship Modeling. Ann. Math. Artif.
Intell. 7(1-4), 197–256 (1993)

42. Thalheim, B.: Entity-Relationship modeling. Springer, Heidelberg (2000)
43. Thalheim, B.: Conceptual Treatment of Multivalued Dependencies. In: Song, I.-Y.,

Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp.
363–375. Springer, Heidelberg (2003)

44. Thalheim, B.: Component development and construction for database design. Data
Knowl. Eng. 54(1), 77–95 (2005)

45. Vincent, M.: Semantic foundation of 4NF in relational database design. Acta
Inf. 36, 1–41 (1999)

46. Vincent, M., Liu, J., Liu, C.: Strong FDs and their application to normal forms in
XML. ACM Trans. Database Syst. 29(3), 445–462 (2004)

47. Zaniolo, C.: Database relations with null values. J. Comput. Syst. Sci. 28(1), 142–
166 (1984)

Independent Update Reflections

on Interdependent Database Views

Stephen J. Hegner

Ume̊a University, Department of Computing Science
SE-901 87 Ume̊a, Sweden

hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Abstract. The problem of identifying suitable view-update strategies
is typically addressed in the context of a single view. However, it is often
the case that several views must co-exist; the challenge is then to find
strategies which allow one view to be updated without affecting the other.
The classical constant-complement strategy can provide a solution to this
problem; however, both the context and the admissible updates are quite
limited. In this work, the updates which are possible within this classical
approach are extended substantially via a technique which considers only
the states which are reachable from a given initial configuration. The
results furthermore do not depend upon complementation, and thus are
readily extensible to settings involving more than two views.

1 Introduction

Both views and updates are fundamental to a comprehensive database system.
Consequently, the problem of how to support updates to views has been studied
extensively. Most work addresses this problem in the context of a single view,
including the classical approach via the relational algebra [10,18,19,7,8], the more
recent approach based upon database repairs [1,3,2], and work which bridges
these two approaches [12]. However, in some situations a number of distinct yet
interdependent views of the same main schema must co-exist. Often, the access
rights to these views differ, so that a user or access rôle [4,21] which has access
to one view may not even be allowed to read, much less update, another. In
such a setting, it is important to identify those updates which are possible to
a given view Γ without requiring any access to the other views, for reading or
for writing. This may be recaptured succinctly in terms of two independence
conditions. First of all, whether or not an update to Γ is to be allowed at all
should be independent of the states of the other views. This is called context
independence. Second, the reflection to the main schema of the update to the
selected view must not require a change of the state of any of the other views.
This is called propagation independence or locality of effect. In the presence of
these two forms of independence, an update may be made to the given view
Γ without knowledge about the states of the other views beyond that which is
already known in Γ , and the result of the update to Γ will not be visible in any of

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 101–115, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

102 S.J. Hegner

the other views. Applications in which such independence is central, and which
have motivated this work, include component-based architectures [24,23,13,16],
update by cooperation [17], and models of data objects for transactions [15].

For the case of two views, the classical constant-complement approach [6,11]
already provides a very elegant solution in the situations to which it applies.
Unfortunately, it imposes conditions which are often too strong to be of use, as
illustrated by the following examples.

Let E0 be the relational schema consisting of the single relation symbol
R[ABC], constrained by the functional dependency (FD) B → C. Define ΠE0

AB =

(EAB
0 , πE0

AB) to be the view whose schema EAB
0 contains the single relation

symbol RAB[AB] and whose morphism πE0

AB is the projection of R[ABC] onto

RAB[AB]. Define ΠE0

BC = (EBC
0 , πE0

BC) analogously. Let LDB(E0) denote the set
of all legal databases of E0; that is, the set of all relations on R[ABC] which
satisfy the FD B → C. Define LDB(EAB

0) and LDB(EBC
0) similarly, as the le-

gal databases of the corresponding view schemata. Define the decomposition
mapping πE0

AB × πE0

BC : LDB(E0) → LDB(EAB
0) × LDB(EBC

0) on elements by

M �→ (πE0

AB(M), πE0

BC(M)).

Let u1 = (N1, N
′
1) be any update onΠE0

AB, with N1 representing the view state
before the update operation andN2 the state afterwards. A reflection of u1 to E0

is any (M1,M2) ∈ LDB(D)×LDB(D) with πE0

AB(M1) = N1 and πE0

AB(M2) = N ′
1.

This update is propagation independent with respect to ΠE0

BC , or keeps ΠE0

BC

constant, if πE0

BC(M1) = πE0

BC(M2).

In this example, the set of all updates on ΠE0

AB which keep the state of ΠE0

BC

constant has a very simple characterization; namely, it is precisely the set of all
updates on RAB which keep the projection onto B fixed. Similarly, the set of
all updates on ΠE0

BC with ΠE0

AB constant is precisely the set of all updates on

RBC which keep the projection onto B fixed. The view ΠE0

B of E0 which is the

projection onto B, is called the meet of ΠE0

AB and ΠE0

BC . For both ΠE0

AB and ΠE0

BC ,
the updates which are propagation independent are precisely those which keep
the meet view ΠE0

B constant. Thus, whether or not an update to either view is
possible without modifying the state of the other is a property of the state of
that view alone, and does not require further knowledge of the state of E0; i.e., it
exhibits context independence. For a more thorough presentation of these ideas
in the context of update via constant complement, see [11, 1.2].

Pairs of views are not always so well behaved. Let E1 be identical to E0, save
that it is governed by the additional FD A → C, and let ΠE1

AB and ΠE1

BC be

defined analogously to ΠE0

AB and ΠE0

BC . The set of updates on ΠE1

AB which are

propagation independent with respect to ΠE1

BC is not independent of the partic-

ular state of ΠE1

BC . For example, consider the two states M10 = {R(a1, b1, c1),
R(a2, b2, c1)} and M10′ = {R(a1, b1, c1), R(a2, b2, c2)} in LDB(E1). Then
πE1

AB(M10) = πE1

AB(M10′) = {RAB(a1, b1), RAB(a2, b2)}. The view update which

replaces {RAB(a1, b1), RAB(a2, b2)} with {RAB(a1, b1), RAB(a1, b2)} on ΠE1

AB

has a reflection which keeps the state of ΠE1

BC constant from M10 but not from
M10′ . Thus, this view update does not exhibit context independence.

Independent Update Reflections 103

The key difference between E0 and E1 is that in the former the governing FDs
embed into the views, while in the latter they do not. As first presented in [22,
Thm. 2], and in a much more general context in [11, Prop. 2.17], the updates
which are possible on a given view Γ while keeping a second view Γ constant
are independent of the state of Γ ′ iff the constraints of the main schema embed
into the two views.

The conventional wisdom is that context-independent updates to views such
as ΠE1

AB are not possible, because checking the FD A → C requires access to
both views. While this is true if one insists upon characterizing the allowable
view updates as those which keep a meet view constant, it is nevertheless pos-
sible to support weaker, but still very useful, forms of context and propagation
independence in such settings. It is the main goal of this paper to develop such
notions of independence.

Given N1 ∈ LDB(EAB
1), let πB(N1) denote {b | (∃t ∈ N1)(t[B] = b}, that is,

the set of all values for attribute B which occur in some tuple of N1, and let
≡N1

〈B,A〉 denote the equivalence relation on πB(N1) which identifies two B-values

iff they share a common value for attribute A. Thus, b1 ≡N1

〈B,A〉 b2 iff there are

tuples t1, t2 ∈ N1 with t1[B] = b1, t2[B] = b2, and t1[A] = t2[A]. It is not diffi-
cult to see that any view update (N1, N

′
1) to ΠE1

AB for which πB(N1) = πB(N
′
1)

and for which ≡N ′
1

〈B,A〉⊆≡
N1

〈B,A〉 cannot lead to a violation of the FD A → C as

long as the state of ΠE1

BC is held constant in the reflection. For example, if the

current state of ΠE1

AB is N11 = {RAB(a1, b1), RAB(a2, b2), RAB(a2, b3)}, then
the update to the new state N11′ = {RAB(a1, b1), RAB(a2, b2), RAB(a3, b3)}, as
well as to the new state N11′′ = {RAB(a1, b1), RAB(a3, b2), RAB(a3, b3)}, can-
not possibly result in a violation of A → C, as long as the state of ΠE1

BC is
held constant, regardless of what that state is. In other words, limiting the view
updates to those which satisfy these properties results in a strategy which is
both context and propagation independent. A similar argument holds for up-
dates on ΠE1

BC . For any N2 ∈ LDB(EBC
1), let ≡N2

〈B,C〉 denote the equivalence

relation on πB(N2) which identifies two B-values if they share a common value
for attribute C. Now, any view update (N2, N

′
2) with πB(N2) = πB(N

′
2) and for

which ≡N2

〈B,C〉⊆≡
N ′

2

〈B,C〉 has a reflection with constant ΠE1

AB which is both context

and propagation independent. Furthermore, these updates may be made to ΠE1

AB

andΠE1

BC independently of each other without violating any integrity constraints.
The compromise, relative to that of the views of E0, is that the allowable updates
are with respect to a given initial context (N1, N2) ∈ LDB(EAB

1) × LDB(EBC
1).

In the case of E0, the identification of independent updates to ΠE0

AB requires no

knowledge of the state of ΠE0

BC . In the case of E1, knowledge that the state of
each view is the result of context-independent updates from a consistent initial
state is necessary. Furthermore, each view must know its image of that initial
state. Thus, ΠE1

AB must know N1 and ΠE1

BC must know N2 (but ΠE1

AB need not

know N2 and ΠE1

BC need not know N1).

104 S.J. Hegner

There is a further improvement which may be made. Note that the set of
allowable updates in this example is not symmetric. For example, updating the
state of ΠE1

AB from N11 to N11′ is always admissible, but the reverse, from N11′

to N11 is not, since the latter may lead to a violation of A → C for certain
compatible states of ΠE1

BC . Nevertheless, for any N12 ∈ LDB(EBC
1) which is

compatible with N11 in the sense that they arise from a common M ∈ LDB(E1),
this update is reversible. In fact, it remains reversible if the only updates to ΠE1

BC

are those described above, with ≡N2

〈B,C〉⊆≡
N ′

2

〈B,C〉. and πB(N2) = πB(N
′
2).

A similar solution is applicable when normalization replaces two-way inclusion
dependencies with simple foreign-key dependencies. That example is developed
in detail in Examples 3.4.

The main goal of this paper is to place the ideas illustrated by these examples
on firm theoretical footing. In contrast to the constant-complement theory, which
looks primarily at how a single view may be updated while keeping a second view
constant, the focus here is upon how two views may be updated independently.
Furthermore, while the work is primarily within the setting of just two views,
the long-term goal is nevertheless to address the situation in which there is a
larger set of views, as often occurs in the application settings identified above.
To this end, the main results are developed without requiring that the views be
complementary. Interestingly, complementation does not appear to be a central
issue and their is little if any compromise involved.

2 Schemata and Views in a General Framework

Although most of the examples are based upon the relational model, the results
of this paper depend only upon the set-theoretic properties of database schemata
and views. As such, the underlying framework is basically that employed in the
classical papers [6] and [5]. The purpose of this section is to present the essential
ideas of that framework in a succinct fashion. The terminology and notation is
closest to that employed in [11], to which the reader is referred for details.

Definition 2.1 (Database schemata and morphisms). A database schema
D is modelled completely by its set LDB(D) of legal databases or states. A
morphism f : D1 → D2 of database schemata is represented completely by its
underlying function f : LDB(D1)→ LDB(D2). Since no confusion can result, the
morphism and its underlying function will be represented by the same symbol.
Of course, schemata may have further structure (such as relational structure),
and morphisms may be defined by the relational algebra or calculus, but for this
work, it is only the underlying sets and functions which are of formal importance.

Definition 2.2 (Views). A view Γ = (V, γ) of the schema D is given by a
database schema V together with a morphism γ : D → V whose underlying
function γ : LDB(D) → LDB(V) is surjective. In a view Γ , the state of its
schema V is always determined completely by the state of the main schema D.

The congruence Congr(Γ) of the view Γ is the equivalence relation on
LDB(D) given by {(M1,M2) ∈ LDB(D) × LDB(D) | γ(M1) = γ(M2)}. Let

Independent Update Reflections 105

Γ1 = (V1, γ1) and Γ2 = (V2, γ2) be views of the schema D. Write Γ1 �D Γ2

just in case Congr(Γ2) ⊆ Congr(Γ1), that is, just in case Γ2 preserves at least as
much information about the state of D as does Γ1. The two views Γ1 and Γ2

are said to be isomorphic if Congr(Γ1) = Congr(Γ2); i.e., if Γ2 �D Γ1 �D Γ2.
It is easy to see that �D is a preorder on the collection of all views of D and a
partial order on the congruences (i.e., on the views up to isomorphism).

A partition on LDB(D) is given by a set P of nonempty subsets of LDB(D)
with the property that each M ∈ LDB(D) is in exactly one element of P . Each
member of P is called a block of the partition. The partition on LDB(D) in-
duced by Congr(Γ) has M1 and M2 in the same block iff γ(M1) = γ(M2).
Thus, a congruence on LDB(D) may be represented by the partition which it
induces [20, Sec. 1]. The partition of LDB(D) induced by Congr(Γ) is denoted
Partition(Congr(Γ)).

Definition 2.3 (Relativized views). Let Γ1 = (V1, γ1) and Γ2 = (V2, γ2) be
views of the schema D. If Γ1 �D Γ2, then Γ2 may be relativized to a view of V1.
More specifically, the function λ〈Γ1, Γ2〉 : LDB(V1) → LDB(V2) is defined via
the view congruences by sending a block β of Partition(Congr(Γ1)) to the block
of Partition(Congr(Γ2)) which contains β. For example, using views of the E0

introduced in Sec. 1, λ〈ΠE0

AB , Π
E0

B 〉 sends a state in LDB(ΠE0

AB), i.e., a relation for
RAB[AB], to its projection on B. In terms of blocks of the equivalence relations,
it sends a block β of Partition(Congr(Γ)) consisting of all states with the same
projection onto AB, to the block of Partition(Congr(ΠE0

B)) with the projection
onto attribute B of the elements of β.

Definition 2.4 (The lattice structure and meets of views). It is a classi-
cal result [20, Thm. 5] that the set of all congruences on a set (and hence the set
of all views on a database schema) forms a bounded complete lattice (see [9, 2.2
and 2.4] for definitions) under the order induced by �D . More precisely, let Γ1

and Γ2 be any views of the schema D. The join will not be used in this work and
so not considered further. More important is the meet Γ1∧Γ2 = (V1∧V2, γ1∧γ2),
which is represented by the intersection of all equivalence relations E on LDB(D)
which satisfy E �D Congr(Γi) for both i = 1 and i = 2. There is always one
such equivalence relation, namely the identity, so the intersection is never over
the empty set. An explicit characterization of Congr(Γ1 ∧ Γ2) may be found in
[20, p. 579]. Namely, (M,M ′) ∈ Congr(Γ1 ∧ Γ2) iff there is a chain

(M,M1), (M1,M2), . . . , (Mi−1,Mi), (Mi,Mi+1), . . . , (Mk−1,Mk), (Mk,M
′)
(cc)

of elements in LDB(D) × LDB(D) in which the right element of a pair matches
the left element of its neighbor to the right, and in which each pair is either in
Congr(Γ1) or else in Congr(Γ2).

While the join of two relational schemata always has a natural representation
as a relational schema [14, Def. 3.4], the same cannot be said of the meet. Of
course, it always has an abstract representation as a congruence on the states of
the main schema, and in some examples, it does have a simple representation.

106 S.J. Hegner

For example, in the context of the schema E0 of Sec. 1,Π
E0

AB∧Π
E0

BC is represented

by the view ΠE0

B [11, Prop. 2.17].
The greatest view is the identity view, which has the obvious definition and

which will not be considered further in this work. The least view is the zero view,
denoted ZViewD , and has Congr(ZViewD) = LDB(D) × LDB(D). It is a trivial
view in that it retains no information about the state of D; its morphism ZMorD
sends every state of LDB(D) to the same, single state of the view schema.

Definition 2.5 (Commuting congruences). There is a condition which sim-
plifies the description of the meet given in (cc) of Definition 2.4 above. The
pair {Γ1 = (V1, γ1), Γ2 = (V2, γ2)} of views is said to have commuting con-
gruences if the composition of their congruences is commutative; that is, if
Congr(Γ1)◦Congr(Γ2) = Congr(Γ2)◦Congr(Γ1). In this case, the characterization
(cc) may be simplified considerably. Namely, (M,M ′) ∈ Congr(Γ1 ∧Γ2) iff there
is an M ′′ ∈ LDB(D) such that (M,M ′′) ∈ Congr(Γ1) and (M ′′,M ′) ∈ Congr(Γ2)
(or, equivalently, iff there is an M ′′ ∈ LDB(D) such that (M,M ′′) ∈ Congr(Γ2)
and (M ′′,M ′) ∈ Congr(Γ1)) [20, Sec. 8].

Definition 2.6 (Complementary views). The pair {Γ1 = (V1, γ1), Γ2 =
(V2, γ2)} of views of D is called complementary if the decomposition mor-
phism γ1 × γ2 : LDB(D) → LDB(V1) × LDB(V2) given on elements by M �→
(γ1(M), γ2(M)) is injective. In earlier work, particularly [11], fundamental re-
sults were obtained for pairs of views which are both complementary and which
have commuting congruences. Such pairs are called meet complementary. In this
work, the property of being complementary will not be of central importance,
but it will still be mentioned in some discussion of the results.

Definition 2.7 (Updates and Reflections). An update on the schema D is
just a pair (M1,M2) ∈ LDB(D)× LDB(D). Think of M1 as the state before the
update operation and M2 as the state afterwards. The set of all updates on D
is denoted Updates(D).

Given a view Γ = (V, γ) of D and an update u = (N1, N2) ∈ Updates(V), a
reflection (or translation) of u along Γ is a u′ = (M1,M2) ∈ Updates(D) with
the property that γ(Mi) = Ni for i ∈ {1, 2}. In this case, u′ is also called a
reflection (or translation) of u for M1 along Γ . The set of all reflections of u
along Γ is denoted ReflectionsΓ 〈u〉.

3 Basic Theory of Independent Update Strategies

In this section, the central ideas surrounding independent update strategies are
developed. Some of these, particularly those involving commuting congruences,
have already been developed in part in the context of complementary pairs [11].
However, the focus here is not at all upon complements. Indeed, the assump-
tion that the views under consideration are complementary is never made. Fur-
thermore, while the emphasis in [11] is upon the constant-complement update
strategy in the presence of meet complements, the main focus here is upon sit-
uations in which the meet property (i.e., commuting congruences) fails to hold.

Independent Update Reflections 107

This presentation is independent of [11], and does not require knowledge of the
specific results of that paper.

Notation 3.1 (Running schema and views). Throughout this section, un-
less stated specifically to the contrary, take D to be a database schema and
Γ1 = (V1, γ1) and Γ2 = (V2, γ2) to be views of D. Γ1 and Γ2 need not be
complements of each other.

Definition 3.2 (Updates relative to a second view). The goal is to identify
properties on subsets of Updates(V1) which characterize useful yet independent
update strategies. To this end, there are three distinct notions of independence
which are of importance. In that which follows, let u = (N,N ′) ∈ Updates(V1),
and define ReflectionsΓ1|Γ2

〈u〉 to be the subset of ReflectionsΓ1〈u〉 which keeps
the state of Γ2 constant. More precisely, ReflectionsΓ1|Γ2

〈u〉 = {(M1,M2) ∈
ReflectionsΓ1〈u〉 | (M1,M2) ∈ Congr(Γ2)}.
(a) Call u somewhere Γ2-independent if for someM1 ∈ LDB(D) with γ1(M1) =

N , there is an M2 ∈ LDB(D) with the property that (M1,M2) ∈
ReflectionsΓ1|Γ2

〈u〉. The set of all somewhere Γ2-independent updates on
Γ1 is denoted IndUpd∃〈Γ1|Γ2〉.

Thus, u is somewhere Γ2-independent if the update may be made for some states
of the view Γ2, but not necessarily all. The update ({RAB(a1, b1), RAB(a2, b2)},
{RAB(a1, b1), RAB(a1, b2)}) on ΠE1

AB of Sec. 1 is an example which is somewhere

ΠE1

BC -independent. It is not, however, everywhere independent, since there states

of the view ΠE1

BC , such as {RBC(b1, c1), RBC(b2, c2)}, for which it cannot be
realized without changing that state.

(b) Call u everywhere Γ2-independent if for everyM1 ∈ LDB(D) with γ1(M1) =
N , there is an M2 ∈ LDB(D) with the property that (M1,M2) ∈
ReflectionsΓ1|Γ2

〈u〉. The set of all everywhere Γ2-independent updates on
Γ1 is denoted IndUpd∀〈Γ1|Γ2〉).

The update ({RAB(a1, b1), RAB(a2, b2)}, {RAB(a1, b1), RAB(a3, b2)}) on ΠE1

AB

is an example which is everywhere ΠE1

BC-independent.
The third notion of independence characterizes independence in the situation

when the congruences of Γ1 and Γ2 commute, and so is closely tied to the theory
of constant-complement updates as presented in [11].

(c) Call u meetwise Γ2-independent if λ〈Γ1, Γ1 ∧ Γ2〉(N) = λ〈Γ1, Γ1 ∧ Γ2〉(N ′).
The set of all meetwise Γ2-independent updates on Γ1 is denoted
IndUpd∧〈Γ1|Γ2〉.

For each of these three notions, there is a corresponding definition of reflected
updates. Specifically, define

ReflIndUpd∃〈Γ1|Γ2〉 = {ReflectionsΓ1|Γ2
〈u〉 | u ∈ IndUpd∃〈Γ1|Γ2〉},

ReflIndUpd∀〈Γ1|Γ2〉 = {ReflectionsΓ1|Γ2
〈u〉 | u ∈ IndUpd∀〈Γ1|Γ2〉},

and ReflIndUpd∧〈Γ1|Γ2〉 = {ReflectionsΓ1|Γ2
〈u〉 | u ∈ IndUpd∧〈Γ1|Γ2〉}.

In these definitions, there is no assumption that Γ1 and Γ2 be complements. How-
ever, if they are complements, then for each u = 〈N,N ′〉 ∈ IndUpdx〈Γ1|Γ2〉 with
x ∈ {∃, ∀,∧}, and each M ∈ γ−1

1 (N), there is at most one M ′ ∈ LDB(D) with

108 S.J. Hegner

(M,M ′) ∈ ReflIndUpdx〈Γ1|Γ2〉, which given by (γ1 × γ2)
−1(N ′, γ2(M)) when-

ever it exists (see Definition 2.6).
All three notions of Γ2-independence recapture locality of effect, as defined in

Sec. 1. While only everywhere Γ2 independence recaptures context independence,
the other two provide crucial insights into what can go wrong and how things can
be extended. As a first step, the question of whether or not these are equivalence
relations is examined.

Observation 3.3 (Reflexivity and transitivity)

(a) Each of IndUpd∧〈Γ1|Γ2〉, IndUpd∃〈Γ1|Γ2〉, ReflIndUpd∧〈Γ1|Γ2〉, and
ReflIndUpd∃〈Γ1|Γ2〉 is an equivalence relations.

(b) IndUpd∀〈Γ1|Γ2〉 and ReflIndUpd∀〈Γ1|Γ2〉 are reflexive and transitive, but
not necessarily symmetric. Thus, they need not be equivalence relations.

Proof All of the “positive” conditions are routine verifications, which are left to
the reader. That IndUpd∀〈Γ1|Γ2〉 and ReflIndUpd∀〈Γ1|Γ2〉 need not be symmetric
is illustrated in Examples 3.4, immediately below. �

Examples 3.4 (Non-reversible independent updates). To illustrate the
idea of non-reversible updates, consider the schema E2 with two relation symbols
RAB[AB] and RBC [BC]. The latter relation is governed by the FD B → C,
and, in addition, the two relations are connected via the foreign-key dependency
RAB[B] ⊆ RBC [B]. Define ΠE2

AB = (EAB
2 , πE2

AB) and ΠE2

BC = (EBC
2 , πE2

BC) as
the views which preserve RAB[AB] and RBC [BC], respectively, and for N ∈
LDB(EAB

2) or N ∈ LDB(EBC
2), let πB(N) denote {b | (∃t ∈ N)(t[B] = b}.

It is easy to see that IndUpd∀〈ΠE2

AB |Π
E2

BC〉 is the set of all updates (N,N ′) ∈
Updates(ΠE2

AB) for which πB(N
′) ⊆ πB(N). A tuple of the form RAB(a, b) may

always be deleted, even if there is no other tuple of the form RAB(x, b), but a
tuple of the form RAB(a, b) may not be added if there is not already another of
the form RAB(x, b). Thus, if RAB(a, b) is deleted, it may not be reinserted. For
IndUpd∀〈ΠE2

AB|Π
E2

BC〉, the situation is reversed; (N,N ′) ∈ IndUpd∀〈ΠE2

BC |Π
E2

AB〉
iff πB(N) ⊆ πB(N

′). A tuple of the form RBC(b, c) may always be inserted, but
not deleted unless there is another tuple of the form RBC(b, x). Hence, neither
IndUpd∀〈ΠE3

AB|Π
E2

BC〉 nor IndUpd∀〈Π
E3

BC |Π
E2

AB〉 is symmetric.
A similar situation governs the example surrounding E1 of Sec. 1. A view up-

date (N,N ′) ∈ IndUpd∀〈ΠE1

AB|Π
E1

BC〉 is allowed if πB(N) = πB(N
′) and

≡N ′
〈B,A〉⊆≡N

〈B,A〉, but not if ≡N ′
〈B,A〉�≡N

〈B,A〉. Thus, a view update of the form

({RAB(a1, b1), RAB(a2, b2)}, {RAB(a1, b1), RAB(a1, b2)}) is not allowed. An
analogous condition holds for IndUpd∀〈ΠE1

BC |Π
E1

AB〉.
These examples suggest the way to extend the notion of independent update.

Return to E2 and its views. Suppose that the state of the schema E2 is M21 =
{RAB(a1, b1), RAB(a2, b2), RBC(b1, c1), RBC(b2, c2)}. Then the update u21 =
({RAB(a1, b1), RAB(a2, b2)}, {RAB(a1, b1)}) on ΠE2

AB is in IndUpd∀〈ΠE2

AB |Π
E2

BC〉
but the reverse update u′

21 = ({RAB(a1, b1)}, {RAB(a1, b1), RAB(a2, b2)}) is
not. However, if it is known that the state of ΠE2

BC did not change after the
execution of u21, then a subsequent execution of u′

21 is indeed possible while

Independent Update Reflections 109

keeping ΠE2

BC constant. Even stronger, if updates in IndUpd∀〈ΠE2

BC |Π
E2

AB〉 are
applied, this condition nevertheless continues to hold. It is only if an update to
ΠE2

BC is applied which removes elements from πB({RAB(a1, b1), RAB(a2, b2)}) =
{b1, b2} that the update u21 may become irreversible. The strategy is that non-
reversible updates in IndUpd∀〈Γ1|Γ2〉 may in fact be reversed provided that the
only updates to Γ2 which are allowed are those in IndUpd∀〈Γ2|Γ1〉 and their
reversals, all within the context of a given initial state. A systematic development
of these ideas constitutes the remainder of this paper.

Proposition 3.5 (Comparison of the three notions of independent up-
dates). IndUpd∀〈Γ1|Γ2〉 ⊆ IndUpd∃〈Γ1|Γ2〉 ⊆ IndUpd∧〈Γ1|Γ2〉. Furthermore,
their exist examples for which these inclusions are proper.

Proof. That IndUpd∀〈Γ1|Γ2〉 ⊆ IndUpd∃〈Γ1|Γ2〉 is immediate, and an example
for which the inclusion is proper is given by E1 and its views in Sec. 1.

It is also easy to see that IndUpd∃〈Γ1|Γ2〉 ⊆ IndUpd∧〈Γ1|Γ2〉, since if
(N,N ′) ∈ IndUpd∃〈Γ1|Γ2〉, then by definition there is a pair (M,M ′) ∈
ReflectionsΓ1|Γ2

〈(N,N ′)〉, and (M,M ′) ∈ Congr(Γ2), since the update holds Γ2

constant. Then, since Congr(Γ2) ⊆ Congr(Γ1 ∧ Γ2), the results follows. For an
example in which this inclusion is proper, let E3 have five states: LDB(E3) =
{a, b, c, d, e}. Let Ω31 = (V31, ω31) be the view with Partition(Congr(Ω31)) =
{{a, b}, {c, d}, {e}} and let Ω32 = (V32, ω32) have Partition(Congr(Ω32)) =
{{a}, {b, c}, {d, e}}. It is easy to show that Partition(Congr(ω31 ∧ ω32)) =
{a, b, c, d, e}, i.e., it is defined by ZViewE3 . This means that IndUpd∧〈Ω31|Ω32〉 =
LDB(E3)×LDB(E3); i.e., any update is allowed. However, the update ({a, b}, {e})
is not in IndUpd∃〈Ω31|Ω32〉, and so IndUpd∧〈Ω31|Ω32〉 is a proper subset of it. �

Definition 3.6 (Compatible pairs and independent update pairs). A
compatible pair for {Γ1, Γ2} is an (N1, N2) ∈ LDB(V1)× LDB(V2) which arises
from some M ∈ LDB(D). If {Γ1, Γ2} forms a complementary pair, then there
is at most one compatible pair associated with each M ∈ LDB(D); namely

(γ1 ∧ γ2)
−1

(N1, N2) when it exists. However, in the more general context, there
may be many, since γ1×γ2 need not be injective. Formally, define Compat〈Γ1;Γ2〉
= {(N1, N2) ∈ LDB(V1) × LDB(V2) | (∃M ∈ LDB(D))(∀i ∈ {1, 2})(γi(M) =
Ni)}.

An independent update pair is a pair of updates (u1, u2) ∈ Updates(V1) ×
Updates(V2) which may be executed independently of one another. Formally, de-
fine IndUpd∀〈Γ1‖Γ2〉 = {(N1, N2), (N

′
1, N

′
2) | (N1, N2) ∈ Compat〈Γ1;Γ2〉

and (N1, N
′
1) ∈ IndUpd∀〈Γ1|Γ2〉 and (N2, N

′
2) ∈ IndUpd∀〈Γ2|Γ1〉}.

Updates in IndUpd∀〈Γ1‖Γ2〉 may be performed individually as updates in
IndUpd∀〈Γ1|Γ2〉 and IndUpd∀〈Γ2|Γ1〉, as well as concurrently, and these oper-
ations all preserve compatibility. Formally, this is expressed as follows.

Proposition 3.7 (Independent updates). Let (N1, N2) ∈ Compat〈Γ1;Γ2〉
and let ((N1, N

′
1), (N2, N

′
2)) ∈ IndUpd∀〈Γ1‖Γ2〉. Then each of the pairs

((N1, N
′
1), (N2, N2)), ((N1, N

′
1), (N

′
2, N

′
2)), ((N1, N1), (N2, N

′
2)), and

110 S.J. Hegner

((N ′
1, N

′
1), (N2, N

′
2)) is in IndUpd∀〈Γ1‖Γ2〉 as well. In particular, each of

(N ′
1, N

′
2), (N

′
1, N2), and (N ′

1, N
′
2) is in Compat〈Γ1;Γ2〉.

Proof. It suffices to equate certain elements in the description of
Definition 3.6. For example, letting N ′

2 be N2, which is always possible since
identity updates such as (N2, N2) are in IndUpd∀〈Γ2|Γ1〉 regardless of the choices
of Γ1 and Γ2, it follows that ((N1, N

′
1), (N2, N2)) ∈ IndUpd∀〈Γ1‖Γ2〉. The other

three cases are shown similarly. �

The next theorem provides a comprehensive characterization of the conditions for
independent updates, without any requirement of complementation. The equiv-
alence of (a), (b), and (c) has already been shown in [11, 2.14] for the special
case of complementary pairs, using a different approach [11, Thm. 2.14].

Theorem 3.8 (Independence and commuting congruences). The fol-
lowing conditions are equivalent.

(a) The pair {Γ1, Γ2} has commuting congruences; i.e., Congr(Γ1) ◦Congr(Γ2)
= Congr(Γ2) ◦ Congr(Γ1).

(b) For any N1 ∈ LDB(V1) and N2 ∈ LDB(V2), (N1, N2) ∈ Compat〈Γ1;Γ2〉
iff λ〈Γ1, Γ1 ∧ Γ2〉(N1) = λ〈Γ2, Γ1 ∧ Γ2〉(N2).

(c) For any N1, N
′
1 ∈ LDB(V1) and N2, N

′
2 ∈ LDB(V2), if any three elements

of the set {(N1, N2), (N1, N
′
2), (N

′
1, N2), (N

′
1, N

′
2)} are in Compat〈Γ1;Γ2〉,

then so too is the fourth.
(d) IndUpd∀〈Γ1|Γ2〉 = IndUpd∧〈Γ1|Γ2〉.
(e) IndUpd∀〈Γ1|Γ2〉 = IndUpd∃〈Γ1|Γ2〉.
(f) ReflIndUpd∀〈Γ1|Γ2〉 = Congr(Γ2).
(g) ReflIndUpd∀〈Γ1|Γ2〉 is an equivalence relation.
(h) IndUpd∀〈Γ1|Γ2〉 is an equivalence relation.

Proof. ((a) ⇒ (b)): First, assume that λ〈Γ1, Γ1 ∧Γ2〉(N1) = λ〈Γ2, Γ1 ∧Γ2〉(N2),
and let M1,M2 ∈ LDB(D) with γ1(M1) = N1 and γ2(M2) = N2. Then
(γ1 ∧ γ2)(M1) = (γ1 ∧ γ2)(M2), i.e., (M1,M2) ∈ Congr(Γ1 ∧Γ2). Using the char-
acterization of Congr(Γ1 ∧ Γ2) for commuting congruences given in Definition
2.4, there must be an M ∈ LDB(D) with (M1,M) ∈ Congr(Γ1) and (M,M2) ∈
Congr(Γ2). Furthermore, γ1(M) = γ1(M1) = N1, and γ2(M) = γ1(M2) = N2,
whence (N1, N2) ∈ Compat〈Γ1;Γ2〉. Conversely, if (N1, N2) ∈ Compat〈Γ1;Γ2〉,
then there exists an M ∈ LDB(D) with γ1(M) = N1 and γ2(M) = N2. Since
this M maps to a single block of Partition(Congr(Γ1 ∧ Γ2)), N1 and N2 must be
associated with the same block as well.

((b) ⇒ (c)): Immediate.
((c) ⇒ (e)): Let (N1, N

′
1) ∈ IndUpd∃〈Γ1|Γ2〉, and choose (M1,M2) ∈

ReflectionsΓ1|Γ2
〈(N1, N2)〉. Then (N1, γ2(M1)), (N

′
1, γ2(M1)) ∈ Compat〈Γ1;Γ2〉.

Choose M ′
1 ∈ LDB(D) with γ1(M

′
1) = N1. Then (N1, γ2(M

′
1)) ∈ Compat〈Γ1;Γ2〉

as well. Hence, by (c), (N ′
1, γ2(M

′
1)) ∈ Compat〈Γ1;Γ2〉, whence (N1, N

′
1) ∈

IndUpd∀〈Γ1|Γ2〉, as required.
((e) ⇒ (f)): It is immediate that ReflIndUpd∀〈Γ1|Γ2〉 ⊆ Congr(Γ2). Con-

versely, let (M1,M2) ∈ Congr(Γ2). Then (γ1(M1), γ1(M2)) ∈ IndUpd∃〈Γ1|Γ2〉,

Independent Update Reflections 111

just by construction. Hence, invoking (e), (γ1(M1), γ1(M2)) ∈ IndUpd∀〈Γ1|Γ2〉
as well, whence (M1,M2) ∈ ReflIndUpd∀〈Γ1|Γ2〉 and so ReflIndUpd∃〈Γ1|Γ2〉 =
ReflIndUpd∀〈Γ1|Γ2〉.

((f) ⇒ (g)): Immediate.
((g) ⇒ (h)): The proof is a routine verification.
((h) ⇒ (a)): Let (M1,M2) ∈ Congr(Γ1) ◦ Congr(Γ2). Then there is an M ′ ∈

LDB(D) with (M1,M
′) ∈ Congr(Γ1) and (M ′,M2) ∈ Congr(Γ2). Since γ2(M

′) =
γ2(M2) and (M1,M

′) ∈ IndUpd∃〈Γ1|Γ2〉, it follows that
(γ1(M1), γ1(M2)) ∈ IndUpd∃〈Γ1|Γ2〉. Now, choose any M ′

1 ∈ LDB(D) with
γ1(M

′
1) = γ1(M1). Then (M ′

1,M2) = (M ′
1,M1) ◦ (M1,M2) ∈ Congr(Γ1) ◦

Congr(Γ1) ◦ Congr(Γ2) = Congr(Γ1) ◦ Congr(Γ2), and so (γ1(M1), γ1(M2)) ∈
IndUpd∃〈Γ1|Γ2〉 as well. Since M ′

1 was arbitrary with γ(M1)
= γ(M ′

1), it follows that (γ1(M1), γ1(M2)) ∈ IndUpd∀〈Γ1|Γ2〉. Conversely, if
(M1,M2) ∈ Updates(D) with (γ1(M1), γ1(M2)) ∈ IndUpd∀〈Γ1|Γ2〉, then there
must be an M ′ ∈ LDB(D) with (M1,M

′) ∈ Congr(Γ1) and (M ′,M2) ∈
Congr(Γ2); i.e., (M ′,M2) ∈ ReflIndUpd∀〈Γ1|Γ2〉. In other words, (M1,M2) ∈
Congr(Γ1) ◦ Congr(Γ2). Thus, (M1,M2) ∈ Congr(Γ1) ◦ Congr(Γ2) iff
(γ1(M1), γ2(M2)) ∈ IndUpd∀〈Γ1|Γ2〉. Since IndUpd∀〈Γ1|Γ2〉 is assumed to be an
equivalence relation, it follows easily that Congr(Γ1) ◦ Congr(Γ2) must be an
equivalence relation as well. Then Congr(Γ1)◦Congr(Γ2) = Congr(Γ2)◦Congr(Γ1)
follows immediately, since one is the reverse of the other; i.e., (M1,M2) ∈
Congr(Γ1) ◦ Congr(Γ2) iff (M2,M1) ∈ Congr(Γ2) ◦ Congr(Γ1).

((a) ⇒ (d)): Let (N1, N
′
1) ∈ IndUpd∧〈Γ1|Γ2〉. Then, as described in Definition

2.4, for any (M,M ′) ∈ ReflectionsΓ1|Γ2
〈(N,N ′)〉, there is a sequence

M1,M2, . . . ,Mk of elements of LDB(D) with the property that M1 = M , Mk =
M ′, for each odd i, 1 ≤ i ≤ k, (Mi,Mi+1) ∈ Congr(Γ2) and for each even i, 1 ≤
i ≤ k, (Mi,Mi+1) ∈ Congr(Γ1). However, in view of condition (a), which guar-
antees commuting congruences, it follows also from the discussion of Definition
2.4 that k may be chosen to be 3. That is, there are (M1,M2) ∈ Congr(Γ2) and
(M2,M3) ∈ Congr(Γ1) with γ1(M1) = N1, γ1(M3) = N ′

1, and γ2(M2) = γ2(M3).
Since M may be chosen arbitrarily with the property that γ1(M1) = N , this
means in particular that (N1, N

′
1) = (γ1(M1), γ1(M2)) ∈ IndUpd∀〈Γ1|Γ2〉, as

required. (That M may be chosen arbitrarily follows from the fact that the
equivalence relation Congr(Γ1 ∧ Γ2) is coarser than Congr(Γ2), and so any two
elements of LDB(D) which are equivalent under Congr(Γ2) are equivalent under
Congr(Γ1) ∧ Congr(Γ2) as well.)

((d) ⇒ (e)): This follows immediately from Proposition 3.5. �

The thrust of this result is that IndUpd∀〈Γ1|Γ2〉 being an equivalence relation is
both a necessary and a sufficient condition for the classical characterization in
terms of commuting congruences and meet dependencies (a)-(c) to hold, and un-
der these conditions, each of the concepts of independent update IndUpd∀〈Γ1|Γ2〉,
IndUpd∃〈Γ1|Γ2〉, and IndUpd∧〈Γ1|Γ2〉 becomes equivalent to all of the others.

112 S.J. Hegner

There is furthermore a symmetry in results (d)-(f); if Γ1 and Γ2 are swapped
in any or all of these, the result remains valid. In particular, IndUpd∀〈Γ1|Γ2〉
is an equivalence relation iff IndUpd∀〈Γ2|Γ1〉 is. In other words, if independent
updates are well behaved on Γ1, then they are well behaved on Γ2 as well.

The question becomes, then, how to recapture the extended updates identified
in the examples of Sec. 1 and Examples 3.4. The answer is that rather than trying
to avoid allowing IndUpd∀〈Γ1|Γ2〉 to become an equivalence relation (which in
view of the above result would imply many other limitations), the set of allowable
legal databases is trimmed so that IndUpd∀〈Γ1|Γ2〉 (and so IndUpd∀〈Γ2|Γ1〉 as
well) becomes an equivalence relation on that which remains. The key idea is to
start with a pair (N1, N2) ∈ LDB(V1) × LDB(V2), and then restrict attention
to those states which can be reached from those via well-behaved updates. The
formalization is as follows.

Definition 3.9 (Reachability subschemata and subviews). For (N1, N2)
∈ Compat〈Γ1;Γ2〉, define Reachable∀〈Γ1 :N1 ‖ Γ2 :N2〉 =

{M ∈ LDB(D) | ((N1, N2), (γ1(M), γ2(M)) ∈ IndUpd∀〈Γ1‖Γ2〉)}.
Thus, Reachable∀〈Γ1 :N1 ‖ Γ2 :N2〉 is the set of all states of D which can be
reached via independent updates on Γ1 and Γ2 from a state M0 ∈ LDB(D) with
γ1(M0) = N1 and γ2(M0) = N2. If {Γ1, Γ2} forms a complementary pair, then
this initial M0 is determined completely by (N1, N2), but it is not necessary to
enforce complementation in that which follows.

A limited view based upon Γ1, which only involves the reachable states, is
defined as follows.
(a) Define RestrD〈Γ1 :N1 ‖ Γ2 :N2〉 to be the subschema of D with

LDB(RestrD〈Γ1 :N1 ‖ Γ2 :N2〉) = Reachable∀〈Γ1 :N1 ‖ Γ2 :N2〉.
Thus, RestrD〈Γ1 :N1 ‖ Γ2 :N2〉 is the schema consisting of just those states reach-
able from (N1, N2). The corresponding sets of view states are defined as follows.
(b) For i ∈ {1, 2}, define RestrVi〈Γ1 :N1 ‖ Γ2 :N2〉 = {γi(M) | M ∈

Reachable∀〈Γ1 :N1 ‖ Γ2 :N2〉}.
The corresponding view morphism is then the appropriate restriction of γi.
(c) For i ∈ {1, 2}, define the function

Restrγi〈γ1 :N1 ‖ γ2 :N2〉 : LDB(RestrD〈Γ1 :N1 ‖ Γ2 :N2〉)→
LDB(RestrV1〈Γ1 :N1 ‖ Γ2 :N2〉)

to be the restriction of γi to LDB(RestrD〈Γ1 :N1 ‖ Γ2 :N2〉).
Finally, the restricted view is obtained by assembling these pieces.
(d) For i ∈ {1, 2}, define

RestrΓi〈Γ1 :N1 ‖ Γ2 :N2〉 =
(RestrVi〈Γ1 :N1 ‖ Γ2 :N2〉,Restrγi〈Γ1 :N1 ‖ Γ2 :N2〉)

to be the view of RestrD〈Γ1 :N1 ‖ Γ2 :N2〉 constructed from these.
That this view provides exactly that which is needed to support the extended
and reversible set of independent updates for a pair of views is recaptured in the
following.

Theorem 3.10 (The restricted view defined by a compatible pair). The
view {RestrΓ1〈Γ1 :N1 ‖ Γ2 :N2〉,RestrΓ2〈Γ1 :N1 ‖ Γ2 :N2〉} has commuting con-
gruences with

Independent Update Reflections 113

RestrΓ1〈Γ1 :N1 ‖ Γ2 :N2〉∧RestrΓ2〈Γ1 :N1 ‖ Γ2 :N2〉 = ZViewRestrD 〈Γ1:N1 ‖ Γ2:N2〉.

Proof. There is really nothing difficult to prove; the given properties are crafted
right into the definition. In particular, the meet is the zero view because the
interdependence conditions which place limitations on the allowable updates are
enforced by including only those states which are already compatible. �

Examples 3.11 (Independent view updates in the reachability con-
text). Consider first the views ΠE2

AB and ΠE2

BC associated with the schema

E2, as introduced in Examples 3.4. Let (N1, N2) ∈ Compat〈ΠE2

AB;Π
E2

BC〉. The
key information which is used to characterize the admissible updates is found in
the sets πB(N1) and πB(N2). Specifically, LDB(RestrE2〈ΠE2

AB :N1 ‖ ΠE2

BC :N2〉)
= Reachable∀〈ΠE2

AB :N1 ‖ ΠE2

BC :N2〉 = {(N ′
1, N

′
2) ∈ LDB(EAB

2) × LDB(EBC
2) |

πB(N
′
1) ⊆ πB(N1) and πB(N2) ⊆ πB(N

′
2)}. Thus, updates to the schemata of

these two views are constrained only in that the initial projection of the relation
of RAB[AB] onto B may not increase, and the initial projection of the rela-
tion of RBC [BC] may not decrease. This is far more flexible than the constant-
complement solution suggested in [15, Discussion 3.1]. In that solution, in order
to maintain a meet situation, a copy of the projection of ΠE2

BC onto B must be

included in the view ΠE2

AB. That limits the allowable updates to those which keep
both πB(N1) and πB(N2) constant, a much smaller set.

Next, consider the views associated with E1. Here the classical constant-
complement update strategy would allow no updates at all to either view. How-
ever, with the restricted views, the allowable updates are those which satisfy the
conditions identified in Sec. 1. For a given (N1, N2) ∈ Compat〈ΠE1

AB;Π
E1

BC〉, us-
ing the definitions of ≡N

〈X,Y 〉 given in Sec. 1, LDB(RestrE2〈ΠE2

AB :N1 ‖ ΠE2

BC :N2〉)
= Reachable∀〈ΠE1

AB :N1 ‖ ΠE2

BC :N2〉 = {(N ′
1, N

′
2) ∈ LDB(EAB

1) × LDB(EBC
2) |

πB(N1) = πB(N2) and ≡N ′
1

〈B,A〉⊆≡
N1

〈B,A〉 and ≡N2

〈B,C〉⊆≡
N ′

2

〈B,C〉}. Parallel updates
by the two views may reach any of these states.

The price paid for using this type of update strategy is that the constraints
defining which updates are allowed must be reset every time the pair of views is
updated outside of this framework. That would happen, for example, when an
update not supported in the restricted strategy were necessary, and so the two
views would be combined, the update performed, and then a new initial com-
patible pair obtained. Whether the cost of computing anew which view updates
are supported every time the initial compatible pair changes is a worthwhile
step depends upon the application setting, and must be left as topic for further
investigation.

4 Conclusions and Further Directions

A way to handle updates on two views, without any conflict, has been pre-
sented. The approach extends the classical constant-complement strategy in two
ways. First and foremost, it is not restricted to meet complements (translatable

114 S.J. Hegner

strategies in the language of [6]). Rather, it takes advantage of the fact that
simultaneous updates are limited in scope, and assumes that the updates to the
companion view follow the associated protocol. Second, it does not depend upon
complementation in any way, and so is readily extensible to any finite number
of views.

Directions for additional investigation include the following:

Extension to finite sets of views: As noted in Sec. 1, a primary motivation for
this work is the modelling in the context of many views. It is therefore of
primary importance to develop the details of how this approach extends to
more than two views.
Integration with applications: The ideas developed here should be of great use
in extending the notion of database schema components, as described in [13]
and [16], as well as their applications in update via cooperation [17] and objects
for transaction [15]. The next task is to examine the details of such applications.
Effective methods for identifying the restricted state set: In the approach
developed in this paper, the allowable updates are defined by a starting context
(the reachability subschema). It is important to identify ways to characterize
and compute effectively this context for classes of views which arise in practice.

Acknowledgment. An anonymous reviewer made numerous suggestions which
(hopefully) have led to a more readable presentation.

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Answer sets for consistent query answering
in inconsistent databases. Theory and Practice of Logic Programming 3(4-5), 393–
424 (2003)

2. Arieli, O., Denecker, M., Bruynooghe, M.: Distance semantics for database repair.
Ann. Math. Artif. Intell. 50(3-4), 389–415 (2007)

3. Arieli, O., Denecker, M., Nuffelen, B.V., Bruynooghe, M.: Computational methods
for database repair by signed formulae. Ann. Math. Artif. Intell. 46(1-2), 4–37
(2006)

4. Baldwin, R.W.: Naming and grouping privileges to simplify security management
in large databases. In: Proc. 1990 IEEE Symposium on Research in Security and
Privacy, pp. 116–132. IEEE Computer Society Press (1990)

5. Bancilhon, F., Spyratos, N.: Independent components of databases. In: Proceedings
of the Seventh International Conference on Very Large Data Bases, pp. 398–408
(1981)

6. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans.
Database Systems 6, 557–575 (1981)

7. Bentayeb, F., Laurent, D.: Inversion de l’algèbre relationnelle et mises à jour. Tech-
nical Report 97-9, Université d’Orléans, LIFO (1997)

8. Bentayeb, F., Laurent, D.: View Updates Translations in Relational Databases.
In: Quirchmayr, G., Bench-Capon, T.J.M., Schweighofer, E. (eds.) DEXA 1998.
LNCS, vol. 1460, pp. 322–331. Springer, Heidelberg (1998)

9. Davey, B.A., Priestly, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press (2002)

Independent Update Reflections 115

10. Dayal, U., Bernstein, P.A.: On the correct translation of update operations on
relational views. ACM Trans. Database Systems 8(3), 381–416 (1982)

11. Hegner, S.J.: An order-based theory of updates for closed database views. Ann.
Math. Art. Intell. 40, 63–125 (2004)

12. Hegner, S.J.: Information-based distance measures and the canonical reflection of
view updates. Technical Report 0805, Institut für Informatik, Christian-Albrechts-
Universität zu Kiel (October 2008); An updated and corrected version, which will
appear in Ann. Math. Art. Intell., is available on the Web site of the author

13. Hegner, S.J.: A model of database components and their interconnection based
upon communicating views. In: Jakkola, H., Kiyoki, Y., Tokuda, T. (eds.) Infor-
mation Modelling and Knowledge Systems XIX. Frontiers in Artificial Intelligence
and Applications, pp. 79–100. IOS Press (2008)

14. Hegner, S.J.: Semantic Bijectivity and the Uniqueness of Constant-Complement
Updates in the Relational Context. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB
2008. LNCS, vol. 4925, pp. 160–179. Springer, Heidelberg (2008)

15. Hegner, S.J.: A Model of Independence and Overlap for Transactions on Database
Schemata. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS,
vol. 6295, pp. 204–218. Springer, Heidelberg (2010)

16. Hegner, S.J.: A simple model of negotiation for cooperative updates on database
schema components. In: Kiyoki, Y., Tokuda, T., Heimbürger, A., Jaakkola, H.,
Yoshida, N. (eds.) Frontiers in Artificial Intelligence and Applications XX11, pp.
154–173 (2011)

17. Hegner, S.J., Schmidt, P.: Update Support for Database Views Via Cooperation.
In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007. LNCS, vol. 4690,
pp. 98–113. Springer, Heidelberg (2007)

18. Keller, A.M.: Updating Relational Databases through Views. PhD thesis, Stanford
University (1985)

19. Langerak, R.: View updates in relational databases with an independent scheme.
ACM Trans. Database Systems 15(1), 40–66 (1990)

20. Ore, O.: Theory of equivalence relations. Duke Math. J. 9, 573–627 (1942)
21. Osborn, S.L., Guo, Y.: Modeling users in role-based access control. In: ACM Work-

shop on Role-Based Access Control, pp. 31–37 (2000)
22. Rissanen, J.: Independent components of relations. ACM Trans. Database Sys-

tems 2(4), 317–325 (1977)
23. Schewe, K.-D., Thalheim, B.: Component-driven engineering of database applica-

tions. In: APCCM 2006: Proceedings of the 3rd Asia-Pacific Conference on Con-
ceptual Modelling, pp. 105–114. Australian Computer Society, Inc., Darlinghurst
(2006)

24. Thalheim, B.: Component development and construction for database design. Data
Knowl. Eng. 54(1), 77–95 (2005)

SOF : A Semantic Restriction over Second-Order
Logic and Its Polynomial-Time Hierarchy

Alejandro L. Grosso1 and José M. Turull Torres2

1 Dpto. de Informática, Universidad Nacional de San Luis, San Luis, Argentina
agrosso@unsl.edu.ar

2 ICTIC, Universidad de la Cuenca del Plata, Corrientes, Argentina
and

Dpto. de Informática, Universidad Nacional de San Luis, Argentina
J.M.Turull@massey.ac.nz

Abstract. We introduce a restriction of second order logic, SOF , for
finite structures. In this restriction the quantifiers range over relations
closed by the equivalence relation ≡FO. In this equivalence relation the
equivalence classes are formed by k-tuples whose First Order type is the
same, for some integer k ≥ 1. This logic is a proper extension of the logic
SOω defined by A. Dawar and further studied by F. Ferrarotti and the
second author. In the existential fragment of SOF , Σ1,F

1 , we can express
rigidity, which cannot be expressed in SOω. We define the complexity
class NPF by using a variation of the relational machine of S. Abiteboul
and V. Vianu (RMF) and we prove that this complexity class is captured
by Σ1,F

1 . Then we define an RMFk machine with a relational oracle and
show the exact correspondence between prenex fragments of SOF and
the levels of the PHF polynomial-time hierarchy.

Keywords: Finite Model Theory, Descriptive Complexity, Relational
Machines.

1 Introduction

Significant research has been done in the last few decades in regard to the re-
lationship between finite model theory and computational complexity theory.
There is a close relationship between computational complexity, the amount of
resources we need to solve a problem over some computation model, and descrip-
tive complexity, the logic we need to describe the problem. The most important
result about this relationship was the result of Fagin [4]. This result establishes
that the properties of finite structures which are defined by existential second
order sentences coincide with the properties that belong to the complexity class
NP. This result was extended by Stockmeyer [15] establishing a close relation-
ship between second order logic and the polynomial hierarchy. There are many
results equating logic expressibility to computational complexity but they re-
quire ordered structures (see [11] [12]) when the target logic is below second
order logic. That is, for these logics the correspondence between the expressibil-
ity of a logic and the computability with bounded resource does not hold for

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 116–135, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

SOF : A Semantic Restriction over Second-Order Logic 117

all classes of finite structures; instead it holds for finite structures which have a
linear order as one of its relations. Immerman [10] and Vardi [17] independently
demonstrated that the extension of first order logic with a fixed point operator
captures PTIME over ordered structures. Such result is not known to hold for
arbitrary structures. Similarly, results due to M. Vardi [17] and S. Abiteboul and
V. Vianu [1] establish that the extension of first order logic with a partial fixed
point operator captures PSPACE over ordered structures.

The interest in fixed point logics attracted attention on the infinitary logic
with finitely many variables, Lω

∞,ω, since the fixed point logics mentioned are
fragments of Lω

∞,ω. Definability in this logic can be characterized in terms of a
two-player pebble game. (see [11])

In this paper we use a semantic restriction to define the logic SOF . Similarly to
the logic SOω defined by A. Dawar [2], and further studied by F. Ferrarotti and
J. Turull-Torres in [6], where the second order quantifiers range over relations
which are closed under the equivalence relation ≡k, for some k, in SOF the k-ary
second order variables are interpreted by relations closed under the equivalence
relation ≡FO over k-tuples. When we use SO to express a query on a database we
extend the database with arbitrary relations for the quantified relation variables.
Correspondingly when we use SOF , we extend the structure with relations closed
under FO types. Furthermore when we use SOω, we extend the structure with
relations closed under FOk types. The quantified relations in SOF are redundant
in the sense of [5].

In the equivalence relation ≡k, two k-tuples are equivalent with respect to a
structure A, when they satisfy in A the same FOk formulae with k free variables.
FOk is the fragment of FO where the formulae use up to k variables. In the
relation ≡FO, two k-tuples are equivalent with respect to a structure A, when
they satisfy in A the same FO formulae with k free variables. If the equivalent
classes of ≡FO have only one k-tuple, the structure is rigid. In this case we can
express in SOF all of SO queries. We have the same situation in SOω when the
structure is FOk rigid, i.e., when the equivalent classes of ≡k have only one k-
tuple. Note that if two k-tuples are equivalent in ≡FO then they are equivalent on
≡k, but not reciprocally. Y. Gurevich and S. Shela in [9] built rigid structures
that are not FOk rigid for any k. They called this structures odd multipedes.
Therefore in any class S of rigid structures, SOF is equivalent to SO. Similarly,
SOω is equivalent to SO on F for any class F of FOk rigid structures. Then in
SOF , rigidity plays the same role as FOk rigidity in SOω.

We show that the Boolean query rigidity is expressible in SOF , and it is well
known that it is not expressible in Lω∞,ω, and hence in SOω. We prove that every

query expressible in SOω is expressible in SOF . Then SOω is strictly included
in SOF . We use a modified relational machine [1] to define the complexity class
NPF . We then prove that this complexity class is captured by the SOF existential
fragment, Σ1,F

1 . The Boolean query rigidity belongs to this fragment.
One of our motivations is to get a better understanding of the distinctive

aspects of different NP complete problems. In [8] we prove that some of those

118 A.L. Grosso and J.M. Turull Torres

problems can be expressed in Σ1,F
1 (i.e. , that they are in NPF). We plan to

prove that some other problems are not expressible in Σ1,F
1 .

We adapt the relational oracle machine in [6] to the RMFk oracle machine.
Based on this machine we define the PHF polynomial-time hierarchy and show
the exact correspondence between the prenex fragments of SOF and the levels
of PHF polynomial-time hierarchy.

This last result is the RMF machine equivalent of the Fagin-Stockmeyer char-
acterization of the polynomial-time hierarchy on Turing machines [15] and also
of the Ferrarotti and Turull Torres characterization of the relational polynomial-
time hierarchy on relational machines [6].

2 Preliminaries

In our case we consider finite relational structures.
A vocabulary σ is a set of relational symbols {P1, . . . , Ps} with associated

arities r1, . . . , rs. A σ-structure (also called model) A = 〈A,PA
1 , . . . , PA

s 〉 consists
of a non empty set A called the universe or domain of A and a relation PA

i ⊆ Ari

for each relational symbol Pi in σ.
A simple relational structure is a graph V = 〈V,EV〉 , where V is the domain

and EV is a binary relation on V , in this case they represent nodes and edges
respectively.

A m-ary query q is a function from structures of a fixed vocabulary σ to m-ary
relations on the domain of the structures, which preserves isomorphisms , i. e.,
when f is an isomorphism from A to B then t̄ ∈ q(A) iff f(t̄) ∈ q(B). A 0-ary
query, also called Boolean query, is a function from a class of σ-structures to {0,1}
and can be identified with a class of σ-structures closed under isomorphisms.

For the definitions of syntax and semantics of FO see [14] among others.
FOk is the FO fragment where we allow up to k different variables.
In second order (SO) logic we add a set of SO variables, i. e., variables that

range over relations on the domain instead of over elements. Then we add for
SO the following rules to the FO rules: If R is a second order variable of arity
k, and x1, . . . , xk are first order variables, then R(x1, . . . , xk) is an SO formula
(atomic). If ϕ is a SO formula and R is a second order variable, then ∃Rϕ and
∀Rϕ are SO formulae. Now we extend the valuation domain to SO variables.
A valuation assigns relations of the corresponding arity over the domain to the
SO variables. We add the following rules to the FO semantics to obtain the SO
semantics. A |= R(x1, . . . , xk)[v] iff (v(x1), . . . , v(xk)) ∈ v(R). A |= ∃Rϕ[v]
iff for some RA ⊆ Ak it holds that A |= ϕ[vRA

R], with k being the arity of R.

A |= ∀Rϕ[v] iff for every RA ⊆ Ak it holds that A |= ϕ[vRA
R], with k being the

arity of R and vRA
R es equal to v except vRA

R (R) = RA.

2.1 Element Types

For any l-tuple ā of elements in a σ-structure A , with 1 ≤ l ≤ k, we define
the FOk type of ā, denoted Typek(A, ā), as the set of FOk formulae, ϕ ∈ FOk

SOF : A Semantic Restriction over Second-Order Logic 119

with free variables among x1, . . . , xl, such that A |= ϕ[a1, . . . , al]. A set of FOk

formulae τ is an FOk type, if and only if, it is the FOk type of some tuple in
some structure of the corresponding vocabulary. If τ is an FOk type, we say that
the tuple ā realizes τ in A, if and only if, τ = Typek(A, ā). We say the type τ is
realized in A when exist a k-tuple ā in A, such that τ = Typek(A, ā).

Let A, B be σ-structures and let ā and b̄ be two tuples in the structures A
and B respectively. (A, ā) ≡k (B, b̄), if and only if, Typek(A, ā) = Typek(B, b̄).

For any l-tuple ā of elements in a σ-structure A , with 1 ≤ l ≤ k, we define
the FO type of ā, denoted Type(A, ā), to be the set of FO formulae, ϕ ∈ FO
with free variables among x1, . . . , xl, such that A |= ϕ[a1, . . . , al].

Let A and B be σ-structures and let ā and b̄ be two tuples in the structures
A and B respectively. We write (A, ā) ≡FO (B, b̄), if and only if, Type(A, ā) =
Type(B, b̄).

For any structure A and elements a1 . . . al ∈ dom(A), the basic FOk type
of a1 . . . al is the set of FOk atomic formulae, Φ, with l free variables such that
A |= ϕ[a1, . . . , al] for every ϕ ∈ Φ.

Note that for a given finite vocabulary, σ, there are up to equivalence only
finitely many distinct basic FOk types. Furthermore, each basic FOk type is
characterized by a single quantifier free formula of FOk. The following is a well
known fact.

Fact 1. Let A be a finite σ-structure and let ā and b̄ be two l-tuplas on A.
(A, ā) ≡FO (A, b̄), if and only if, there is an automorphism f such that f(ai) = bi
for 1 ≤ i ≤ l.

Below, we mention the concept of pre-order and the connection with equivalence
relations. We will see that a linear strict pre-order induces an equivalence relation
and also establishes a linear order over the equivalence classes.

Definition 1. Let S be a set, a binary relation R is a linear strict pre-order
on S if the following holds: 1)∀a ∈ S, b ∈ S, aRb ⇒ ¬bRa(asymmetric).
2)∀a ∈ S, b ∈ S, c ∈ S, aRb ∧ bRc ⇒ aRc(transitive). 3)∀a ∈ S, b ∈ S, c ∈
SaRb∧¬bRc∧¬cRb⇒ aRc(linear). In a linear pre-order if the element a is less
than an element b, then a is less than every element c non-comparable with b.
Note that we can define a ≡ b iff a �≺ b∧ b �≺ a, which is an equivalence relation.

The following two facts are immediate.

Fact 2. A linear strict pre-order ≺ on S induce an equivalence ≡ on S.

Fact 3. A linear strict pre-order ≺ on S induce a total strict order over the
equivalence classes of the equivalence relation that such pre-order induces.

When the equivalence classes of a pre-order on k-tuples from some structure A
agree with the equivalence classes of the equivalence relation ≡k, then the pre-
order establishes a linear order over the FOk types for k-tuples that are realized
on the structure A . We have a similar situation with the relation ≡FO, in this
case the pre-order establishes a linear order over the FO types for k-tuples which
are realized in A.

120 A.L. Grosso and J.M. Turull Torres

Definition 2 (refinement). Let ≡ be an equivalence relation, ≡′ is a refine-
ment of ≡ iff For all the equivalence classes Ci belonging to ≡, one of the fol-
lowing conditions hold: either C′

i belongs to ≡′ such that Ci = C′
i, or there is

a partition Ci1, . . . , Cij of Ci such that Cih is an equivalence class that belong
to ≡′ for 1 ≤ h ≤ j. Furthermore there are no more classes in ≡′, than those
described above.

Definition 3 (agglutination). Let ≡ be an equivalence relation , ≡′ is an
agglutination of ≡ iff ≡ is a refinement of ≡′.

Let R be a k-ary relation, let ≡ be a 2k-ary equivalence relation, and let x̄ and
ȳ be k-tuples. R is closed under ≡ iff when x̄ ∈ R and x̄ ≡ ȳ then ȳ ∈ R. That
is, the relation R contains complete equivalence classes.

Fact 4. Let R be a relation closed under ≡, and let ≡′ be a refinement of ≡.
Then R is closed under ≡′.

For the definitions of the fixed point logics LFP, IFP and PFP see [14] among
others.

Theorem 1 ([10], [17]). LFP on ordered structures = P.

Theorem 2 ([17], [1]). PFP on ordered structures = PSPACE.

Definition 4. L∞,ω is the infinitary extension of first order logic in which we
allow conjunctions and disjunctions over arbitrary (not just finite) sets of for-
mulae. Lk∞,ω is the fragment of L∞,ω where we only allow up to k different

variables. Lω
∞,ω =

⋃
k≥1 Lk

∞,ω is the fragment of of L∞,ω where we only use a
finite number of variables.

Kolaitis and Vardi [13] proved that the logics LFP and PFP logics are fragments
of Lω∞,ω . Then, we have:

FP ⊆ PFP ⊂ Lω
∞,ω

The last inclusion is strict because in Lω
∞,ω we can express queries of arbitrary

complexity (see [16]).

3 SOF : A Semantic Restriction of SO

A. Dawar [2] defines a restriction on second order logic by restricting the kind of
relations that the quantified second order variables can take. For example we can
ask for the relations to be closed under an equivalence relation. Thus A. Dawar
[2] defines a restriction of the second order logic, SOω, by restricting the second
order quantification to relations which are closed under the equivalence relation
≡k. This imply that we can not quantify arbitrary relations. The relations have
to be unions of FOk types, i.e., they have to be unions of equivalence classes of
≡k.

SOF : A Semantic Restriction over Second-Order Logic 121

Definition 5. To an l-ary relation symbol R and k ≥ l, we define the second
order quantifier ∃kR with the following semantic: A |= ∃kRϕ[v] if and only if
exists a relation RA ⊆ Al such that RA is closed under the equivalence relation

≡k, and A |= ϕ[vRA
R]. As usual ∀kRϕ is an abbreviation of ¬∃kR¬ϕ. We re-

member that two l-tuples, of an arbitrary structure A, are equivalent under ≡k

when they satisfy the same FOk formulae with l free variables on A.

Theorem 3 ([2]). SOω ⊆ PFP

Therefore SOw is an effective fragment of Lω
∞,ω.

We define SOF , a restriction of second order logic, by restricting the second
order quantification to relations which are closed under ≡FO, i.e., if the tuple
ā ∈ RA and (A, ā) ≡FO (A, b̄) then b̄ ∈ RA. Similarly in our logic we cannot
quantify arbitrary relations on a structure A. When we quantify r-ary relations
on a structure A they must be unions of equivalence classes of ≡FO for r-tuples.
Theses relations are redundant in the sense of [5].

Definition 6. To a k-ary relation symbol R, we define the second order quan-
tifier ∃FR with the following semantic: A |= ∃FRϕ[v] if and only if exists a
relation RA ⊆ Ak such that RA is closed under the equivalence relation ≡FO in

A for k-tuplas, and A |= ϕ[vRA
R]. As usual ∀FRϕ is an abbreviation of ¬∃FR¬ϕ.

We add the following formation rules to FO formation rules to obtain the for-
mulae of SOF : 1) If R is a k-ary second order variable, and x1, . . . , xk are first
order variables, then R(x1, . . . , xk) is a formula (atomic) of SOF . 2) If ϕ is a
SOF formula, R is a k-ary second order variable, then ∃FRϕ and ∀FRϕ are
formulae of SOF . The fragment Σ1,F

1 of SOF consists of the formulae of SOF

which have a prefix of second order existential quantifiers (∃F) followed by an
FO formula.

4 SOw Is Strictly Included in SOF

In SOF we can define an FO type, having in main that an FO type is a minimal
relation closed under equivalence relation ≡FO. This minimal relation has empty
intersection with the others FO types realized in the structure.

In SOF we can define an FO type R by saying that every relation S, closed
under FO types, includes R or their intersection is empty. FOt(R) ≡ ∀FS((R ⊆
S) ∨ (R ∩ S = ∅)).

Next, we define a linear strict pre-order on k-tuples . In this pre-order the
equivalence classes are the FO-types on the structure for k-tuples. We denote
as FOSizek the number of equivalence classes in this pre-order. We denote
with x̄ a k-tuple x1, . . . , xk of arbitrary variables. With | x̄ | the length of the
k-tuple.

122 A.L. Grosso and J.M. Turull Torres

Definition 7

∃F ≺k(∀x̄∀ȳ∀z̄ x̄ ≺k ȳ ∧ ȳ ≺k z̄ ⇒ x̄ ≺k z̄)∧
(∀x̄∀ȳ x̄ ≺k ȳ ⇒ ȳ �≺k x̄)∧
(∀x̄∀ȳ∀z̄ x̄ ≺k ȳ ∧ ȳ �≺k z̄ ∧ z̄ �≺k ȳ ⇒ x̄ ≺k z̄)∧
(∀x̄∀ȳ x̄ �≺k ȳ ∧ ȳ �≺k x̄⇒ ∃FR
(FOt(R) ∧R(x̄) ∧R(ȳ)))∧
(∀FR∀x̄∀ȳ(FOt(R) ∧R(x̄) ∧R(ȳ)⇒
x̄ �≺k ȳ ∧ ȳ �≺k x̄))

Fact 5 ([7]). ≺k is closed under FO types for 2k-tuples.

Lemma 1 ([7]). LFPR,x̄(ψ(R, x̄))(t̄) with ψ positive in R is expressible in
SOF .

Theorem 4 ([3]). ≡k is expressible in LFP with a formula of 2k variables.

Lemma 2 ([7]). In SOF we can express the fact (A, s̄) ≡k (A, t̄).

The lemma 2 is based on the fact that in SOF we can express the least fixed
point quantifier (LFP) and, for any finite structure A, we can obtain the FOk

types of A with a formula using LFP quantification.

Theorem 5 ([7]). SOω ⊆ SOF .

Corollary 1. Σ1,ω
1 ⊆ Σ1,F

1 .

Proof. Let ϕ ≡ ∃Rk−1
1 . . . ∃Rkn

n ψ be a formula of Σ1,ω
1 . Then we can express ϕ

in Σ1,F
1 with the following formula:

∃FR1 . . . ∃FRn∃F ≺k1 . . . ∃F ≺kn “≺k1 is a pre-order for k1-tuples” ∧
. . .

“≺kn is a pre-order for kn-tuples” ∧
∀x̄1ȳ1(R1(x̄1) ∧ x̄1 ≡k1 ȳ1 ⇒ R1(ȳ1))∧

. . .

∀x̄nȳn(Rn(x̄n) ∧ x̄n ≡kn ȳn ⇒ Rn(ȳn))∧
ψ.

Note that pre-orders can agglutinate the FO types but can not refine the FO
types. If the pre-order agglutinate the FO types then the LFP operator must use
less stages than FOSizek to compute the fixed point for the relation ≡k. ��

SOF : A Semantic Restriction over Second-Order Logic 123

A structure is rigid if, and only if, the only automorphism that the structure has
is the identity function. In a finite rigid structure each element realizes a different
FO type. Every k-tuple realizes a different FO type for k-tuples Therefore the
cardinality of the equivalence classes of ≡FO is equal to one. We note that in
a finite rigid structure every element can be distinguished from the others by
some FO property. Given a rigid finite structure A every relation in A is closed
under FO types. Thus, SOF is equivalent to SO on rigid structures.

Lemma 3. The class of finite rigid stuctures is expressible in Σ1,F
1 .

Proof. ∃F ≺ (≺ “ is a linear strict pre-order ”∧ ∀x∀y(x ≺ y ∨ y ≺ x∨ x = y))��

Lemma 4 ([3]). The class of rigid structures is not definable in Lω
∞,ω.

Since SOω ⊂ Lω∞,ω then rigidity is not expressible in SOω.

Corollary 2. SOω ⊂ SOF .

5 A Variation of Relational Machine

A relational machine is a Turing machine with a “relational store” (rs) where
there is a finite number of fixed-arity relations as the input structure. Each
transition depends on the symbol which is in the current cell on the input tape,
the state at which the machine is, and the result of an FO Boolean query which
is evaluated in the rs. If the Boolean query is true the machine eventually goes
to a new state, eventually moves the tape head to the right or left and stores the
result of an r-ary FO query in rs. A formalization for deterministic relational
machines can be found in [6].

We define a modified relational machine to characterize the expressive power
of the existential fragment of SOF , Σ1,F

1 . Let A be the input structure and
S={≺2i|≺2i is a linear strict pre-order closed under FO types for 2i-tuples
where their equivalence classes are FO types for i-tuples , for some k ≥ 1 and
1 ≤ i ≤ k}. Let FOSizek(A) be the number of FO types for k-tuples realized in
A. We define a non-deterministic machine with FO types for k-tuples, RMF k, as
a relational machine with a set of k pre-orders {≺2, . . . ,≺2k} ⊆ S. The machine
begins the computation with the string 0FOSizek(A)1 in its Turing tape. We note
that we have defined in [7] an RMFk machine version which does not receive the
FOSizek(A) as input in the Turing tape. With that version we can also capture

the SOF existential fragment Σ1,F
1 , but the definition used in this paper is more

gently to define the PHF polynomial-time hierarchy of section 6. The following
is a formal definition of the machine:

Definition 8. Let k ≥ 1. A k-ary non-deterministic relational machine with
FO types for k-tuples, denoted as RMF k, is an 11-tuple 〈Q,Σ, δ, q0, ε, F, τ, σ, υ,
Ω, Γ 〉 where:

1) Q is a finite set of internal states. 2) Σ is the tape alphabet. 3) ε ∈ Σ
is the blank symbol. 4) q0 ∈ Q is the initial state. 5) F ⊆ Q is the set of final

124 A.L. Grosso and J.M. Turull Torres

states. 6) τ is the rs vocabulary. 7) σ ⊂ τ is the structure input vocabulary. 8)
υ = {≺2

1, . . . ,≺2k
k }. υ ⊂ τ y υ ∩ σ = ∅ are k relation symbols instantiated with

linear strict pre-orders, such that ≺2i
i has arity 2i and the equivalence classes

induced by ≺2i
i are the set of FO types for i-tuples realized in the input structure

A, 1 ≤ i ≤ k. 9) Ω is a set of FO sentences of vocabulary τ . 10) Γ is a set of FO
formulae of vocabulary τ . 11) δ : Q × Σ × Ω → P(Q×Σ × {R,N,L} × τ × Γ)
is a partial function called the transition function.

The transitions are based on: i.) the current state; ii.) the content of the current
tape cell; and iii.) the answer to a Boolean first-order query evaluated on the
τ -structure held in the relational store.

Situations in which the transition function is undefined indicate that the com-
putation must be stop. Otherwise, the result of the transition function is inter-
preted as follows:

i.) One of the possible 5-tuples of the result set of the function δ is non-
determinitically chosen. ii.) the first component is the next state; iii.) the second
component is the symbol to be written on the scanned cell of the tape; iv.) the
third component specifies the move of the tape head: R means moving one cell
to the right, L means moving one cell to the left and N means do not move the
head; v.) the fourth component is an r-ary relation symbol of τ , which specifies
the r-ary relation to be replaced in the rs with the result of the r-ary query
specified in the fifth component, and vi.) the fifth component is an r-ary query
in Γ .

We can define deterministic RMFk machines by changing the transition func-
tion to: δ : Q×Σ ×Ω → Q×Σ × {R,N,L} × τ × Γ .

We can introduce for the non-deterministic relational machine with FO types
the analogous to the concepts to a configuration and computation of Turing
machines.

Let M be an RMFk, k ≥ 1. A configuration of M is a 3-tuple 〈q, ω, I〉,
where q is the current internal state of M , ω ∈ Σ∗#Σ∗ represents the current
content of the tape and I is the current τ -structure in the rs. The symbol # is
suppose not to be in Σ, and marks the position of the tape head (by convention,
the head scans the symbol immediately to the right of the #). All cells in the
infinite tape not appearing in ω are assumed to contain the particular symbol
blank “ε”.

Let M be an RMFk, k ≥ 1. Let A be a σ-structure. Let ≺2
1, . . . ,≺2k

k be k
pre-orders on A, where the equivalence classes induced by the preorder ≺2i for
1 ≤ i ≤ k are the FO types for i-tuples realized in A. The initial configuration
ofM with A as input, is 〈q0,#0FOSizek(A)1, I〉. Where I is a τ -structure in which
RI

i = RA
i , for 1 ≤ i ≤ u =| σ |, RI

u+i =≺2i
i , for 1 ≤ i ≤ k and RI

i are empty
relations i, for u+ k < i ≤ l, | τ |= l and l ≥ u+ k.

An accepting configuration is a configuration whose state is an accepting
state.

Let M a RMFk, k ≥ 1, let A be an input σ-structure. A partial compu-
tation of M on A is a (finite or infinite) sequence of configurations of M in
which each step from a configuration to the next obeys the transition function.

SOF : A Semantic Restriction over Second-Order Logic 125

A computation of M is a partial computation which starts with the initial
configuration, and ends in a configuration in which no more steps can be per-
formed. An accepting computation is a computation ending in an accepting
configuration and in this case the input structure A is accepted.

Let M be an RMFk, k ≥ 1 and let A be an input σ-structure, The compu-
tation time of M for A is the length of the shortest accepting computation of
M . The computation space for A is the minimum number of visited cells in
a accepting computation of M .

Definition 9. Let L(M) be the relational language accepted by an RMFk ma-
chine, M , for k ≥ 1 and let t and s be functions on the natural numbers such that
t(n) ≥ n+1 and s(n) ≥ 1. Then, we say that: (i)L(M) ∈ NTIMEF (t(n)) when
the non-deterministic computation time of M for any accepted input structure,
A, is bounded above by t(FOSizek(A)). Where FOSizek(A) is the number of
distinct FO types for k-tuples realized in A. (ii)L(M) ∈ NSPACEF (s(n)) when
the non-deterministic computation space of M over any accepted input struc-
ture, A, is bounded above by s(FOSizek(A)). Where FOSizek(A) is as in (i).
(iii) Similarly we can define deterministic complexity classes TIMEF (t(n)) and
SPACEF (s(n)).

Similarly to the classic complexity class, NP, we can define the complexity class
NPF as the class of the relational languages that are decidable by RMFk ma-
chines that work in non-deterministic polynomial time in the FOSizek of the
input structure. In symbols: NPF =

⋃
c∈NNTIMEF (FOSizek(A)c).

5.1 NPF = Σ1,F
1

Theorem 6 ([7]). Given a Σ1,F
1 formula ϕ ≡ ∃FX1 . . .∃FXsψ(X1, . . . , Xs),

where ψ is a first order formula of vocabulary σ ∪ {X1, . . . , Xs} with arities rj
for 1 ≤ j ≤ s, we can build an RMF k Mϕ ∈ NTIME((FOSizek(A) · c) with
k = max{r1, . . . , rs} such that for every σ-structure A we have A |= ϕ iff A ∈
L(Mϕ).

Before proving the converse of the previous result, we need the following fact
which is similar to a fact in [6].

Fact 6 ([7]). Let A be a relational structure. For 1 ≤ i ≤ n, let ki ≥ 1 and let
Ci be the set of equivalence classes of ki-tuples determined by ≡FO for ki-tuples
on A. It follows that for every CR ⊂ C1 × · · · × Cn the relation

RA = {(a11, . . . , a1k1 , . . . , an1, . . . , ankn) ∈ Ak1+···+kn

([a11, . . . , a1k1], . . . , [an1, . . . , ankn]) ∈ CR}

is closed under ≡FO for (k1 + · · ·+ kn)-tuples.

The fact establishes that, if a relation is built by using cartesian product of
equivalence classes of ≡FO for arbitrary arities, then the resulting relation is
closed under FO types for the corresponding arity.

126 A.L. Grosso and J.M. Turull Torres

In SOF we can quantify a linear strict pre-order ≺2k
k on k-tuples and we are

sure that the relation is closed under FO types for 2k-tuplas. However, we do not
know if the equivalence relation induced by ≺2k

k refines, agglutinates or preserves
the FO types for k-tuples. Therefore we need to prove the following lemma:

Lemma 5 ([7]). Let ≺ be a 2k-ary linear strict pre-order that is closed under
FO types for 2k-tuples. Then, the equivalence relation induced by ≺ does not
refine the FO types for k-tuples.

Now we can affirm that if the length of a 2k-ary linear strict pre-order over a
σ-structure A is equal to FOSizek(A) then the equivalence classes induced by
the pre-order are the FO types for k-tuples realized in A.

We prove the converse of the Theorem 6 by following a similar strategy to [6]:

Theorem 7. Given an RMF k M ∈ NTIME((FOSizek(A)) · c), for some
positive integer c, that computes a Boolean query q, we can build a formula
ϕM ∈ Σ1,F

1 such that M stops in an accepting state with A in the rs iff A |= ϕM .

Proof. Let q : Bσ −→ {0, 1} be a Boolean query that is computed by the RMF k

machine, M = 〈Q,Σ, δ, q0, ε, F, τ, σ, υ,Ω, Γ 〉 for some k ≥ 1, working in linear
time in the FOSizek of the input structure with vocabulary σ. We assume
that M works in time (FOSizek(A)) · c for some c ≥ 1 and A ∈ Bσ. Here, 1)
Q = {q0, . . . , qm}. 2) Σ = {0, 1, ε}. 3) F = {qm} 4) τ = {R0, . . . , Rl} is the
vocabulary of the rs; ri(0 ≤ i ≤ l) is the arity of Ri. 5) σ = {R0, . . . , Ru−1}. 6)
υ = {Ru, . . . , Ru+k−1} for u+k ≤ l. 7) Ω = {ω0, . . . , ωv} is the finite set of first-
order sentences with vocabulary τ . 8) Γ = {γ0, . . . , γt} is the finite set of first-
order formulas with vocabulary τ . 9) δ : Q×Σ×Ω → P(Q×Σ×{R,N,L}×τ×Γ)
is the transition function of M . The sentence ϕM expressing acceptance on input
A ∈ Bσ has the form:

∃F ≺1 . . . ∃F ≺k ∃FT0∃FT1∃FTε

∃FHq0 . . . ∃FHqm∃FS0 . . . ∃FSl(ψ(≺1, . . . ,≺k T0, T1, Tε,

Hq0 , . . . , Hqm , S0, . . . , Sl)).

where arity(≺i) = 2 · i, for 1 ≤ i ≤ k; arity(Ta) = 2 · !log(c) + 1" · k for
a ∈ Σ; arity(Hq) = 2 · !log(c) + 1" · k for q ∈ Q; arity(Si) = !log(c) + 1" ·
k + arity(Ri) for 0 ≤ i ≤ l and ψ is a first-order formula of vocabulary {≺1

, . . . ,≺k, T0, T1, Tε, Hq0 , . . . , Hqm , S0, . . . , Sl} ∪ σ. The intended interpretation of
these relation symbols is as follows:

1) ≺i is a linear strict pre-order closed under FO types for 2i-tuples over A.
We know that the equivalence classes do not refine the FO types for i-tuples.

Considering that ≺k is also a linear order over the set, C, of FO types for k-
tuples, we can define a lexicographic order over !log(c)+1"-tuples of C�log(c)+1�.
Since M runs in time bounded by FOSizek(A) · c and visits at most
(FOSizek(A)) · c cells, we can model time (t̄) as well as position (p̄) on the

SOF : A Semantic Restriction over Second-Order Logic 127

tape by !log(c) + 1"-tuples of equivalence classes in C. Note that we need find

to c′ such that FOSizek(A)c
′
= FOSizek(A) · c. Then c′ = 1+ log(c)

log(FOSizek(A)) .

We assume that FOSizek(A) > 1 (for FOSizek(A) = 1 see [7]). Therefore, if
we choose d = !log(c) + 1", we can code any t̄ or p̄ with a d-tuple of equiva-
lence classes of C. Under this approach, two (d · k)-tuples ā = (ā1, . . . , ād) and
b̄ = (b̄1, . . . , b̄d) are considered equivalent iff, for 1 ≤ i ≤ d, āi �≺k b̄i ∧ b̄i �≺k āi,
i.e., iff āi and b̄i belong to the same equivalence class.

2) T0, T1 and Tε are tape relations; for x ∈ Σ, Tx(p̄, t̄) indicates that the cell
p̄ at the time t̄ contains x.

3) Hqi , qi ∈ Q, are head relations, Hqi(p̄, t̄) indicates that at the time t̄ M is
in state qi, and its head is pointing to the cell p̄.

4) Si’s are rs relations; for 0 ≤ i ≤ l, Si(ā, t̄) indicates that at time t̄ the
relation Ri in the rs contains the ri-tuple ā.

The sentence ψ must now express that when M starts with an input A in
the designed relations in its rs, the FOSizek(A) in the Turing tape and the
relations ≺1, . . . ,≺k in the relations Ru, . . . , Ru+k−1 in its rs, the relations Tx’s,
Hqi ’s and Si’s encode its computation and eventually M reaches an accepting
state.

We define ψ to be the conjunction of the following sentences:
1) A sentence expressing that every ≺i is a linear strict pre-order over i-tuples

where by Prop. 5 its equivalence classes do not refine the FO types for i-tuples.∧
1≤i≤k ≺i is a linear strict pre-order ∧
A sentence defining the initial configuration of M . Let n be the FOSizek(A).

For | x̄ |=| ȳ |= k · !log(c) + 1".

∃x̄∀ȳ(x̄ ≤ ȳ → (Hq0(x̄, x̄) ∧ ∀p̄(p̄ ≤ n→ T0(p̄, x̄)) ∧ ∀p̄(p̄ = n+ 1→ T1(p̄, x̄))

∧ ∀p̄(p̄ > n+ 1→ Tε(p̄, x̄))))∧

“At time 0, M is in state q0, the head points to the left-most cell of the tape,
and the tape contains FOSizek(A)”. Let C0 < C1 < · · · < CFOSizek(A)−1 be the

strict order over equivalence classes induced by ≺k. The position n is an d-tuple
that belong to C0×C0×· · ·×C0×CFOSizek(A)−1. This position can be expressed

by using the pre-order ≺k. Similarly for the position n+ 1.
For details of the rest of sentences in the conjunction see [7] ��

Lemma 6 ([7]). Let M be an RMF k in NTIME((FOSizek(A))c), for some
positive integer c, that computes a Boolean query q in polynomial time. Then we
can build a formula ϕM ∈ Σ1,F

1 such that M stops in a accepting state with A
in the rs iff A |= ϕM .

Corollary 3 ([7]). Let M be an RMF k in NTIME((FOSizek(A))c), for some
positive integer c, that computes a Boolean query q in polynomial time. Then
there exists an RMF k′

M ′ in NTIME((FOSizek′(A)) · c′), for k′ > k, that
compute, the Boolean query q in linear time.

128 A.L. Grosso and J.M. Turull Torres

With Corollary 3 we can transform every modified relational machine working
in polynomial time in another machine working in linear time. The only consid-
eration is to let the number of FO types grows widening the size of the tuples.
Instead of considering FO types for k tuples we consider FO types for k′ tuples
for some k′ > k.

6 Oracle Machines and a Polynomial-Time Hierarchy

Definition 10. Let k ≥ 1, an RMFk oracle machine is a RMFk machine with
a distinguished set of relations in its rs, called oracle relations, and three distin-
guished states q?, the query state, and qY ES, qNO the answer states.

Similarly to the case of oracle Turing machines, the computation of an RMFk

oracle machine requires that an oracle language be fixed previously to the com-
putation. But, since we are working with relational machines, it is natural to
think of a relational oracle language, i.e., a class of structures of some vocab-
ulary σo which is closed under isomorphisms. Let S be an arbitrary class of
σo-structures which is closed under isomorphism. The computation of an RMFk

oracle machine M with oracle S and distinguished set of oracle relation symbols
σo, proceeds like in an ordinary relational machine, except for transitions from
the query state. From the query state M transfers into the state qY ES if the re-
lational structure of vocabulary σo formed by the domain of the input structure
and the distinguished set of oracle relations currently held in the rs, belongs to
S; otherwise, M transfers into the state qNO.

Let k ≥ 1. The time complexity of an RMFk oracle machine is defined precisely
in the same way as with ordinary RMFk machines. Each query step counts as
one ordinary step. Thus if C is any RMFk complexity time class, we can define
CS to be the class of all relational languages accepted by halting RMFk machines
with oracle S that work with time bound as in C.

Definition 11. Let PF be
⋃

c∈N TIMEF (FOSizek(A)c) for some k ≥ 1, we

define the levels of the PHF polynomial-time hierarchy as follows: 1) ΔPF

0 =

ΣPF

0 = ΠPF

0 = PF and for m > 0

ΔPF

m+1 = PFΣPF
m ΣPF

m+1 = NPFΣPF
m ΠPF

m+1 = co−NPFΣPF
m

The PHF complexity class is the union of all relational complexity classes in

the PHF polynomial time hierarchy, i.e., PHF=
⋃

m∈N
ΣPF

m .

6.1 SOF Captures the PHF Polynomial-Time Hierarchy

We show the exact correspondence between the prenex fragments of SOF and
the levels of the PHF polynomial-time hierarchy.

Definition 12. Let m ≥ 1 and let σ be a relational vocabulary, we denote by
Σ1,F

m [σ] the class of SOF formulae of the form:

∃FX11 . . .∃FX1s1∀FX21 . . . ∀FX2s2 . . . QXm1 . . .QXmsm(ϕ)

SOF : A Semantic Restriction over Second-Order Logic 129

where Q is ∃F or ∀F , depending on whether m is odd or even, respectively, and ϕ
is an FO formula of vocabulary σ∪{X11 . . .X1s1X21 . . . X2s2 . . . Xm1 . . .Xmsm}.

Accordingly, we denote by Π1,F
m [σ] the class of SOF formulae of the form:

∀FX11 . . .∀FX1s1∃FX21 . . . ∃FX2s2 . . . QXm1 . . .QXmsm(ϕ)

where Q is ∀F or ∃F , depending on whether m is odd or even, respectively, and ϕ
is an FO formula of vocabulary σ ∪ {X11 . . . X1s1X21 . . . X2s2 . . .Xm1 . . . Xmsm}

To prove the following lemma we follow the strategy used in [6].

Lemma 7. If M is a nondeterministic RMFk with oracle S in ΣPF

m for some
m ≥ 0 and some k ≥ 1, then there exists a nondeterministic RMFk machine
M ′ which is equivalent to M and which, in any computation, asks at most one

query to an oracle S′ which is also in ΣPF

m .

Proof. We assume that M = 〈Q,Σ, δ, q0, ε, F, τ, σ, υ,Ω, Γ 〉 is an RMFk oracle
machine that works in nondeterministic time bounded by (FOSizek(A))c for
some c ≥ 1 and input structure A of vocabulary σ = {R1, . . . , Rn}. We also
assume that the subset of distinguished oracle relation symbols in the vocabulary
τ of M is σo = {Eo

1 , . . . , E
o
l } where for 1 ≤ i ≤ l the arity of Ei is ri and

σ ∩ σo = υ ∩ σo = ∅. We denote with MS the relational machine in ΣPF

m which
decides S. We assume that MS is an RMFk that works in (FOSizek(Ao))

c′ for
some c′ ≥ 1 and input structure Ao of vocabulary σo.

M ′ works as follows. First, M ′ guesses a sequence of answers. Let l be the
FOSizek(A). Note that l is written in the Turing tape. M ′ does this by guessing
and writing over its Turing tape a string in {Y,N}lc .

Then M ′ works as M , except that every time that M makes a query to the
oracle, M ′ just takes the answer guessed for the query at the beginning of the
computation and adds a set of tuples to oracle relataions. M ′ has vocabulary
τ ′ = τ ∪{So

1 , . . . , S
o
l ,≺ko} where the subset of distinguished oracle symbol of M ′

is σA = {So
1 , . . . , S

o
l ,≺ko} and for 1 ≤ i ≤ l, the arity of So

i is ri + k · (c+1). M ′

increases the arity of oracle symbols to code the number of query with a (k · c)-
tuple. Note that the machine M makes as many (FOSizek(A))c queries to the
oracle. Let Ca be the first equivalence class induced by ≺k when the query answer
is no, otherwise Ca is the last equivalence class. Let 1 ≤ m ≤ (FOSizek(A))c, for
the m-th query M ′ adds to the oracle relation So

i the following set of (ri+k ·(c+
1))-tuples: {(ē, x̄) | ē ∈ Eo

i and x̄ = (x̄1, . . . , x̄c, ā) belongs to [x̄1]×· · ·× [x̄c]×Ca
where the tuple ([x̄1], · · · , [x̄c]) is the m-th tuple in the lexicographic order to
c-tuples of equivalence classes induced by ≺k }.

If the sequence of real queries is shorter than the sequence of guessed answers,
M ′ adds the last σo-structure computed for M tagged with the query number
and the guessed answer to the oracle relations. Note that there is a sequence of
guessed answers that repeat until the end the last real answer of M . The oracle
relation ≺ko

is initialized with the relation ≺k of M ′.
Note that MS′ can obtain every σo-structure for every query to had to be

performed for M . Let S′ ∈ BσA and let C be the set of equivalence classes of the

130 A.L. Grosso and J.M. Turull Torres

pre-order that interprets the symbol ≺ko

. For ([m̄1], . . . , [m̄c], [m̄c+1]) ∈ Cc+1 we
denote as Qi,([m̄1],...,[m̄c],[m̄c+1]) the following relation:

{(ā1, . . . , ari) ∈ dom(S′)ri | for m̄′
1 ∈ [m̄1], . . . , m̄

′
c ∈ [m̄c], m̄

′
c+1 ∈ [m̄c+1]

it holds that

S′ |= So
i (ā1, . . . , ari , m̄

′
1, . . . , m̄

′
c, m̄

′
c+1)}

We denote as S′
([m̄1],...,[m̄c],[m̄c+1])

the σo-structure with domain dom(S′)
which is obtained by interpreting the relation symbol Eo

i with the relation
Qi,([m̄1],...,[m̄c],[m̄c+1]) for 1 ≤ i ≤ l.

A given structure S′ ∈ BσA belong to the new oracleS′ if and only if, for every
c + 1-tuple ([m̄1], . . . , [m̄c], [m̄c+1]) the structure S′

([m̄1],...,[m̄c],[m̄c+1])
�∈ S and

[m̄c+1] is the first equivalence class of the pre-order ≺ko

or S′
([m̄1],...,[m̄c],[m̄c+1])

∈
S and [m̄c+1] is different of the first equivalence class of the pre-order ≺ko

.
At the end of the computation, M ′ must check that the sequence of guessed

answers match the sequence of real answers of M . The RMFk machine MS′

which decides the relational language S′ ⊆ BσA works as follows:

1. Let x̄ = (x̄1, . . . , x̄c) and ȳ = (ȳ1, . . . , ȳc) be (k·c)-tuples. Let ā = (a1, . . . , ak)
be a k-tuple. Let ≤k be the lexicographic order induced by ≺ko

. We say that
x̄ <k ȳ when x̄ ≤ ȳ and ¬x̄ ∼ ȳ.

X ← ∀ȳ(x̄ ≤k ȳ)
Y ← ¬x̄ = x̄
while ∃x̄(¬Y (x̄)) do
E1 ← ∃x̄∃ā(X(x̄) ∧ So

1(y1, . . . , yr1 , x̄, ā)
. . .
El ← ∃x̄∃ā(X(x̄) ∧ So

l (y1, . . . , yrl , x̄, ā)
A← ∃x̄∃y1 . . . ∃yrl(X(x̄) ∧ So

l (y1, . . . , yrl , x̄, ā)
MS′ works as MS taking as input the σo-structure of domain
dom(S) formed by the relations R1, . . . , Rl held in its rs
if (MS accept ∧A =first class in ≺ko

) ∨ (MS reject ∧A �=first class in
≺ko

) then
MS′ sotps in a rejecting state

end if
Y ← Y (x̄) ∨X(x̄)
X ← ¬Y (x̄) ∧ (∀ȳ(ȳ <k x̄→ Y (ȳ)));

end while
MS′ stops in an accepting state

Note that the loop while in the previous algorithm is performed (FOSizek(A))c
times because M ′ builds the oracle structure S ′ with unions of FO types re-
alized in the input structure A. Then S ′ has the same FOSizek than A. The
same it holds for the oracle structure generated by M . Then is not difficult
to see that MS′ work in nondeterministic time bounded by a polynomial in
FOSizek(A). ��

SOF : A Semantic Restriction over Second-Order Logic 131

Theorem 8. For m ≥ 1, Σ1,F
m captures ΣPF

m .

Proof. a)=⇒: We show that for every vocabulary σ, every sentence ϕ in Σ1,F
m [σ],

ϕ can be evaluated in ΣPF

m .
Suppose that ϕ is ∃FX11 . . . ∃FX1s1∀FX21 . . . ∀FX2s2 . . . QXm1 . . . QXmsm

(ψ), where Q is ∀F or ∃F , depending on whether m is odd or even, respectively,
and ψ is an FO formula of vocabulary σ ∪ {X11 . . . X1s1X21 . . . X2s2 . . .Xm1 . . .
Xmsm}.

We build a nondeterministic RMFk oracle machine Mϕ which evaluates ϕ
on input structures of vocabulary σ. Let k be max{r11, . . . , r1s1} where r1j
is the arity of X1j for 1 ≤ j ≤ s1. The vocabulary τ of the relational store
is σ ∪ σom−1 ∪ {≺1, . . . ,≺k} ∪ {S1, . . . , Ss1} where the arity of Sj is r1j and
σom−1 = {Rom−1 : R ∈ σ} ∪ {Xom−1

11 , . . . , X
om−1

1s1
} is the set of distinguished

oracle symbols. The arity of Rom−1 is equal to the arity of R for every R ∈ σ,
and for 1 ≤ j ≤ s1, the arity of X

om−1

1j the same as the arity of X1j .

Let ϕm−1 be the following sentence: ∃FX21 . . .∃FX2s2¬(∃FX31 . . . ∃FX3s3 . . .
QXm1 . . . QXmsm (ψm−1)) where ψm−1 is ψ with every occurrence of a relation
symbol R ∈ σ replaced by the corresponding relation symbol Rom−1 ∈ σom−1 ,
and every occurrence of a relation variable X1j (1 ≤ j ≤ s1) replaced by the
corresponding relation symbol X

om−1

1j ∈ σom−1 . The oracle Sm−1 of Mϕ is the
relational language {S ∈ Bσom−1 : S |= ϕm−1}.

On an input structure A, Mϕ works as follows:
1) Mϕ compute in li the length of the pre-order ≺i.
2) For every 1 ≤ j ≤ s1 Mϕ guesses and write over its Turing tape a tuple

āj ∈ {0, 1}lrj where rj is the arity of X1j .
3) Using the binary tuples guessed in the previous step, Mϕ generates for

every 1 ≤ j ≤ s1 a relation of arity rj which is placed in the distinguished
oracle relation X

om−1

1j of its relational store rs. Mϕ works by storing in X
om−1

1j

all equivalence classes Ci, where Ci is the ith-equivalence class in the pre-order
≺rj and the i-th component of āj equals 1. Note that X

om−1

1j is closed by FO
types for rj -tuples.

4) Finally, for every R ∈ σ, Mϕ store the relation RA into the corresponding
oracle relation Rom−1 and move to the oracle query state q?. Mϕ accepts the
input structure A iff the relational structure of domain dom(A) formed by the
distinguished oracle relations currently held in its rs does not belong to the
oracle set Sm−1, i.e., iff Mϕ transfers from the state q? into the state qNO. If
Mϕ goes to the state qY ES then Mϕ reject.

Mϕ can perform tasks 1 to 3 working in time bounded by a polynomial in
FOSizek(A). Furthermore, task 4 can clearly be performed in constant time by
Mϕ.

Therefore, it only remain to show that the oracle Sm−1 is in ΣPF

m−1, i.e, that

there is a nondeterministic RMFk′
Mϕm−1 such that L(Mϕm−1) = Sm−1 and

L(Mϕm−1) ∈ ΣPF

m−1.

Mϕm−1 is an RMFk′
oracle machine which evaluates ϕm−1 on input structures

of vocabulary σom−1 . Let k′ be max{r21, . . . , r2s2} where r2j is the arity of X2j

132 A.L. Grosso and J.M. Turull Torres

for 1 ≤ j ≤ s2. The vocabulary τ ′ of the relational store is σom−1 ∪ σom−2 ∪ {≺1

, . . . ,≺k′} ∪ {S1, . . . , Ss2} where the arity of Sj is r2j and σom−2 = {Rom−2 :
Rom−1 ∈ σom−1}∪{Xom−2

21 , . . . , X
om−2

2s2
} is the set of distinguished oracle symbols.

The arity of Rom−2 is equal to the arity of Rom−1 for every Rom−1 ∈ σom−1 , and
for 1 ≤ j ≤ s1, the arity of X

om−2

2j the same as the arity of X2j .

Let ϕm−2 be the following sentence: ∃FX31 . . . ∃FX3s3 . . . QXm1 . . . QXmsm

(ψm−2)) where ψm−2 is ψm−1 with every occurrence of a relation symbol R ∈
σom−1 replaced by the corresponding relation symbol Rom−2 ∈ σom−2 , and every
occurrence of a relation variable X2j (1 ≤ j ≤ s2) replaced by the corresponding
relation symbol X

om−2

2j ∈ σom−2 . The oracle Sm−2 of Mϕm−1 is the relational
language {S ∈ Bσom−2 : S |= ϕm−2}.

The way in which the machine Mϕm−1 works is exactly the same as the way
in which the machine Mϕ works. Mϕm−1 perform steps 1 to 4 adapted to the
vocabulary τ ′ of its rs and for 1 ≤ j ≤ s2. Therefore, for every input structure
A′ of vocabulary σom−1 , Mϕm−1 works in nondeterministic time bounded by a
polynomial in FOSizek′(A′).

This process continues in the same way for the blocks 3 to m − 1 of quan-
tifiers in ϕ. Since for the last block m of quantifiers the resulting ϕ1 is either
∃FX1m . . . ∃FXmsm(ψ1) or ∃FX1m . . .∃FXmsm(¬ψ1).

it follows by Theorem 6 that the oracleS1 ofMϕ2 (i.e., the relational language

{S ∈ Bσo1 : S |= ϕ1}) is in NPFΣPF
0 .

Hence ϕ can be evaluated in ΣPF

m .

b)⇐=: Next, we show that every ΣPF

m property of finite relational structures
can be expressed in Σ1,F

m .
We use induction on m. The base case is Theorem 7. Now consider a Boolean

query q : Bσ −→ {0, 1} in ΣPF

m where m > 1. Let M be the nondeterministic

RMFk machine with an oracle in ΣPF

m−1 which computes q. Let {S ∈ Bσo :
qo(S) = 1}, where σo is the set of distinguised oracle relation symbols of M and

qo is a Boolean query in ΣPF

m−1, be the oracle of M .

By inductive hypothesis, for every Boolean query qi in ΣPF

m−1, there is a sen-

tence αqi in Σ1,F
m−1 which expresses qi. In particular there is a sentence αqo

in Σ1,F
m−1, of vocabulary σo, which expresses qo. Let αqo be the σo-sentence

∃FX21 . . . ∃FX2s2∀FX31 . . . ∀FX3s3 . . .QXm1 . . . QXmsm(ψo), where Q is either
∃F or ∀F , depending on m is odd or even, respectively, and ψo is a first-order
sentence of vocabulary σo∪{X21, . . . , X2s2 , X31, . . . , X3s3 , . . . , Xm1, . . . , Xmsm}.

We show how to modify the formula ϕM of Theorem 7, i.e., the formula
corresponding to the nondeterministic RMFk machine without oracle, to re-
flect the interaction of M with its oracle. We assume that M works in time
(FOSizek(A))c for some c ≥ 1 and A ∈ Bσ.

First, we add to the prefix of ϕM the existential quantification ∃FSo
1 . . .∃FSo

n.
Let roi denote the arity of the distinguished oracle relation symbol Ro

i in σo =
{Ro

1, . . . , R
o
n}. For 1 ≤ i ≤ n, the arity of the relation variable So

i is roi + k · c.
The intended interpretation of So

i (x̄, t̄) is that at time t̄ the distinguished oracle
relation Ro

i in the rs contains the roi -tuple x̄.

SOF : A Semantic Restriction over Second-Order Logic 133

The sub-formula ψ of ϕM treats the variables So
1 , . . . , S

o
n corresponding to

the distinguished oracle relation in the rs of M in exactly the same way as the
variable S1, . . . , Sl which correspond to the other relation in the rs of M . We
only need to add a special case to the sub-formula ψ which express that the
relations Ti’s, Hq’s, Si’s and So

i ’s obey the transition function of M . When M
is in the oracle query state q?, χ(q, a, α, q

′, c,m,R, γ) is the sentence discribing
the transition in which upon entering the query state q?, the machine moves to
state qY ES if the σo-structure held in the rs is in the oracle of M , or to state
qNO if it is not. W.l.o.g we assume that the contents of the rs as well as of the
Turing tape of M and the position of its read/write head remain unchanged.

The more “natural” way of expressing χ(q, a, α, q′, c,m,R, γ) is probably as
follows:

∀p̄∀t̄(Hq?(p̄, x̄)→(α̂qo(t̄)→ HqY ES (p̄, t̄+ 1)) ∧ (¬α̂qo (t̄)→ HqNO(p̄, t̄+ 1))∧

∀p̄′(
∧

i∈{0,1,ε}
Ti(p̄

′, t̄+ 1)↔ Ti(p̄
′, t̄))∧

∧

1≤i≤l

(∀x̄(Si(x̄, t̄+ 1)↔ Si(x̄, t̄)))∧

∧

1≤i≤n

(∀x̄(So
i (x̄, t̄+ 1)↔ So

i (x̄, t̄))))

where α̂qo is the formula obtained by replacing in αqo each atomic sub-formula
of the form Ro

i (x1, . . . , xroi) by So
i (x1, . . . , xroi , t̄) for 1 ≤ i ≤ n. But we need the

resulting formula to be in prenex normal form.
In order to write χ(q, a, α, q′, c,m,R, γ) in a form such that the SOF quan-

tifiers in αqo can be moved to the prefix of ϕM , we use Lemma 7. That is, we
assume that in any computationM makes at most one query to its oracle. Under
this assumption, we can then write χ(q, a, α, q′, c,m,R, γ) as the conjunction of:
∃FX21 . . . ∃FX2s2∀FX31 . . . ∀FX3s3 . . .QXm1 . . . QXmsm

∀p̄∀t̄(Hq?(p̄, x̄) ∧ ψ̂o(t̄)→HqY ES (p̄, t̄+ 1)∧

∀p̄′(
∧

i∈{0,1,ε}
Ti(p̄

′, t̄+ 1)↔ Ti(p̄
′, t̄))∧

∧

1≤i≤l

(∀x̄(Si(x̄, t̄+ 1)↔ Si(x̄, t̄)))∧

∧

1≤i≤n

(∀x̄(So
i (x̄, t̄+ 1)↔ So

i (x̄, t̄))))

and

134 A.L. Grosso and J.M. Turull Torres

∀FX ′
21 . . . ∀FX ′

2s2∃FX ′
31 . . . ∃FX ′

3s3 . . .QX ′
m1 . . . QX ′

msm

∀p̄∀t̄(Hq?(p̄, x̄) ∧ ¬ψ̂′
o(t̄)→HqNO(p̄, t̄+ 1)∧

∀p̄′(
∧

i∈{0,1,ε}
Ti(p̄

′, t̄+ 1)↔ Ti(p̄
′, t̄))∧

∧

1≤i≤l

(∀x̄(Si(x̄, t̄+ 1)↔ Si(x̄, t̄)))∧

∧

1≤i≤n

(∀x̄(So
i (x̄, t̄+ 1)↔ So

i (x̄, t̄))))

where ψ̂o(t̄) is the formula obtained by replacing in ψo each atomic sub-formula

Ro
i (x1, . . . , xroi) (1 ≤ i ≤ n) by So

i (x1, . . . , xroi , t̄) and ψ̂′
o is the formula obtained

by replacing in ψ̂o each occurrence of a relation variable Xij ∈ {X21, . . . , X2s2 ,
X31, . . . , X3s3 , . . . , Xm1, . . . , Xmsm} by X ′

ij . Note that for the sentence above,
we use the fact that ¬αqo is equivalent to

∀FX21 . . .∀FX2s2∃FX31 . . . ∃FX3s3 . . . QXm1 . . .QXmsm(¬ψo)

It is not difficult to see that the SOF quantifiers in the sentence above can now
be safely moved to the prefix of ϕM and rearranged in such a way that the
resulting formula is in Σ1,F

m . ��

7 Conclusion

We have defined a new restricted second order logic in which we can express a
significative query like rigidity. We have defined a modified relational machine
to characterize the existential fragment of this logic. We must emphasize that
NTIME((FOSizek(A))c) = NTIME((FOSizek′(A)) · c′) for some k′ > k, so
that to have polynomial time (beyond linear time) is of little utility in RMF
machines. It is known that rigidity belongs to co-NP, but it is not known if it
belongs to NP. Since rigidity belongs to NPF then it seems that NPF �⊆ NP.

On this new machine we define an oracle machine on which basis we define
a hierarchy PHF, similar to polynomial hierarchy, PH, and the relational poly-
nomial hierarchy, PHr [6]. With this framework we are defining a new notion of
complexity, analogous to Turing machine complexity and relational complexity.
The complexity classes are characterized by the RMFk relational machine with
oracles.

Furthermore, we plan to define a non-deterministic fixed point quantifier,
NFPF, in order to establish a result linking non-deterministic fixed points with
increasing levels of negations with the PHF hierarchy, in an analogous way to
the development made by A. Dawar in [2] for SOω and NFP (non-deterministic
fixed point).

SOF : A Semantic Restriction over Second-Order Logic 135

References

1. Abiteboul, S., Vianu, V.: Datalog extensions for database queries and updates. J.
Comput. System Sci. 43, 62–124 (1991)

2. Dawar, A.: A Restricted Second Order Logic for Finite Structures. Information
and Computation 143, 154–174 (1998)

3. Dawar, A.: Feasible Computation through Model Theory. Ph.D. thesis, University
of Pennsylvania (1993)

4. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
Complexity of Computation 7, 43–73 (1974); Karp, R.M. (ed.) SIAM-AMS Pro-
ceedings

5. Ferrarotti, F.A., Paoletti, A.L., Turull Torres, J.M.: Redundant Relations in Rela-
tional Databases: A Model Theoretic Perspective. The Journal of Universal Com-
puter Science 16(20), 2934–2955 (2010)

6. Ferrarotti, F.A., Turull Torres, J.M.: The Relational Polynomial-Time Hierar-
chy and Second-Order Logic. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2008.
LNCS, vol. 4925, pp. 48–76. Springer, Heidelberg (2008)

7. Grosso, A.L., Turull Torres, J.M.: A Second-Order Logic in which Variables Range
over Relations with Complete First-Order Types. In: 2010 XXIX International
Conference of the Chilean Computer Science Society (SCCC), pp. 270–279. IEEE
(2010)

8. Grosso, A.L., Turull Torres, J.M.: A Survey on Semantic Restrictions of Second
Order Logic (2011) (in preparation)

9. Gurevich, Y., Shela, S.: On finite rigid structures. Journal of Symbolic Logic 61
(1996)

10. Immerman, N.: Relational queries computable en polynomial time. Inform. and
Control 68, 86–104 (1986)

11. Immerman, N.: Descriptive and computational complexity. In: Hartmanis, J. (ed.)
Proc. of AMS Symposia in Appl. Math. Computational Complexity Theory, vol. 38,
pp. 75–91 (1989)

12. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1998) ISBN 0-387-
98600-6

13. Kolaitis, P., Vardi, M.: Infinitary logics and 0-1 laws. Information and Commpu-
tation 98(2), 258–294 (1992)

14. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004) ISBN
3-5402-1202-7

15. Stockmeyer, L.: The polynomial-time hierarchy. Theoret. Comput. Sci. 3, 1–22
(1976)

16. Turull-Torres, J.M.: A study of homogeneity in relational databases. Ann. Math.
Artif. Intell. 33(2-4), 379–414 (2001), See also Erratum for: A Study of Homogeneity
in Relational Databases. Annals of Mathematics and Artificial Intelligence 42, 443-
444 (2004)

17. Vardi, M.Y.: The complexity of relational query languages. In: Proc. 14th ACM
Symposium on the Theory of Computing, pp. 137–146 (1982)

Abstract State Machines for Data-Parallel

Computing

Qing Wang

University of Otago, Dunedin, New Zealand
qing.wang@otago.ac.nz

Abstract. The current programming paradigm for data-parallel com-
putations is shifting with the rapidly increasing data growth on the web.
It gives programmers more challenges than ever before. In this paper we
propose Parallel Abstract State Machines (P-ASMs) that can empower
programmers, no matter how experienced, by providing a well-founded
systems engineering method to model data-parallel computations at ar-
bitrary levels of abstraction. Particularly, we focus on discussing how
P-ASMs can capture two classes of data-parallel computations that are
most important in practice – ones that are always-consistent and ones
that require transactional data consistency.

1 Introduction

In recent years, the “NoSQL” community emerges, targeting to solve problems
that can be better handled in distributed and non-relational databases rather
than using traditional SQL technologies. A good number of NoSQL database
solutions have since been developed, for example, document-oriented database
MongoDB [15], distributed storage systems HBase [13], Amazon SimpleDB [3]
and Google Bigtable [9], etc. On the other hand, success stories of the MapRe-
duce model [11] in large-scale parallel data-processing (e.g. Google and Face-
book) has also opened up debate about current limitations of traditional database
management systems (DBMSs) in data-parallel computing. In a nutshell, the
challenges faced by traditional DBMSs are how to efficiently and effectively han-
dle data-processing tasks over large data sets on the web.

With the MapReduce model being considered as a more complementary than
competing technology to DBMSs [20], integrating the MapReduce model with
DBMSs under a hybrid framework that can retain the advantages of both sides
has attracted much research effort [1,8,16,21,24]. One of central themes in this
area of research is dealing with declarative languages for data-parallel compu-
tations. For example, programming languages like Pig Latin [16] and HIVE [21]
provide a set of declarative constructs (e.g., filtering, grouping, joining, etc.) fol-
lowing the spirit of SQL, which are executed over an open-source, map-reduce
implementation. Conversely, Aster Data [4] extends the expressiveness of SQL
(e.g., click stream sessionization) by adding a suite of SQL-MapReduce functions
within an integrated database environment. Despite that these data-parallel pro-
gramming languages vary considerably in design choices, they commonly specify

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 136–150, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Abstract State Machines for Data-Parallel Computing 137

data transformations at a high but fixed level of abstraction. This hinders, to
some extent, the flexibility of programming parallel computations because pro-
grammers have no freedom to choose the granularity of programming based on
their own expertise.

We present Parallel Abstract State Machines (P-ASMs) in this paper, which
capture the programming paradigm for data-parallel computations at flexible
levels of abstraction. This is due to the power inherited from Abstract State Ma-
chines (ASMs), i.e., a universal computation model that can formalise the notion
of algorithm [7,12,22,19]. P-ASMs provide the programming capability for both
programmers who lack experience in parallel computing and programmers who
have more expertise. Starting from specifying high-level data-processing tasks,
programmers can stepwise refine their tasks until reaching certain level of ab-
straction with which they are satisfied, and then leave the rest of implementation
details to the underlying system. This process of stepwise refinement makes it
possible to verify properties of data-processing tasks at a high-level even after
the data-processing tasks have been refined to the implementation level.

Many data-parallel programming languages concern about read-only data
analytic tasks such as querying over crawled documents and web log records.
Nevertheless, there are some data-processing tasks requiring the guarantee of
transaction data consistency to certain degree. Extending previous results from
distributed database transactions into a web computing environment often has
to trade off some transactional properties or performance for scalability. For ex-
ample, transactional systems CloudTPS [23] and ElasTraS [10] support scalable
transactions for web applications in the cloud by using a collection of transaction
managers responsible for disjoint partitions of data sets. However, globally order-
ing the execution of conflicting transactions across all transaction managers in
CloudTPS [23] degrades the performance as scale goes up, and the transactional
semantics of ElasTraS [10] is limited by the design of dynamically partitioning a
data set at the schema level. The systems Sinfonia [2] and Percolator [18] enable
transactional access to (in-memory or persistent) data across a distributed sys-
tem based on a message passing mechanism. Sinfonia [2] provides a low-level data
access interface to support transactions with weak semantics, while Percolator
[18] explicitly maintains locks causing significant overhead.

P-ASMs provide a lightweight approach for data-parallel transactions sat-
isfying the transaction properties ACID (i.e., atomic, consistent, isolated and
durable) at the snapshot isolation level [5]. Compared with those approaches,
P-ASMs have several advantages. First, unlike Sinfonia [2], P-ASMs can specify
data-parallel transactions at arbitrary level of abstraction (i.e, high-level, mid-
level and low-level). Second, conflicting transactions are dynamically clustered in
P-ASMs by the transaction engine and assigned to transaction managers based
on the analysis of key pairs of transactions, so it is different from CloudTPS [23]
(i.e., using timestamps to order conflicting transactions) and ElasTraS [10] (i.e.,
managing dynamically partitions at the schema level). Third, P-ASMs do not
need to explicitly maintain locks as Percolator [18] because conflicting transac-
tions are managed by the same transaction manager.

138 Q. Wang

The rest of the paper is structured as follows. In Section 2 we discuss several
major properties that are often taken into consideration when determining the
underlying storage systems for data-processing tasks. Then the formal defini-
tions of P-ASMs are introduced in Section 3. After that, Section 4 and Section
5 present how to use P-ASMs for specifying two classes of data-parallel com-
putations – always-consistent computations and computations satisfying certain
level of transaction data consistency. The paper is concluded in Section 6.

2 Storage Choices

A first important step in designing data-parallel programs is to decide how data
should be persistently stored since the format of data will put severe limits on the
search of optimal solutions. This requires the analysis of not only the data struc-
ture of application domains but also the targeted properties of data-processing
tasks (e.g., performance, scalability, fault tolerance, data consistency, etc.) that
are often tied to architectural differences among data-parallel computing systems
such as DBMSs, NoSQL databases, the MapReduce model, etc. The following
are several common questions that are taken into consideration when searching
for an appropriate storage strategy for data-processing tasks.

How much semantics is necessary? Semantics, in principle, would help improve
data quality and performance. However, it does not come free. Before leveraging
powerful semantic technologies, data must be properly parsed and loaded. This
shifts some of the computational cost at run time to loading time. Thus, varying
from different kinds of data-processing tasks, an enough-but-not-excessive level
of semantic granularity needs to be decided on data storage models. Traditional
DBMSs offer a strong capability base for handling data semantic constraints, file
systems mainly store raw data, and NoSQL databases lie in between, capturing
data semantics in a way specific to certain kinds of data-processing tasks.

Which level of data consistency is needed? Traditional DBMSs can guarantee
strong data consistency, which normalise data to avoid update anomalies and
minimise conflicts between concurrent transactions. By contrast, most of NoSQL
database solutions de-normalise data, providing a lightweight model for handling
consistency - generally not providing immediately consistent or multi-object
transactions (e.g., MongoDB and Bigtable). Thus, again, depending on data
consistency requirements arising from data-processing tasks, a tradeoff between
the level of data consistency and performance has to be made. This would affect
how data are persisted into a storage system, e.g., the degree of normalization.

To what extent is the performance scalable? Supported by various optimisation
techniques, traditional DBMSs often have superior performance for a large class
of data-processing tasks [17]. Nevertheless, it is still a big challenge for DBMSs to
scale well to large data sets because of rapidly increasing complexity of control
after the number of computing nodes goes up to some extent. It is unknown

Abstract State Machines for Data-Parallel Computing 139

whether a general DBMS solution at web scale is feasible. In general, NoSQL
databases and the MapReduce model achieve high scalability for specific kinds
of data-processing tasks meanwhile sacrificing some less important functionality.

3 Parallel Abstract State Machines

In this section we present the formal definitions of Parallel Abstract State Ma-
chines (P-ASMs).

Definition 1. A parallel abstract state machine Λ = (S, S0, Sf , r, δ) over signa-
ture Υ consists of a non-empty set S of states over Υ together with an initial state
S0 ∈ S and a final state Sf ∈ S, a rule r over Υ and a one-step transformation
δ over S, i.e., δ : S �→ S.

3.1 States

Following ASM’s standard definitions, each state of a P-ASM can be viewed as a
first-order structure. A signature Υ is a set of function symbols, each associated
with a fixed arity. A state over Υ consists of a set B, called the base set of
the state, together with interpretations of all function symbols in Υ . A function
symbol in Υ is dynamic if the function is changeable in states; otherwise, it is
static. A pair 〈f, (a1, ..., an)〉 is called a location for the dynamic function symbol
f and the tuple (a1, ..., an) of elements in the base set. The value f(a1, ..., an)
over state S is the content of the location in S.

This abstract point of view on states gives us the freedom to capture various
data structures that may co-exist within a state of P-ASMs, e.g., in-memory data
structures, persistent data structures in file and database systems, etc. Without
loss of generality, we consider that states of a P-ASM are associated with certain
type system. A type may be regarded as a collection of values having a uniform
structure. This enables us to describe complex values (e.g. list, map, array) in
data structures in terms of the type constructors provided by the chosen type
system.

Example 1. A simple type system can be defined as

τ = τλ | τb | (A1 : τ1, . . . , Ak : τk) | {τ} | [τ] | [[τ]] | τ1 � τ2

where τλ is a trivial type denoting the empty set ∅, τb represents a base type
such as INT, STRING, DATE, etc., and (·), {·}, [·], [[τ]] and � are the type
constructors for record with arity k, finite set, finite list, finite multiset and
binary union, respectively. ��

3.2 Updates

An update of Λ is a pair (�, b), where � is a location and b is called the update
value of �. An update set Δ is a set of updates. An update set Δ is consistent if it

140 Q. Wang

does not contain conflicting updates, i.e. for all (�, b), (�, b′) ∈ Δ we have b = b′.
If S is a state of the P-ASM Λ and Δ is a consistent update set for the signature
of Λ, then there exists a unique state S′ = S+Δ resulting from updating S with
Δ:

valS+Δ(�) =

{
b if (�, b) ∈ Δ

valS(�) else

In addition to standard updates as described before, P-ASMs also allow partial
updates in the form of (�, b, ρ), where � is a location, b is called the partial
update value of � and ρ is an update operator. The update operator ρ can be
considered as an aggregate function (α, β) defined by ρ(m) = α(b1)%· · ·%α(bn)
for m = {{b1, ..., bn}} is a multiset of elements b1, . . . , bn, α is a unary function
and β is a commutative and associative binary operation. To distinguish from
partial updates, we call standard updates as total updates. An update multiset
M is a multiset of total and partial updates, which can be reduced to an update
set ΔM containing only total updates such that

ΔM = {(�, b)|b = ρ(
⊎

(�,b′ ,ρ)∈M

{{b′}})} ∪ {(�, b)|(�, b) ∈M}.

The sequential composition of two update sets Δ1 and Δ2 is an update set
defined as: Δ1 &Δ2 = Δ2 ∪ {(�, b) ∈ Δ1|¬∃b

′
.(�, b

′
) ∈ Δ2}.

3.3 Rules

A set of P-ASM rules over signature Υ can be inductively defined in the following.

– update rule: The content of the location f(t1, . . . , tn) over Υ is updated to
the value t0.

f(t1, . . . , tn) := t0
– conditional rule: If ϕ is true, then execute the rule r over Υ ; otherwise do

nothing.
if ϕ then r endif

– block rule: The rules r1,...,rn over Υ are executed in parallel.
par r1 . . . rn endpar

– forall rule: The rule r over Υ is executed in parallel for each x satisfying ϕ
over Υ .

forall x with ϕ do r enddo
– partial update rule: The content of location f(t1, . . . , tn) over Υ is partially

updated by the value t0 and the operator ρ.
f(t1, . . . , tn) :=

ρ t0
– call rule: The rule r over Υ is called with the parameters t1, . . . , tn over Υ .

r(t1, . . . , tn)

The sequential ASM thesis by Gurevich [12] has proven that every sequential
algorithm can be captured by a sequential ASM being comprised of the update,
conditional and block rules. The sequential rule r1; . . . ; rn appeared in most of

Abstract State Machines for Data-Parallel Computing 141

programming languages has been excluded from sequential ASMs for the reason
of keeping a clear abstraction level. Nevertheless, the sequential rule can be easily
incorporated into sequential ASMs and thereby P-ASMs as a syntactic sugar.
The forall and partial update rules play an important role in P-ASMs because
they can formalise a number of parallel computations bound to the underlying
state (i.e., data structures) and aggregate partial updates yielded from these
parallel computations. The introduce of the call rule is to provide a flexible
abstraction of rules in P-ASMs.

For a P-ASM Λ = (S, S0, Sf , r, δ), the one-step transformation δ is determined
by the closed rule r, i.e., each variable in r is bounded by a forall rule. Each
closed rule r executing over a state S is associated with an update multiset and
an update set Δ(r, S) reduced from the update multiset. There are two types
of semantics for P-ASMs: standard and transactional semantics. The standard
semantics of P-ASMs requires that the one-step transformation δ is determined
by applying all updates yielded by r over the state Si such that δ(Si) = Si +
Δ(r, Si). Under the transactional semantics, the one-step transformation δ is
determined by applying (possibly a subset of) updates yielded by r over the state
Si that must comply with the transactional properties such that δ(Si) − Si ⊆
Δ(r, Si) and δ(Si) − Si = Δ1 & · · · & Δn where Δi ⊆ Δ(r, Si)(i = 1, ...n) is a
set of updates yielded by a transaction executed in r over Si, and Δ1 . . . Δn are
yielded by different transactions.

Definition 2. A run of a P-ASM Λ = (S, S0, Sf , r, δ) is a finite sequence
S0, . . . , Sn of states with Sn = Sf , Si and Si+1 ∈ S, and δ(Si) = Si+1 for
all i = 0, . . . , n− 1.

4 Always-Consistency

We now explore how to capture a class of data-processing tasks that are always-
consistent by using P-ASMs.

Formally, a P-ASM Λ = (S, S0, Sf , r, δ) is said to be always-consistent iff, for
every state S ∈ S, the update set Δ(r, S) yielded by r over S is consistent. The
motivations of discovering always-consistent P-ASMs are twofold. First, always-
consistent P-ASMs capture data-parallel computations arising from a large body
of applications in practice, e.g., OLAP queries, web analytics, indexing, sorting,
etc. Second, always-consistent P-ASMs can be easily parallelised at an appro-
priate level of granularity.

In order to efficiently decide if or not a P-ASM is always-consistent, we in-
troduce several inference rules in Fig. 1. Given an update u, the notations σ(u)
and υ(u) denote the location and the (partial) update value of u, respectively.
If u is a total update, then θ(u) is undefined; if u is a partial update (�, b, ρ),
then θ(u) = ρ. Δ(r) denotes the set of (total or partial) updates yielded by
r at any state, and r[x1 ← t1, . . . , xn ← tn] denotes a rule after substituting
the variables x1, . . . , xn occurring in the rule r with the parameters t1, . . . , tn,
correspondingly.

142 Q. Wang

As shown in Fig. 1, inconsistencies can only arise from parallel rules - either
forall rules or block rules. The equation (4) states that a block rule is always-
consistent if any two updates on the same location yielded by rules r1, . . . , rn
over any state either have the same update value, or have the same operator (in
the later case, they must be partial updates). Similarly, the equation (5) states
that a forall rule is always-consistent if any two updates on the same location
yielded by rules r[x ← ti](i = 1, . . . , n) for each ti satisfying ϕ over any state
have either the same update value or the same operator.

f(t1, . . . , tn) := t0
(1)

f(t1, . . . , tn) :=ρ t0
(2)

r

if ϕ then r
(3)

r1, . . . , rn
par r1 . . . rn endpar

∀u1, u2 ∈
⋃

0≤i≤n

Δ(ri).(σ(u1) = σ(u2)

⇒ (υ(u1) = υ(u2) ∨ θ(u1) = θ(u2)))

(4)

r[x← t1], . . . , r[x← tn]

forall x with ϕ do r enddo
∀u1, u2 ∈

⋃

0≤i≤n

Δ(r[x← ti]).(σ(u1) = σ(u2)

⇒ (υ(u1) = υ(u2) ∨ θ(u1) = θ(u2)))

where {{x|ϕ(x)}} = {{t1, . . . , tn}}
(5)

r
′
[x1 ← t1, . . . , xn ← tn]

r(t1, . . . , tn)
r(x1, . . . , xn) = r

′
is a rule declaration (6)

Fig. 1. Inference rules for always-consistency

Parallelising always-consistent P-ASMs is important for improving the perfor-
mance of data-processing tasks running in a large-scale environment. However,
the kinds of parallelisms imposed by the block and forall rules are different. A
block rule par r1 . . . rn endpar enables control parallelism in which the rules
r1, . . . , rn can be distributed across parallel computing nodes, and the degree of
parallelism is bounded. A forall rule forall x with ϕ do r enddo allows data
parallelism that executes the same rule r on different chunks of the data {x|ϕ}
across parallel computing nodes, and the degree of parallelism is unbounded, i.e.,

Abstract State Machines for Data-Parallel Computing 143

depending on the underlying state. When a computing node becomes idle, the
chunks assigned to computing nodes that are slowly processing or have failures
are split again and re-assigned to the idle computing node. This split-assign pro-
cess is recursively applied to achieve load balancing among a cluster of parallel
computing nodes.

Total and partial updates are also handled differently in the process of par-
allelising always-consistent P-ASMs. Total updates from parallelised subcompu-
tations are materialised into the underlying state as early as possible to utilise
the maximum computing resources. However, partial updates should not be per-
sistent until they are combined into total updates at the end of each one-step
transformation. The reason for this is to avoid a race condition for locations
of partial updates and thus to reduce I/O contention. Using hash partitioning
based on locations, we can combine partial updates by distributing them over
different computing nodes. If the number of distinct locations involved is rela-
tively small, partial updates may first be locally combined at each computing
node before being combined with ones from remote computing nodes. In doing
so, we can reduce the network traffic between parallel computing nodes.

P-ASMs can apply the MapReduce model [11] to automatically generate map
and reduce jobs over a cluster of computing machines. There are two functions
used in the MapReduce model: a map function taking a pair of key and value
to generate a set of key and value pairs, and a reduce function merging all
values having the same key to produce a possibly smaller set of values. The
following example illustrates the differences between a native implementation
and a MapReduce implementation specified by P-ASMs.

Example 2. Let us consider the query of page ranks over the table urls =
{url, category, pagerank}, taken from [16]:

select category, avg(pagerank) from urls where pagerank > 0.2
group by category having count(*)> 106

Fig. 2 (a) describes the query that would use a native implementation of P-
ASMs and Fig. 2 (b) defines a pair of map and reduce functions for the same
query. Two approaches suit for solving different problems. If the relation urls
has only a small number of categories and the records in urls that have the same
category are potentially large, then the query in Fig. 2 (a) would be more efficient
because partial updates can be easily combined at each local computing machine.
By contrast, partially merging the key and value pairs (category, pagerank) in
Fig. 2 (b) is more complicated since the records having the same category also
need be counted. Certain form of sequentiality is used in both approaches. The
query in Fig. 2 (a) consists of two sequential steps: calculating fsum and fcount
for each category, and then calculating favg for the selected categories, while in
Fig. 2 (b) the pairs of key and value generated from the map function need to
be grouped by the keys before moving into the reduce function. Nevertheless,
both approaches need to handle the problem of “straggler” [11] (i.e., computing
nodes whose performance is extremely poor in comparison with others). ��

144 Q. Wang

forall category, pagerank, url with urls(url, category, pagerank)∧pagerank > 0.2 do
par

fsum(category) :=+ pagerank
fcount(category) :=

+ 1
endpar

enddo;
forall category with fcount(category) > 106 do

favg(category) := fsum(category)/fcount(category)
enddo

(a)

map(key, urls) ≡
forall category, pagerank, url with urls(url, category, pagerank)∧pagerank > 0.2 do

f(new) := (category, pagerank)
enddo

reduce(key, list(value)) ≡
// key: a category
// list(value): a list of pageranks for that category
forall pagerank with pagerank ∈list(value) do

par
fsum(category) :=+ pagerank
fcount(category) :=

+ 1
endpar

enddo;
if fcount(category) > 106 then

favg(category) := fsum(category)/fcount(category)
endif

(b)

Fig. 2. An example of page ranks

5 Transactional Data Consistency

Applications involving updates on data persisted in a storage system often re-
quire certain level of transactional data consistency. A typical scenario is an
accounting application, in which an amount of money is transferred from the
account of a payer to the account of a payee, as will be illustrated in Fig. 3.

P-ASMs provide a lightweight approach to handle a class of transactions with
the following properties. 1) Transactions are simple in the sense that only a
limited number of operations involved in a transaction. Consequentially, the
update set yielded by such a transaction is small. 2) Parallel transactions are
generated on the basis of manipulating different chunks of the data, so called
data-parallel transactions. 3) Transactions comply with the ACID properties
at the snapshot isolation level [5]. 4) Transactions are not always-consistent. It
means that these transactions may conflict each other in various ways, depending
on the underlying state.

Abstract State Machines for Data-Parallel Computing 145

To cope with the atomicity property (i.e., the update set yielded by each
transaction of P-ASMs must be either all applied or none of them are applied on
a state), the transactional semantics of P-ASMs relaxes the standard semantics
of P-ASMs to allow the persistence for some of updates in one-step transforma-
tions when the desired ACID properties are preserved in each transaction. The
following transaction rule is used for specifying the rule r executed as a trans-
action (i.e., under transactional semantics) in P-ASMs, where (rkey, wkey) is a
pair of read and write keys. A (read or write) key can be composite, consisting
of a set of key values.

begin(rkey, wkey) r end

Example 3. The P-ASM in Fig. 3 iteratively generates data-parallel transactions
to handle incoming bank transactions in the table tra = {payer, payee, amount}.
The updates on the account balances of a payer and a payee in an accounting
transaction are included within one transaction. The read key is payer because
the account balance of a payer needs to be checked, which involves the read
operation. Since the account balances of both a payer and a payee need to be
updated, the write key consists of payer and payee. There is no need to consider
the changes on the tables log (i.e., adding a log record) and tra (i.e., removing
a finished accounting transaction) in the key pair because these changes do not
cause any conflicts among transactions. ��

Thus, each transaction t of P-ASMs is associated with a key pair (rkey(t),
wkey(t)) indicating the read and write data items that may cause conflicts,
respectively. The intention of introducing a key pair to each transaction is to
facilitate the transaction engine to efficiently detect potential conflicts of data-
parallel transactions. Based on detected conflicts, the transaction engine assigns
transactions to a number of transaction managers. The principles are as follows:
a) parallelising transactions by clustering all potentially conflicting transactions
together meanwhile distributing transaction clusters as evenly as possible among
transaction managers, and b) detecting actual conflicts among transactions as
early as possible so that the transactions conflicting with transactions that have
already committed can abort or retry again.

Compared with the optimistic concurrency transaction control [14], our ap-
proach extends it in two ways. First, using the key pairs to ensure a serialised
execution of conflicting transactions and resolve conflicts before materialising
data can help reduce I/O contention on storage systems. Second, separating
transactions into clusters without any conflicts among each other can improve
the transaction throughout since only conflicting transactions are serialised.

In the following, we sketch a general picture of how transactions are handled
in P-ASMs. The transaction engine of P-ASMs is responsible for coordinating all
transaction-related activities. At the beginning of a transaction, it sends the key
pair to the transaction engine, and receives a unique transaction ID and snapshot
timestamp that are respectively generated from the ID and timestamp services
of the transaction engine. While transactions are executed by a set of computing
nodes in parallel, the transaction engine classifies them into different clusters by

146 Q. Wang

if mode = running then
forall payer, payee, amount with tra(payer,payee, amount) do

begin(payer, (payer, payee))
if acc(payer) ≥ amount then

par
acc(payer) := acc(payer)− amount
acc(payee) := acc(payee) + amount
log(new) := (payer, payee, amount, time)
tra(payer,payee, amount) := false

endpar
endif

end
enddo

endif

Fig. 3. A simple example of accounting transactions

analysing their key pairs. From a graphic point of view, a transaction cluster
can be represented by a cluster graph (T , γ) consisting of a set T of transactions
and a set γ of edges between transactions such that all transactions in T are
interconnected in the cluster graph. Furthermore, the sets of transactions from
any two different transaction clusters are disjoint, i.e.,

∧
1≤i�=j≤n

Ti ∩ Tj = ∅ for

the set {(T1, γ1), . . . , (Tn, γn)} of transaction clusters associated with a P-ASM
executed under the transactional semantics.

As transactions of P-ASMs are considered at the snapshot isolation level,
a test predicate that detects the read-write and write-write conflicts between
two transactions t

′
and t can be defined as: test(t

′
, t) ≡ (rkey(t

′
) ∩ wkey(t) �=

∅) ∨ (wkey(t
′
) ∩ wkey(t) �= ∅) ∨ (rkey(t) ∩ wkey(t

′
) �= ∅). The following is the

pseudo code of an algorithm used to cluster a set of transactions. We use C =
{(Ti, γ|Ti)|Ti ⊆ T

′} to denote the set of transaction clusters where
⋃

1≤i≤n

Ti = T
′

and (Ti, γ|Ti) is a subgraph of (T
′
, γ) on the vertex set Ti.

Input : A set of transactions T = {t1, . . . , tm}
Output : A set of transaction clusters C = {(Ti, γ|Ti)|Ti ⊆ T

′}
par

if mode=init then
par

γ := ∅
T

′
:= {{t}|t ∈ T }

endpar;
forall t1, t2 with {t1, t2} ⊆ T ∧ test(t1, t2) do

γ
′
:=∪ {{t1, t2}}

enddo;
par

Abstract State Machines for Data-Parallel Computing 147

γ := γ ∪ γ
′

mode:=iterate
endpar

endif
if mode=iterate then

forall p with p ∈ γ do
p

′
:=
⋃
{x|x ∈ T

′
and x ∩ p �= ∅};

if p
′ ∈ T

′
then

mode:=finish
endif;
T

′
:= T

′ ∪ {p′} − {x|x ⊆ p
′
and x ∈ T

′}
enddo

endif
endpar

Transaction clusters are dynamically managed by the transaction engine via two
kinds of operations: merge and split. Let C be a set of transaction clusters. If
an incoming transaction conflicts at least one transaction in each cluster of a
subset C

′ ⊆ C of transaction clusters, then all transactions in C
′
waiting for

commit are merged into one cluster. The split operation often happens when a
transaction has been accomplished (either committed or aborted). The accom-
plished transaction may lead to other transactions in the same cluster split into
two clusters between which no transactions are conflicting each other.

The transaction engine schedules the execution of transaction clusters across
a set of transaction managers by taking into account the availability of system
resources, the locality of data items and the requirements of fault tolerance,
etc. A transaction manager uses the two-phase commit protocol (2PC) [6] to
manage the commit/abort process of transactions. If the commit of a transaction
succeeds, other active transactions conflicting with the committed one have to
abort. If the transaction fails to commit and aborts, the transaction manager
starts to handle another transaction from the assigned cluster. Since all updates
pertaining to the potentially conflicting transactions would be managed by the
same transaction manager, the communication cost among different transaction
managers is minimised.

Example 4. Consider the example of accounting transactions described in Fig.
3. For simplicity, we assume that there are 9 accounting transactions in the table
tra and consequently 9 data-parallel transactions {ti|i = 1, . . . , 9} are executed.
We also assume that each of the transactions receives a snapshot timestamp in
an order as shown in Fig. 4(a), in which the bidirectional arrows indicate the
potential conflicts between the transactions. Fig. 4 (b) illustrates how the trans-
actional engine clusters transactions at three particular points in time (from left
to right). At the first point there are three clusters {{t1, t2}, {t6}, {t5}} where
t1 and t2 are conflicting transactions. During the step (i), all the transactions
after t5 as shown in Fig. 4(a) are added into different clusters. We assume that

148 Q. Wang

none of 9 transactions have started to commit at this time. Thus two clusters
{t1, t2} and {t6} are merged into one with other transactions t3, t4 and t9 since
t3 conflicts with both t1 and t6 at the second point. Assume that all transaction
managers have the same speed to handle transactions. Then, during the step
(ii), the transactions t1, t7 and t5 commit. Then the transactions t2 and t3
have to abort due to the conflicts with t1. In order to improve performance,
the transactions t6, t4 and t9 in a cluster can be split into two clusters {t6}
and {t4, t9} managed by two different transaction managers, as described at the
third point in Fig. 4(b).

(a)

(b)

Fig. 4. Sample of data-parallel transactions

6 Conclusion

A model of computation called P-ASMs has been developed in this paper, which
can capture data-parallel computations at flexible levels of abstraction. We have
discussed how P-ASMs handle always-consistent computations and data-parallel
transactions that satisfy the ACID transactional properties at the snapshot iso-
lation level. In the future, we intend to implement the execution and transaction
engine of P-ASMs, and to evaluate how efficiently P-ASMs can help solve prob-
lems in the data-parallel computing paradigm.

Abstract State Machines for Data-Parallel Computing 149

References

1. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.:
HadoopDB: An architectural hybrid of MapReduce and DBMS technologies for
analytical workloads. Proceedings of the VLDB Endowment 2(1), 922–933 (2009)

2. Aguilera, M., Merchant, A., Shah, M., Veitch, A., Karamanolis, C.: Sinfonia: a new
paradigm for building scalable distributed systems. In: Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Principles, pp. 159–174. ACM
(2007)

3. Amazon.com. Amazon SimpleDB (2010), http://aws.amazon.com/simpledb
4. Aster Data, http://www.asterdata.com/mapreduce/
5. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique

of ansi sql isolation levels. SIGMOD Rec. 24, 1–10 (1995)
6. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery

in database systems, vol. 5. Addison-Wesley, New York (1987)
7. Börger, E., Stärk, R.F.: Abstract State Machines: A Method for High-Level System

Design and Analysis. Springer-Verlag New York, Inc., Heidelberg (2003)
8. Chaiken, R., Jenkins, B., Larson, P.Å., Ramsey, B., Shakib, D., Weaver, S., Zhou,

J.: Scope: easy and efficient parallel processing of massive data sets. Proceedings
of the VLDB Endowment 1(2), 1265–1276 (2008)

9. Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra,
T., Fikes, A., Gruber, R.: Bigtable: A distributed storage system for structured
data. ACM Transactions on Computer Systems (TOCS) 26(2), 1–26 (2008)

10. Das, S., Agrawal, D., Abbadi, A.E.: Elastras: An elastic transactional data store
in the cloud. In: USENIX HotCloud. USENIX (June 2009)

11. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

12. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Log. 1(1), 77–111 (2000)

13. HBase: Bigtable-like structured storage for Hadoop HDFS (2009),
http://hadoop.apache.org/hbase/

14. Kung, H., Robinson, J.: On optimistic methods for concurrency control. ACM
Transactions on Database Systems (TODS) 6(2), 213–226 (1981)

15. MongoDB, http://mongodb.org
16. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: a not-so-

foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pp. 1099–1110. ACM (2008)

17. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S.,
Stonebraker, M.: A comparison of approaches to large-scale data analysis. In: Pro-
ceedings of the 35th SIGMOD International Conference on Management of Data,
SIGMOD 2009, pp. 165–178. ACM (2009)

18. Peng, D., Dabek, F.: Large-scale incremental processing using distributed
transactions and notifications. In: Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, OSDI 2010, pp. 1–15. USENIX
Association (2010)

19. Schewe, K.-D., Wang, Q.: A customised ASM thesis for database transformations.
Acta Cybern. 19, 765–805 (2010)

20. Stonebraker, M., Abadi, D., DeWitt, D., Madden, S., Paulson, E., Pavlo, A.,
Rasin, A.: MapReduce and parallel DBMSs: friends or foes? Communications of
the ACM 53(1), 64–71 (2010)

http://aws.amazon.com/simpledb
http://www.asterdata.com/mapreduce/
http://hadoop.apache.org/hbase/
http://mongodb.org

150 Q. Wang

21. Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyck-
off, P., Murthy, R.: Hive: a warehousing solution over a map-reduce framework.
Proceedings of the VLDB Endowment 2(2), 1626–1629 (2009)

22. Wang, Q.: Logical Foundations of Database Transformations for Complex-Value
Databases. Logos Verlag, Berlin (2010)

23. Wei, Z., Pierre, G., Chi, C.: CloudTPS: Scalable transactions for Web applications
in the cloud (2010)

24. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, Ú., Gunda, P., Currey,
J.: DryadLINQ: A system for general-purpose distributed data-parallel computing
using a high-level language. In: Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, pp. 1–14. USENIX Association
(2008)

OSM-Logic:

A Fact-Oriented, Time-Dependent Formalization
of Object-oriented Systems Modeling

Stephen W. Clyde1, David W. Embley2,
Stephen W. Liddle3, and Scott N. Woodfield2

1 Computer Science Department
Utah State University, Logan, Utah 84322, USA

2 Department of Computer Science
3 Information Systems Department,

Brigham Young University, Provo, Utah 84602, USA

Abstract. The lack of fact-oriented, time-dependent formalizations of
conceptual models leads to difficulties in inspecting and reasoning about
system properties and predicting future behavior from past behavior. We
can better serve these needs by formalized conceptualizations that more
closely match the demands of such applications. We therefore set forth
in this chapter a fact-oriented, time-dependent formalism, called OSM-
Logic, for object existence, object interrelationships, object behavior, and
object interaction. OSM-Logic is formally grounded in predicate calculus,
and is thus mathematically sound and well defined.

1 Introduction

Recent initiatives by government agencies (e.g., IARPA [IAR]) and by academic
think-tank groups (e.g., ACM-L [ACM]) require conceptualizations with the
ability to track behavior, model what has already happened and is currently
happening, and analyze past and present behavior. The objectives of tracking,
modeling, and analyzing include being able to predict future behavior, play out
“what-if” scenarios, and warn of possible impending disasters.

Conceptual models can provide the formal foundation for storing the necessary
information to support these initiatives. The conceptual models that meet these
requirements, however, must be powerful: they must be able to conceptualize
objects, relationships among objects, object behavior, and object interaction,
and the conceptualizations must be fact-oriented and time-dependent. With-
out being able to formalize and store time-dependent facts about objects—their
interrelationships, their individual behavior, and their interaction with other
objects—analysis of, and predictions based on, current, past, and proposed
happenings cannot be carried out. We thus seek for, and propose here, a for-
malization of fact-oriented, time-dependent conceptualizations of objects—their
existence, their interrelationships, their behavior, and their interactions with
other objects.

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 151–172, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

152 S.W. Clyde et al.

To define precisely what we mean by fact-oriented, time-dependent concep-
tualizations, we note that conceptual modelers have observed that fact-oriented
modeling focuses on facts of interest that can be expressed as first-order-logic
predicates [ORM]. Further, for every fact, in addition to knowing if it is true, we
should know when it is true. Since facts hold at points in time or over a period
of time, we obtain time-dependent facts by adding to every logic predicate, one
argument for a time variable for facts that hold for a point in time and two time-
variable arguments for facts that hold over a period of time. Thus, as the basis
for our formalism, we seek for first-order-logic predicates augmented with either
one time variable for point-in-time facts or two time variables for time-period
facts. Further, all conceptualizations—including objects, relationships among
objects, object behavior, and object interactions—should be formalized with
fact-oriented, time-dependent first-order-logic predicates.

A number of conceptual-model formalizations have been developed as evi-
denced by hundreds of articles and books ranging from the earliest abstract
formulations from more than 50 years ago [YK58] through books that encap-
sulate much of the 50-year history of conceptual modeling (e.g., [Oli07]) to a
recent handbook of conceptual modeling taking formal foundations for granted
and as being expected [ET11]. Although plentiful and useful for their intended
applications, none of the formalizations have all the characteristics required for
fact-oriented, time-dependent conceptualizations of object and relationship ex-
istence, object behavior, and object interaction for the applications we target in
this chapter. Only a few conceptual models even span the space from object ex-
istence through object behavior and interaction, and of those that do, even fewer
have formal definitions. Those that span the space and have worked-out or mostly
worked-out formalisms include the Unified Modeling Language (UML) [UML],
Object Process Modeling (OPM) [Dor09], Object Role Modeling (ORM) [HM08],
the software production environment for MDA based on the OO-Method and
OASIS [PM07], the Higher-order Entity Relationship Model (HERM) [Tha00],
and Object-oriented Systems Modeling (OSM) [EKW92]. Even though these con-
ceptual models have formalizations that span the space from object existence to
object behavior, most of the behavior formalizations are neither fact-oriented
nor time-dependent, but are, instead, based on ideas from state charts, finite
state machines, and Petri nets.

The OSM (and ORM) formalisms are predicate-calculus based and thus fact-
oriented, but neither intrinsically has time-dependent conceptualizations. Al-
though predicate calculus does not inherently involve time, with some work we
can extend predicate calculus to a two-sorted first-order logic that captures no-
tions of time, including events, time intervals, and time dependencies. Indeed,
this is the contribution of this chapter, where we formally define fact-oriented,
time-dependent semantics for OSM by showing how to convert any OSM model
instance to formulas in OSM-Logic [Cly93] and how to interpret these formulas.

Briefly and succinctly, OSM-Logic is a two-sorted, first-order logic language
with temporal semantics specifically developed for defining the meaning of OSM
model instances. Since OSM captures static and dynamic properties of real-world

OSM-Logic 153

systems, OSM-Logic must be able to express relationships among objects, object
behavior, and interactions with respect to time. In real-world systems, time
involves continuous intervals, (t1, t2) and individual points, (t). Most changes in
a system of objects occur during time intervals and are not instantaneous. Even
simple changes like an object entering a new state or becoming a member of an
object set occur over a time interval. In fact, for any interpretation of a system,
a change that appears instantaneous may actually be occurring during a time
interval that is simply smaller than smallest unit of time in that interpretation.
By using a finer unit of time, what once appeared instantaneous can appear as a
time interval. On the other hand, an event is a single time point that represents a
true instantaneous occurrence. An event typically corresponds to the beginning
or end of a particular time interval during which something interesting occurs.

Compared to the vast amount of work on temporal models, the static model
of OSM extended with time intervals is similar to the standard valid-time static
model described by Jensen and Snodgrass [JS99]. The behavioral and interaction
models of OSM, however, extend far beyond these static models. Notationally,
we represent within-object behavior in OSM by a state-transition-like diagram
and between-object interactions with a message-passing-like diagram. Formally,
we map both behavior and interaction to two-sorted logic predicates and tem-
poral constraints expressed in first-order logic. These first-order expressions can
represent any of the temporal operators defined by Manna and Pnueli [MP91]
such as Next (©), Eventually (♦), Since (S), and Until (U).

Although OSM is expressively powerful, notationally convenient, and useful in
analyzing real-world situations and specifying systems, its reasoning properties
have not been fully established (i.e., its ability to check satisfiability, subsump-
tion, and entailment). OSM-Logic, however, is conceptually similar to description
logics [CLN98], and we show in the appendix that OSM-Logic maps into DLRUS
[AF09], a temporal description logic. The mapping takes OSM-Logic constructs
to similar DLRUS constructs and takes OSM-Logic temporal constraints to the
Since (S) and Until (U) operators of DLRUS . Thus, since Artale and Franconi
[AF09] are able to conclude that “the fragment, DLR−

US , of DLRUS deprived
of the ability to talk about temporal persistence of n-ary relations, for n ≥ 2, is
decidable” and that “reasoning in DLR−

US is an EXPTIME-complete problem,”
then OSM-Logic without temporality for n-ary relationship sets (n > 2) is de-
cidable and EXPTIME-complete. We leave a full determination of the reasoning
properties for OSM-Logic to future work.

In the remainder of the chapter, we give the details of OSM-Logic. Section 2
describes OSM-Logic itself, Section 3 describes how we attach semantics to a set
of formulas, Section 4 summarizes the OSM-to-OSM-Logic conversion algorithm,
and we conclude in Section 5.

2 OSM-Logic Language Definition

OSM-Logic is a multi-sorted language with two basic sorts, S = {st, so}; st is for
time points and so is for objects. OSM-Logic consists of an infinite set of symbols

154 S.W. Clyde et al.

arranged as prescribed in [End72]. Logic symbols include logical connectors, ∨,
⇒, ¬; time-variable symbols, Vt (e.g., t1, t2, ...); object-variable symbols, Vo;
equality symbols, =t for st and =o for so; and auxiliary symbols, parentheses
and comma. Parameters include quantifiers, {∃t, ∀t} for st and {∃o, ∀o} for so;

1

time-constant symbols, Ct, object-constant symbols, Co; predicate symbols of sort
〈s1, ..., sn〉, where sj ∈ S for 1 ≤ j ≤ n2; and n-place function symbols of sort
〈s1, ..., sn, so〉, where sj ∈ S for 1 ≤ j ≤ n. Note that we have restricted the
results of functions to be objects.

Terms with sort st include time-variable and time-constant symbols (Vt∪Ct).
Terms with sort so include object-variable and object-constant symbols (Vo∪Co)
along with function terms, which we construct from function symbols by filling
each place of the symbol with a term of the designated basic sort. For example,
if + is a 2-place function symbol of sort 〈so, so, so〉 and x and y are object-
variable symbols in Vo, we construct a function term + written either +(x, y)
(prefix notation) or x+ y (infix notation).

An atomic formula is a sequence P (z1, ..., zn), where P is an n-place predicate
symbol or an equality symbol (in which case n = 2) of sort 〈s1, ..., sn〉 and z1,
..., zn are terms of sort s1, ..., sn, respectively. For example, let Pizza(, ,) be
a 3-place predicate symbol of sort 〈so, st, st〉 that represents the membership
of the Pizza object set in Figure 1. Also, let x be an object-variable symbol
and t1 and t2 be time-variable symbols. We can construct the atomic formula
Pizza(x, t1, t2). We often write atomic formulas using an infix notation, as with
the general constraint in Figure 1 written x+ y > 1 rather than > (x+ y, 1).

A well-formed formula (wff) is constructed from atomic formulas, logical
connectors, and quantifiers in the traditional way. Figure 2 shows two wff’s
constructed from atomic formulas, the ⇒ logical connector, and universal quan-
tifiers. In the first formula, Crust() is subpart of Pizza()(,) is a predicate
symbol of sort 〈so, so, st, st〉 that represents the membership of the Crust is
subpart of Pizza relationship set in Figure 1. To aid readability, we write the ob-
ject terms for this predicate symbol in-line, using an infix notation. The second
predicate symbol in the first formula, Crust(, ,), represents the memberships
of the Crust object set in Figure 1. Informally, the first formula guarantees that
an object is a member of the Crust object set whenever it relates to a pizza
in the Crust is subpart of Pizza relationship set. Similarly, the second formula
guarantees that an object is a member of the Pizza object set whenever it relates
to a crust in the Crust is subpart of Pizza relationship set.

3 Interpretations

We establish the meaning of a formula or a set of formulas through an interpre-
tation.

1 When the sort is clear from the context, we may drop the t or o subscript from an
equality symbol or quantifier.

2 However, no predicate symbol has more than two places of sort st.

OSM-Logic 155

Pizza

Crust

Topping Serving

Sauce Serving

Cheese Serving

x + y > 1

y:15

x:2
1

1

0:1

0:1

0:1

0:1

Medium PizzaLarge Pizza Small Pizza

U+

Order

Order #

Discount Time Frame

Total
Price Discount applies to

Pizza ordered during
Time Frame

0:*0:*

0:*

Orders with more
than 5 pizzas are
infrequent

0:*

1

1

1

has

has

0:11:20

Pizza, Time Frame Discount
1:2

Fig. 1. Sample ORM for Pizza Ordering System

∀x∀y∀t1∀t2(Crust(x) is subpart of Pizza(y)(t1, t2) ⇒ Crust(x, t1, t2))
∀x∀y∀t1∀t2(Crust(x) is subpart of Pizza(y)(t1, t2) ⇒ Pizza(y, t1, t2))

Fig. 2. Sample OSM-Logic Formulas

An interpretation maps the language’s parameter symbols to a mathematical
structure, consisting of a time structure, a universe of objects, a set of functions,
and a set of relations. As a result, an interpretation gives meaning to the sym-
bols of the language. Without an interpretation, a formula is just a sequence of
symbols and nothing more. For example, the formulas shown in Figure 2 are by
themselves just sequences of symbols. An interpretation gives them meaning by
mapping Crust() is subpart of Pizza()(,), and Pizza(,) to relations, x and
y to objects, and t1 and t2 to time points.

Formally, we define an interpretation to be an 8-tuple 〈T, U, F, R, gT , gU ,
gF , gR〉 where T , U , F , and R form the mathematical structure and gT , gU , gF ,
and gR map parameter symbols to elements of T , U , F , and R, respectively:

T is a time structure such that it includes (1) a (possibly infinite) set of time
points TP, (2) a total ordering < on TP, and (3) a time-interval magnitude
function f‖ : TP ×TP → U , such that f‖(τ1, τ1) = 0, f‖(τ1, τ2) = f‖(τ2, τ1),
and f‖(τ1, τ2) < f‖(τ1, τ3) for τ1 < τ2 < τ3.

U is a non-empty universe of objects.

F is a set of functions such that it includes the time-interval magnitude func-
tion. Each function in F of arity n has a sort 〈s1, ..., sn, so〉 where sj ∈ S
for 1 ≤ j ≤ n. The time-interval magnitude function has arity 2 and sort
〈st, st, so〉.

156 S.W. Clyde et al.

R is a set of relations such that it includes the < ordering relation. Each relation
of arity n has a sort 〈s1, ..., sn〉, where sj ∈ S for 1 ≤ j ≤ n. The < relation
has arity 2 and sort 〈st, st〉.

gT is a mapping of time constant symbols to TP.

gU is a mapping of object constant symbols to U .

gF is a mapping of function symbols to F such that it maps an n-place function
symbol to an n-ary function of the same sort.

gR is a mapping of predicate symbols to R such that it maps an n-place predicate
symbol to an n-ary relation of the same sort.

To give OSM-Logic temporal semantics, we add three restrictions to the def-
inition of an interpretation. First, relations in R include exactly zero, one, or
two arguments of the time sort. We call these respectively time-invariant, event,
and temporal relations. The two time points in a tuple from a temporal relation
identify a time interval over which the other objects in the tuple are related.
Let τ1 and τ2 be time points. If τ1 < τ2, then the time interval [τ1, τ2) is the set
of time points t ∈ TP such that τ1 ≤ t < τ2. If τ2 < τ1 then the time interval
[τ1, τ2) is the set of time points t, such that τ2 ≤ t < τ1. If τ1 = τ2, then the
time interval [τ1, τ2) is the empty set. By definition, the time interval [τ1, τ2) is
the same as [τ2, τ1). The notation “[...)” reminds us that the interval includes
the starting point but not the ending point.

Second, we restrict temporal relations so if a temporal relation includes a
tuple that relates a set of objects for some time interval, then it also includes
tuples that relate the same set of objects for all non-empty sub-intervals of that
time interval. Let R be an n-ary temporal relation R. If (x1, ..., xn, t1, t2) ∈ R
and there exists t3 ∈ TP such that t1 < t3 < t2, then (x1, ..., xn, t1, t3) ∈ R
and (x1, ..., xn, t3, t2) ∈ R. The temporal relations ra, rb, and rc in Figure 3
satisfy this restriction.

Third, we restrict temporal relations so if a temporal relation includes two
tuples with the same set objects and the tuples have adjacent or overlapping time
intervals, then the relation must also contain a third tuple with the same objects
and a time interval that spans both of the others. Two time intervals, [t1, t2) and
[t3, t4), are adjacent if t2 = t3 or t1 = t4 and overlapping if t1 < t3 < t2 < t4
or t3 < t1 < t4 < t2. We formally define this restriction as follows. Let R be an
n-ary temporal relation R. If (x1, ..., xn, t1, t2), (x1, ..., xn, t3, t4) ∈ R and the
time intervals [t1, t2) and [t3, t4) are either adjacent or overlapping, then (x1, ...,
xn, t5, t6) ∈ R where t5 = t1 and t6 = t4 if t1 < t3, otherwise t5 = t3 and t6 = t2.
The temporal relations ra, rb, and rc Figure 2 also satisfy this restriction.

Given an interpretation, a formula is either true or false. For example, consider
the interpretation I in Figure 3. Note that I maps the Crust() is subpart of
Pizza()(,) predicate symbol to ra, the Crust(, ,) predicate symbol to rb,
and the Pizza(, ,) predicate symbol to rc. Using I, the first formula in Figure 2
is true, because every object x ∈ U , time t1 ∈ TP, and time t2 ∈ TP that
is associated in the first, third, and fourth places of ra, respectively, is also
associated in rb. The second formula in Figure 2 is also true, because every

OSM-Logic 157

I = 〈T, U, F,R, gT , gU , gF , gR〉, where
T = { TP = {1, 2, 3, 4, 5}, the < ordering relation, and the time-interval

magnitude function f‖, where f‖(τ1, τ2) is the absolute value of τ2 − τ1
}

U = {p1, p2, p3, c1, c2, 0, 1, 2, 3, 4}
F = {f‖}
R = { ra , rb , rc , <

c1 p1 3 4 c1 2 4 p1 3 4 1 2
c2 p2 3 5 c1 2 3 p2 3 5 1 3
c2 p2 3 4 c1 3 4 p2 3 4 1 4
c2 p2 4 5 c2 3 5 p2 4 5 1 5

c2 3 4 2 3
c2 4 5 2 4
c3 4 5 2 5

3 4
3 5
4 5

}
gT = {}
gU = {}
gF = {〈‖, f‖〉}
gR = { 〈Crust() is subpart of Pizza()(,), ra〉,

〈Crust(, ,), rb〉,
〈Pizza , rb〉

}

Fig. 3. An Interpretation for the Formulas in Figure 2

object x ∈ U , time t1 ∈TP, and time t2 ∈TP that are associated in the second,
third, and fourth places of ra, respectively, are also associated in rc.

If an interpretation I makes a formula α true, then I is called a valid inter-
pretation3 for α. If I makes each formula in a set of formulas true, then I is a
valid interpretation for the set of formulas. The interpretation in Figure 3 is a
valid interpretation for the set of formulas in Figure 2.

The semantics of a set of formulas Γ is defined by all the possible valid inter-
pretations for Γ. Intuitively, we think of a set of formulas in a logic language as a
declaration about the characteristic properties of a system. Valid interpretations
formalize this notion by defining all the possible situations that reflect these
characteristic properties. For example, consider a system described by the for-
mulas in Figure 2. The characteristic properties of this system are that whenever
an object is in the first place of ra, it must also be in the first place of rb, and
whenever an object is the second place of ra, it must also be in the first place
of rb. In other words, pizzas can relate only to crust objects and crust objects
can relate only to pizza objects in Crust is subpart of Pizza. The set of all valid
interpretations for these formulas represents precisely all situations that reflect
these characteristic properties.

3 “Model” is the usual logic term, but since “model” is heavily overloaded in the
context of computer science, we use the term “valid interpretation” instead.

158 S.W. Clyde et al.

4 OSM-to-OSM-Logic Conversion Algorithm

Using OSM-Logic we can now formally define the semantics of OSM by algo-
rithmically converting any OSM model instance to a set of OSM-Logic formulas.
Using an interpretation, we can then give meaning to the set of formulas by map-
ping their symbols to a mathematical structure. The mathematical structures of
the valid interpretations for these formulas represent all possible situations that
exhibit the characteristic properties described by the model instance.

The OSM-to-OSM-Logic conversion algorithm consists of a set of preliminary
transformations and a set of independent conversion procedures. The preliminary
transformations simply convert an OSM model instance to a standard form
(e.g., standardizing names and giving identifiers to unnamed elements). Each
conversion procedure generates OSM-Logic formulas for a particular type of
modeling component or modeling construct that links components together in a
specific way. In Sections 4.1 and 4.2 we summarize these procedures for OBMs
and OIMs respectively using the pizza example (Figure 1). Because the details
are extensive, we only summarize here; the full conversion algorithm is provided
in [CEW92].

We outline the conversion procedures in Figures 4, 5, and 6. We organize the
conversion procedures into sub-procedures for converting static and dynamic
properties in each of the sub-model types.

Static Properties
1. Ensure referential integrity of relationship sets
2. Represent generalization/specialization relationship sets
3. Ensure generalization/specialization constraints
4. Represent aggregation relationship sets
5. Represent participation constraints
6. Represent co-occurrence constraints
7. Map variables used in constraints
8. Represent notes
9. Represent general constraints

Dynamic Properties
1. Represent “becoming” and “ceasing-to-be” for object sets
2. Represent “becoming” and “ceasing-to-be” for relationship sets

Fig. 4. Summary of ORM-to-OSM-Logic Conversion Procedures for Pizza Example

For example, the ORM conversion procedure (Figure 4) includes nine sub-
procedures for mapping static properties of ORMs into OSM-Logic, and two for
for mapping dynamic properties. The first static-property procedure generates
formulas that ensure the referential integrity of relationship sets. If an object o is
involved in the ith position of a tuple in some relationship set R, then omust be a
member of the object set associated with the ith connection of R. The formulas in
Figure 2 illustrate this: the first guarantees that if 〈x, y, t1, t2〉 is a tuple in Crust
is subpart of Pizza, then x must be a member of Crust, and the second similarly

OSM-Logic 159

Static Properties
1. Ensure referential integrity of states
2. Ensure referential integrity of transitions
3. Ensure referential integrity of real-time markers
4. Represent state conjunctions
5. Represent prior-state conjunction reset action
6. Represent transition firing phase
7. Ensure mutual exclusion of transition states
8. Ensure that objects are in at least one phase for each transition
9. Ensure that objects do not commit conflicting transitions
10. Represent real-time markers
11. Represent real-time constraint semantics

Dynamic Properties
1. Represent transition ready phase conditions
2. Represent transition committed phase conditions
3. Represent transition execution phase conditions
4. Represent transition finishing phase conditions
5. Represent transition inactive phase conditions
6. Specify when objects can enter each state
7. Specify when objects can exit each state

Fig. 5. Summary of OBM-to-OSM-Logic Conversion Procedures for Pizza Example

Static Properties
1. Ensure referential integrity of temporal relations
2. Ensure that a single interaction only occurs once
3. Represent source/destination parameter exchange

Dynamic Properties
1. Guarantee alignment of interaction with object time intervals

Fig. 6. Summary of OIM-to-OSM-Logic Conversion Procedures for Pizza Example

ensures the referential integrity of Pizza for the same relationship set. These
formulas are true for all time intervals. Apart from the addition of temporal
semantics, the formulas in Figure 2 are straightforward and correspond to what
one would expect for structural properties. We omit discussion of procedures 2–9
for ORM static properties because they are similarly straightforward.

However, converting dynamic properties with their full temporal formalisms
is a more interesting and less common problem that requires more explana-
tion. Formulas representing dynamic properties have time-dependent member-
ship conditions and are not true for all time intervals. In real-world systems,
classification and relationships change over time, so objects and relationships
become and cease to be members of object and relationship sets over time as
well. Thus, we must write formulas that capture the notions of “becoming” and
“ceasing-to-be” formally over time intervals. For each object and relationship
set we generate additional predicates (e.g., Becoming Pizza(, ,) of sort 〈so,
st, st〉 and Ceasing to be Crust() is subpart of Pizza()(,) of sort 〈so, so, st,
st〉) to represent these properties.

160 S.W. Clyde et al.

The conversion routine generates formulas like the following to capture the
semantics of these dynamic properties:

∀x∀t1∀t2(STI(Pizza(x, t1, t2), t1, t2)⇒
∃t3(t1 < t3 ∧ Becoming Pizza(x, t1, t3))) (1)

where STI(F, t1, t2) is shorthand notation for a starting-time interval formula
defined as (t1 < t2 ∧ F ∧ ∀t3(t3 < t1 ⇒ ¬F t1

t3) ∧ ∃t3(t3 < t1)). Formula 1
ensures that the time intervals are aligned such that when an object starts being
a member of the Pizza object set, it was in the process of becoming a pizza.
Other generated formulas ensure that all the required conditions relating the
alignment of various dynamic time intervals hold true. There are eight such
conditions [CEW92]. The conversion procedure generates similar formulas for
relationship sets as well.4

4.1 Converting OBM Components

The procedures that convert the OBM components to OSM-Logic define the
static and dynamic behavioral properties for members of object sets. Static be-
havioral properties are object-set membership conditions involving object be-
havior represented by states, transitions, and real-time markers. Like the static
properties represented in an ORM instance, static behavioral properties for an
object set are conditions that must be satisfied for all time intervals. Dynamic
behavioral properties are object-set membership conditions that relate various
time intervals represented by OBM components.

Since an OBM instance is a collection of state nets and each state net describes
object behavior for a single object set, we can execute the OBM conversion proce-
dures independently for each state net. Therefore, without the loss of generality,
we simplify our definition of the OBM conversion procedures by describing them
for a single state net. Using the state net shown in Figure 7 as an example, we
summarize the OBM conversion procedures in the next two subsections.

Static Properties. To represent the static behavioral properties described in
a state net, we construct predicates for the events and temporal relations repre-
sented by various components in the state net, including: states, state conjunc-
tions, transitions, triggers, actions, and real-time markers. We use component
names and identifiers, together with an object-set name for the associated object
set, to construct these predicates using a set of templates as Figure 8 shows. The
template parameters are defined as follows: 〈ObjectSet〉 is an object-set name
(e.g., Order). 〈SC〉 is a state name or a conjunction of state names (e.g., Paid

4 We also define shorthand notations for ending- and maximum-time intervals.
ETI(F, t1, t2) represents a formula that is true iff t1 and t2 represent an ending-
time interval for F , regardless of the interpretation. Similarly, MTI(F, t1, t2) is true
iff t1 and t2 represent a maximum-time interval.

OSM-Logic 161

Ready

Completed

Paid@Customer Pays

[4]

All Pizzas in the
Order are done

[3]

Pizzas given
to customer

[5]

> 24 hours

[6]

@Cancel

[1]

Canceled

Unpaid

Customer
Waiting

@Confirm

[2]

Open

a

b

(a to b) ≤ 20 minutes

Order

Fig. 7. State Net for the Order Object Set

Predicate Sort

〈ObjectSet〉() in state 〈SC〉(,) 〈so, st, st〉
〈ObjectSet〉() transition 〈TID〉 〈phase〉(,) 〈so, st, st〉
〈ObjectSet〉() transition 〈TID〉 trigger true(,) 〈so, st, st〉
〈ObjectSet〉() transition 〈TID〉 committed using 〈PSC〉() 〈so, st〉
〈ObjectSet〉() 〈PSC〉 reset(,) 〈so, st, st〉
〈ObjectSet〉() transition 〈TID〉 action done() 〈so, st〉
〈ObjectSet〉() transition 〈TID〉 finished using 〈SSC〉() 〈so, st〉
〈ObjectSet〉() passed 〈RTM〉 at time() 〈so, st〉

Fig. 8. Predicate Templates for OBM Components

or Ready & Paid). 〈TID〉 is a transition identifier (e.g., [1]) and 〈RTM〉 is a
real-time marker (e.g., a or b). 〈PSC〉 and 〈SSC〉 are prior-state conjunctions
(e.g., Ready & Paid) and subsequent-state conjunctions (e.g., Customer Waiting
& Unpaid) respectively. 〈phase〉 is one of inactive, ready, committed, executing,
and finishing. When a transition is committed, executing, or finishing, we say
that it is firing, and so we also include a sixth firing phase that is equivalent to
the disjunction of the other three.

The templates in Figure 8 each include one symbol of sort so and one or
two symbols of sort st because all the predicates relate objects in an object set
to events (e.g., finishing a transition) or time intervals (e.g., being in a state)
associated with an OBM model instance.

Using the generated predicate symbols, we construct formulas for the static
behavioral properties. In all, there are 23 conversion procedures that generate
formulas. However, only 11 of them produce formulas for our sample model
instance. The first three generate referential-integrity formulas, which we do not
show here. They guarantee, for example, that when an object is in the Open
state, it is a member of the Order object set, etc.

162 S.W. Clyde et al.

A fourth procedure generates formulas like Formula 2 to guarantee equivalence
between a state conjunction and the conjunction of its states.

∀x∀t1∀t2((Order(x) in state Ready(t1, t2) ∧ Order(x) in state Paid (t1, t2))

⇔ Order(x) in state Ready & state Paid(t1, t2)) (2)

A fifth procedure generates formulas like Formula 3 that specify what it means
for a prior-state conjunction to be reset (i.e., an object uses the prior-state
conjunction to commit a transition).

∀x∀t1∀t2((NTI(Order(x) in state Ready(t1, t2),t 1t2) ∧
NTI(Order(x) in state Paid(t1, t2), t1, t2))⇔ (3)

Order(x) Ready & Paid reset(t1, t2))

Here, NTI(Order (x) in state Ready(t1, t2), t1, t2) is a shorthand for the following
formula that is true if and only if x is not in the Ready state for all time points
in [t1, t2) time interval.

t1 < t2 ∧ ∀t3∀t4((t1 ≤ t3 ∧ t3 ≤ t2 ∧ t1 ≤ t4 ∧ t4 ≤ t2)⇒
¬Order(x) in state Ready(t3, t4)) (4)

Similarly, NTI(Order(x) in state Paid(t1, t2), t1, t2) represents a formula that
is true if and only if x is not in the Paid state for all time points in time
interval [t1, t2). Like the STI notation, an NTI shorthand can be substituted
with the formula it represents without changing the meaning of the original
formula.

A sixth procedure generates formulas that equate the firing phase of each tran-
sition with the concatenation of its committed, executing, and finishing phases.
A seventh procedure generates formulas that guarantee the elementary phases
of a transition are mutually exclusive. An eighth procedure generates formulas
to guarantee that objects in the associated object set are in at least one phase
of each transition in a state net. We do not give examples here.

A ninth procedure generates formulas like Formula 5 to guarantee that objects
never commit conflicting transitions with common prior states at the same time.
Two transitions are conflicting if they share prior states (e.g., transitions [1] and
[3] conflict w.r.t. Customer Waiting).

∀x∀t(Order(x) transition [1] committed using

Customer Waiting & Unpaid(t)⇒ (5)

¬Order(x) transition [3] committed using Customer Waiting(t))

OSM-Logic 163

A tenth procedure generates formulas like Formula 6 that restrict temporal re-
lations represented by the predicate symbols for real-time markers so that they
only relate objects to time points for which the objects passed to the real-time
markers.

∀x∀t(Order(x) passed a at time(t)⇔
Order(x) transition [4] finished using Paid(t)) (6)

Formula 6 specifies that if an object passes real-time marker a at time t, that
object finishes transition [4] and enters the Paid state at time t and the con-
verse. Thus the temporal relation represented by the predicate symbol Order()
passed a at time() is equivalent to the temporal relationship represented by the
predicate symbol Order() transition [1] finished using Paid().

Finally, an eleventh procedure generates formulas like Formula 7 to express
real-time constraints. The real-time constraint, (a to b) ≤ 20, in Figure 7 is an
a OSM-Logic Formula, where to and ≤ are predicate symbols and a and b are
variables representing values for real-time markers.

∀x∀t1∀t2((Order(x, t1, t2) ∧ t1 < t2 ∧Order(x) passed a at time(t1) ∧
Order(x) passed b at time(t2) ∧ ∀t3((t1 < t3 ∧ t3 < t1)⇒ (7)

(¬Order (x) passed a at time(t3) ∧ ¬Order(x) passed b at time(t3))))⇒
(t1 to t2) ≤ “20”)

The last part of Formula 7 is derived from the real-time constraint. Here, as in
Figure 7, “20” represents 20 minutes. An interpretation of this formula would
map this constant symbol to an appropriate object in the range of the time-
interval magnitude function. As a result, minutes is normalized to the time
unit represented in the interpretation. The to symbol in the (t1 to t2) formula
represents the time-interval magnitude function.

Dynamic Properties. The dynamic behavioral properties are conditions that
relate various time intervals represented by OBM components. We use the pred-
icate symbols described in the prior section to express dynamic behavioral prop-
erties in OSM-Logic. There are 12 conversion procedures that generate formulas
for these properties, 7 of which generate formulas for our sample model instance.
We present these 7 procedures here. One procedure generates formulas that re-
late certain time intervals associated with an object and the ready phase of a
transition to other time intervals that occur just before, during, and just after
the ready phase. For example, the procedure generates the following formulas
for transition [1].

164 S.W. Clyde et al.

∀x∀t1∀t2(STI(Order (x) transition [1] ready(t1, t2), t1, t2)⇒
∃t3(t3 < t1 ∧ (NTI(Order(x, t3, t1), t3, t1) ∨ (8)

Order(x) transition [1] inactive(t3, t1))))

∀x∀t1∀t2(Order(x) transition [1] ready(t1, t2)⇒
(Order (x) in state Open(t1, t2) ∨ (9)

Order(x) in state Customer Waiting & state Unpaid(t1, t2)))

∀x∀t1∀t2(Order(x) transition [1] ready(t1, t2)⇒
Order(x) transition [1] trigger true(t1, t2)) (10)

∀x∀t1∀t2(ETI(Order(x) transition [1] ready(t1, t2), t1, t2)⇒
∃t3(t2 < t3 ∧ (NTI(Order(x, t2, t3), t2, t3) ∨

Order(x) transition [1] committed(t2, t3) ∨ (11)

Order(x) transition [1] inactive(t2, t3))))

Formula 8 defines what happens before an object enters the ready phase of
transition [1]. The first part of this formula is true when [t1, t2) is a starting-
time interval for an object x being in the ready phase of transition [1]. In other
words, t1 is the time point when x enters the ready phase of transition [1].
The second part is conditional upon the first. It specifies that there is a time
point t3 before t1 such that either x is not a member of Order or x is in the
inactive phase of transition [1] during the [t3, t1) time interval. Formulas 9 and
10 define what must be true while an object is in the ready phase of transition [1].
Formula 9 specifies that at least one of the transition’s prior-state conjunctions
must be true, and Formula 10 specifies that the transition’s trigger must be true.
Formula 11 defines what happens after an object is the ready phase of transition
[1]. The first part of this formula is true when [t1, t2) is an ending-time interval
for an object x being in the ready phase of transition [1]. In other words, t2 is the
time point when x exits the ready phase. The second part, which is conditional
upon the first, specifies that there exists a time t3 after t2 such that either x is
not a member of Order, x is in the committed phase of transition [1], or x is in
the inactive phase of transition [1] during the [t2, t3) time interval.

Another procedure generates formulas like Formulas 12–16 that define what
happens before and after an object is in the committed phase of a transition.
Formulas 12 through 16 specify what must be true just prior to or at the time an
object enters the committed phase of transition [1]. Formula 12 guarantees that
an object is in the ready phase of transition [1] just prior to starting the com-
mitted phase. Formula 13 says that if an object commits transition [1] using the
Open state at time point t1, then the object is in the ready phase of transition
[1] and in the Open state just before t1. Further, it says that the object is in the
committed phase at t1 and that the Open state is reset at t1. Formula 14 guar-
antees that an object can commit transition [1] with only one of its prior-state
conjunctions at a time. Formula 15 says that if [t1, t2) is a starting-time interval
for an object being in the committed phase of transition [1], then that object
committed the transition at time t1 using one of its prior-state conjunctions.

OSM-Logic 165

Formula 16 guarantees that an object is in the executing phase of transition [1]
just after it exits the committed phase.

∀x∀t1∀t2(STI(Order(x) transition [1] committed(t1, t2), t1, t2)⇒
∃t3(t3 < t1 ∧Order(x) transition [1] ready(t3, t1))) (12)

∀x∀t1(Order(x) transition [1] committed using Open(t1)⇒
∃t3∃t4(t3 < t1 ∧ t1 < t4 ∧Order(x) in state Open(t3, t1) ∧

Order(x) transition [1] ready(t3, t1) ∧ (13)

Order(x) transition [1] committed(t1, t4) ∧
Order(x) Open reset(t1, t4)))

∀x∀t1(Order(x) transition [1] committed using Open(t1)⇒
¬Order(x) transition [1] committed using (14)

Customer Waiting & state Unpaid(t1))

∀x∀t1(STI(Order(x) transition [1] committed(t1, t2), t1, t2)⇒
(Order(x) transition [1] committed using Open(t1) ∨
Order(x) transition [1] committed using (15)

Customer Waiting & state Unpaid(t1)))

∀x∀t1∀t2(ETI(Order (x) transition [1] committed(t1, t2), t1, t2)⇒
∃t3(t2 < t3 ∧Order(x) transition [1] executing(t2, t3))) (16)

A third procedure generates formulas like Formulas 17–18 to require that an
object is in the committed phase of transition [1] prior to being in the executing
phase, and is in the finishing phase after being in the executing phase.

∀x∀t1∀t2(STI(Order(x) transition [1] executing(t1, t2), t1, t2)⇒
∃t3(t3 < t1 ∧Order(x) transition [1] committed(t3, t1))) (17)

∀x∀t1∀t2(ETI(Order(x) transition [1] executing(t1, t2), t1, t2)⇒
∃t3(t2 < t3 ∧Order(x) transition [1] finishing(t2, t3))) (18)

A fourth procedure generates formulas like Formulas 19–22 to express the dy-
namic properties of the finishing phase, such as how the completion of actions
and the entering of subsequent-state conjunctions relate to the finishing of tran-
sitions.

166 S.W. Clyde et al.

∀x∀t1∀t2(STI(Order (x) transition [1] finishing(t1, t2), t1, t2)⇒
∃t3(t3 < t1 ∧Order(x) transition [1] executing(t3, t1) ∧ (19)

Order(x) transition [1] action done(t1)))

∀x∀t1(Order(x) transition [1] finished using Canceled(t1)⇒
∃t3∃t4(t3 < t1 ∧ t1 < t4∧
Order(x) transition [1] finishing(t3, t1) ∧ (20)

Order(x) in state Canceled(t1, t4)))

∀x∀t1∀t2(ETI(Order(x) transition [1] finishing(t1, t2), t1, t2)⇒
Order(x) transition [1] finished using Canceled(t2)) (21)

∀x∀t1∀t2(ETI(Order(x) transition [1] finishing(t1, t2), t1, t2)⇒
∃t3(Order(x) transition [1] inactive(t2, t3))) (22)

Formula 19 guarantees that an object must be in executing phase of transition
[1] prior to be being in the finishing phase. In addition, it specifies that the time
point when an object enters the finishing phase corresponds to the time point it
completed the action of transition [1]. Formula 20 says that if an object finishes
transition [1] and enters the Canceled state at time t1, then that object is in
the finishing phase of transition [1] prior to t1, and it is in the Canceled state at
t1. Formula 21 guarantees that if [t1, t2) is an ending-time interval for an object
in the finishing phase of transition [1], then that object finished transition [1]
using the Canceled state at time t2. Formula 22 guarantees that an object is in
the inactive phase of transition [1] after it is in the finishing phase.

A fifth procedure generates formulas like Formulas 23–24 to define dynamic
properties of the inactive phase of a transition.

∀x∀t1∀t2(STI(Order(x) transition [1] inactive(t1, t2), t1, t2)⇒
∃t3(t3 < t1 ∧ (NTI(Order(x, t3, t1), t2, t3) ∨ (23)

Order(x) transition [1] finishing(t3, t1))))

∀x∀t1∀t2(ETI(Order(x) transition [1] inactive(t1, t2), t1, t2)⇒
∃t3(t2 < t3 ∧ (NTI(Order(x, t2, t3), t2, t3) ∨ (24)

Order(x) transition [1] ready(t2, t3))))

Formula 23 guarantees that an object is either not a member of the Order object
set or in the finishing phase of transition [1] prior to being in the inactive phase
of transition [1]. Formula 23 specifies that an object is either not a member of
the Order object set or in the ready phase of transition [1] after being in the
inactive phase of transition [1].

The last two procedures generate formulas like Formulas 25–26 that specify
when objects can enter and exit a state. An object can enter (exit) a state only
when the object uses it to finish (commit) a transition.

OSM-Logic 167

Open

Waiting for
Request

Pizza Request
Made

Add Pizza to
Order

Pizza Request
 (Size, Cheese Servings,
 Topping Servings)

Fig. 9. Details of the Open State for the Order Object Set

∀x∀t1∀t2(STI(Order(x) in state Canceled(t1, t2), t1, t2)⇒
Order(x) transition [1] finished using Canceled(t1)) (25)

∀x∀t1∀t2(ETI(Order(x) in state Canceled(t1, t2), t1, t2)⇒
Order(x) transition [6] committed using Canceled(t2)) (26)

Formula 25 guarantees that the time point when an object starts being in the
Canceled state corresponds to when it finishes transition [1] using the Canceled
state. Similarly, Formula 26 specifies that the time point when an object stops
being in the Canceled state corresponds to when it commits transition [6].

4.2 Converting OIM Components

Static Properties. To express static interaction properties, we first construct
predicate symbols for an OBM. For example, we construct the predicate symbol
Interaction Pizza Request(): to Order() transition [7] firing with Size() Cheese
Servings() Topping Servings()(,) for the interaction described in Figure 9. (A
preliminary transformation supplied [7] as the identifier for the transition in Fig-
ure 9.) The predicate symbol construction varies for each interaction component
C, depending on whether C has an activity description; whether C has an origin,
a destination, or both; if C has an origin, whether it is an object set, state, or
transition; if C has a destination, whether it is an object set, state, or transition;
and whether C has object descriptions.

All interaction predicate symbols start with Interaction and a place that repre-
sents interaction objects. If an interaction component has an activity description,
we use that description to label the first place. For the interaction in Figure 9,
we embed its activity description, Pizza Request, in the predicate symbol just
before the first place. Next, we include places for the interaction’s origin and
destination. Since our sample interaction does not have an origin, we only in-
clude a place for its destination. We prefix the destination place with to Order
to help identify it. Also, since the destination of the interaction is transition [7],
we embed transition [7] firing after the destination place to indicate that only

168 S.W. Clyde et al.

objects firing transition [7] can receive this type of interaction. Next, we add
a place for each object description associated with the interaction component.
An object description identifies a parameter object that origin and destination
objects exchange during the interaction. For our example, Size, Cheese Servings,
and Topping Servings are the object descriptions. Finally, we add on two places
of sort st to represent the time interval during which the interactions occur.

Using the predicate symbols generated for interaction components, objects
sets, states, and transitions, we generate the formulas for static interaction prop-
erties. There are 10 conversion procedures that generate interaction formulas;
however, only 3 of them pertain to our sample model instance.

One procedure generates formulas that guarantee the referential integrity of
temporal relations represented by interaction predicate symbols. For example,
any origin object for an interaction must be a member of the object set associated
with the interaction component’s origin. A second procedure generates formulas
like Formulas 27–28 to ensure that a single interaction occurs only once.

∀x0∀x1∀x2∀x3∀x4∀t1∀t2∀t3∀t4((STI(Interaction Pizza Request(x0) :

to Order(x1) transition [7] firing with Size(x2) Cheese Serving(x3)

Topping Serving(x4)(t1, t2), t1, t2) ∧
Interaction Pizza Request(x0) : to Order(x1) (27)

transition [7] firing with Size(x2) Cheese Serving(x3)

Topping Serving(x4)(t3, t4))⇒ (t1 ≤ t3 ∧ t1 ≤ t4))

∀x0∀x1∀x2∀x3∀x4∀t1∀t2∀t3∀t4((ETI(Interaction Pizza Request(x0) :

to Order(x1) transition [7] firing with Size(x2) Cheese Serving(x3)

Topping Serving(x4)(t1, t2), t1, t2) ∧
Interaction Pizza Request(x0) : to Order(x1) (28)

transition [7] firing with Size(x2) Cheese Serving(x3)

Topping Serving(x4)(t3, t4))⇒ (t3 ≤ t2 ∧ t4 ≤ t2))

Formula 27 specifies that if an interaction, x0, starts at time t1 and it also occurs
during the interval [t3, t4), then the time points, t3 and t4, are no earlier than
t1. Similarly, Formula 28 says that if an interaction, x0, ends at time t2 and it
also occurs during the interval [t3, t4), then the time points, t3 and t4, are no
later than t2.

A third procedure generates formulas like Formula 29 to guarantee that source
and destination objects exchange only one set of parameter objects during a
single interaction.

∀x0∀x1∀t1∀t2∃1x2
∃1x3
∃1x4

(Interaction Pizza Request(x0) :

to Order(x1) transition [7] firing with Size(x2) (29)

Cheese Serving(x3) Topping Serving(x4)(t1, t2))

OSM-Logic 169

Dynamic Properties. To express dynamic interaction properties we gener-
ate one or two additional predicate symbols for each interaction that represent
the potential for interaction to occur. One predicate symbol, which we gener-
ate only when the interaction has an origin, relates interactions and objects to
time intervals during which the objects are potential origins for the interactions.
The other predicate symbol, which we generate only when the interaction has a
destination, relates interactions and objects to time intervals during which the
objects are potential destinations for the interactions. For example, we generate
the predicate symbol Receive Interaction Pizza Request(): to Order() transi-
tion [7] firing with Size() Cheese Servings() Topping Servings()(,), for the
interaction in Figure 9.

Our algorithm includes only one procedure that generates formulas for dy-
namic interaction properties. The formulas guarantee that the maximum-time
interval for an interaction (1) starts after a time interval corresponding to its
origin object’s potential to be an origin, and (2) ends before a time interval corre-
sponding to its destination object’s potential to be an destination. For example,
the procedure generates the following formula for our sample model instance.

∀x0∀x1∀x2∀x3∀x4∀t1∀t2(
(MTI(Interaction Pizza Request(x0) :

to Order(x1) transition [7] firing with Size(x2) Cheese Serving(x3)

Topping Serving(x4)(t1, t2), t1, t2)⇒
∃t3∃t4(t1 ≤ t3 ∧ t3 < t2 ∧

Receive Interaction Pizza Request(x0) : to Order(x1)

transition [7] firing with Size(x2) Cheese Servings(x3) (30)

Topping Servings(x4)(t3, t4)∧
∀t5((t3 ≤ t5 ∧

ETI(Receive Interaction Pizza Request(x0) : to Order(x1)

transition [7] firing with Size(x2) Cheese Servings(x2)

Topping Servings(x3)(t3, t5), t3, t5))⇒ t2 ≤ t5))))

5 Concluding Remarks

We have shown how to formalize conceptualizations for applications that need
time-dependent facts. The conceptualizations span the space of object existence,
the existence of relationships among objects, individual object behavior, and
interactions between among groups of objects. The formalization defines the
semantics of OSM by showing how to convert any populated OSMmodel instance
to formulas in OSM-Logic and how to interpret these formulas.

170 S.W. Clyde et al.

References

[ACM] ACM-L-2010 workshop (2010),
http://www.cs.uta.fi/conferences/acm-l-2010/

[AF09] Artale, A., Franconi, E.: Foundations of Temporal Conceptual Data Models.
In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Mylopoulos
Festschrift. LNCS, vol. 5600, pp. 10–35. Springer, Heidelberg (2009)

[CEW92] Clyde, S.W., Embley, D.W., Woodfield, S.N.: The complete formal defini-
tion for the syntax and semantics of OSA. Technical Report BYU-CS-92-2,
Department of Computer Science, Brigham Young University (February
1992)

[CLN98] Calvanese, D., Lenzerini, M., Nardi, D.: Description logics for conceptual
data modeling. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and
Information Systems, pp. 229–263. Kluwer (1998)

[Cly93] Clyde, S.W.: An Initial Theoretical Foundation for Object-Oriented Sys-
tems Analysis and Design. PhD thesis, Brigham Young University (1993)

[Dor09] Dori, D.: Object-Process Methodology: A Holistic Systems Paradigm.
Springer, Berlin (2009)

[EKW92] Embley, D.W., Kurtz, B.D., Woodfield, S.N.: Object-oriented Systems Anal-
ysis: A Model-Driven Approach. Prentice-Hall, Englewood Cliffs (1992)

[End72] Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press,
Inc., Boston (1972)

[ET11] Embley, D.W., Thalheim, B. (eds.): Handbook of Conceptual Modeling:
Theory, Practice, and Research Challenges. Springer, Heidelberg (2011)

[HM08] Halpin, T.A., Morgan, T.: Information Modeling and Relational Databases,
2nd edn. Morgan Kaufmann, Burlington (2008)

[IAR] Knowledge discovery and dissemination program.,
http://www.iarpa.gov/-solicitations_kdd.html/

[JS99] Jensen, C.S., Snodgrass, R.T.: Temporal data management. IEEE Transac-
tions on Knowledge and Data Engineering 11(1), 36–44 (1999)

[MP91] Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent
Systems. Springer, New York (1991)

[Oli07] Olivè, A.: Conceptual Modeling of Information Systems. Springer, Berlin
(2007)

[ORM] The ORM Foundation, http://www.ormfoundation.org
[PM07] Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice: A Software

Production Environment Based on Conceptual Modeling. Springer, New
York (2007)

[Tha00] Thalheim, B.: Entity-Relationship Modeling: Foundations of Database
Technology. Springer, Berlin (2000)

[UML] OMG: Documents associated with UML version 2.3,
http://www.omg.org/-spec/UML/2.3/

[YK58] Young, J.W., Kent, H.K.: Abstract formulation of data processing problems.
The Journal of Industrial Engineering 9(6), 471–479 (1958)

http://www.cs.uta.fi/conferences/acm-l-2010/
http://www.iarpa.gov/-solicitations_kdd.html/
http://www.ormfoundation.org
http://www.omg.org/-spec/UML/2.3/

OSM-Logic 171

Appendix

Conversion of OSM to DLRUS

In the following we sketch the transformation of OSM into DLRUS [AF09].
The transformation maps the structural components of OSM to the conceptual-
modeling structures of DLRUS and maps the properties of OSM listed in Fig-
ures 4, 5, and 6 to the properties of DLRUS . (To reference the static and dynamic
properties in Figures 4, 5, and 6 we use f.S.n to refer to the nth static property
in Figure f and f.D.n to refer to the nth dynamic property in Figure f .)

We convert an OSM model to DLRUS in three steps.

First, we convert the ORM components of OSM to DLRUS as follows:

1. Object sets in OSM map directly to DLRUS T (temporal, temporary, time-
stamped) classes.

2. Relationship sets in OSM map directly to T relations in DLRUS .
3. Referential integrity constraints (4.S.1) are converted to S and U operators

in DLRUS .
4. Generalization/Specialization relationship sets of OSA (4.S.2) map to the

Isa relation of DLRUS .
5. The generalization/specialization constraints of OSM (4.S.3) map directly

to the disjointness and covering constraints of DLRUS .
6. The aggregation relationship sets of OSM (4.S.4) map directly to T relations

in DLRUS .
7. Participation constraints in OSM (4.S.5) map directly to participation con-

straints in DLRUS .
8. Co-occurrence constraints in OSM (4.S.6) are converted to participation con-

straints on derived relations in DLRUS .
9. Variables in OSM constraints (4.S.7) map to variables inDLRUS constraints.
10. Notes in OSM (4.S.8) are semantically meaningless and thus map to nothing

in DLRUS .
11. The permitted general constraints of OSM (4.S.9) map directly to S and

U operators in DLRUS . (For OSM-Logic, we restrict general constraints—
allowing only those needed for S and U .)

12. The “becoming” and “ceasing-to-be” constraints on object sets in OSM
(4.D.1) map to S and U operators in DLRUS .

13. The “becoming” and “ceasing-to-be” constraints on relationship sets in OSM
(4.D.2) map to S and U operators in DLRUS .

Second, we convert an OBM model of OSM to DLRUS as follows:

1. States is OSM map to T classes in DLRUS .
2. Transitions in OSM map to T classes in DLRUS .
3. Real-time markers in OSM map to T classes in DLRUS .
4. The referential integrity constraints on states and transitions (5.S.1-3) map

to S and U operators in DLRUS .

172 S.W. Clyde et al.

5. State conjunctions in OSM (5.S.4) map to T classes in DLRUS .
6. Prior-state conjunction reset actions in OSM (5.S.5) map to T classes in
DLRUS .

7. Transition firing phases of OSM (5.S.6) map to T classes in DLRUS .
8. Mutual exclusion of transition states in OSM (5.S.7) maps to S and U op-

erators in DLRUS .
9. Ensuring that objects are in at least one phase for each transition in OSM

(5.S.8) maps to S and U operators in DLRUS .
10. Ensuring that objects do not commit conflicting transitions in OSM (5.S.9)

maps to S and U operators in DLRUS .
11. Real-time markers in OSM (5.S.10) map to T classes in DLRUS .
12. Real-time constraint semantics in OSM (5.S.11) map to T classes in DLRUS .
13. All dynamic behavior properties (5.S.1-7) map to S and U operators in

DLRUS .

Third, we convert an OIM model of OSM to DLRUS as follows:

1. Sources in OIM map to T classes in DLRUS .
2. Destinations in OIM map to T classes in DLRUS .
3. Temporal relations in OIM map to T relations in DLRUS .
4. Referential integrity of temporal relations in OSM (6.S.1) maps to S and U

operators in DLRUS .
5. Ensuring that single interactions only occur once in an OIM (6.S.2) maps to
S and U operators in DLRUS .

6. Source/destination parameter exchanges in OSM (6.S.3) maps to T classes
in DLRUS .

7. The alignment constraints of OIM (6.D.1) map to S and U operators in
DLRUS .

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 173–189, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Cloaking Data to Ease View Creation,
Query Expression, and Query Execution

Sudarshan Murthy1, David Maier2, and Lois Delcambre2

1 The Else Institute, 205 SE Spokane Street
Portland, OR 97202 USA

2 Department of Computer Science, Portland State University, 1900 SW 4th Avenue
Portland, OR 97207 USA

sudarshan.murthy@elseinstitute.org, {maier,lmd}@cs.pdx.edu

Abstract. XML schemas often allow many aspects of an object to be described
in the same document, but queries over such documents might be concerned
with just one aspect. For example, an XML representation of a spreadsheet can
include both spreadsheet data and styling, but a query might address only the
data portions. In these situations, traditional approaches first define a data-only
view and then query that view. However, these approaches can make it hard to
define views and to express queries; and in some cases (even with view
unfolding), they can even make query-execution inefficient in terms of time and
space. We propose cloaking document parts and selectively revealing the
cloaked parts as an alternative. Cloaking exposes many simultaneous concep-
tual views of a document without constructing new data, allows queries to be
expressed in existing languages, and it can be easily supported in existing query
processors. In this paper, we present a formal model for cloaking, its application
in a cloaking query processor, and the results of an experimental evaluation in
the context of superimposed information (SI, information with references to
existing information) and bi-level information (SI along with the referenced
information). Our experiments suggest that cloaking can make it easier to
define views and to express queries, and that for certain query classes, a
cloaking query processor saves both time and memory when compared to a
traditional query processor.

Keywords: Views, cloaking, query optimization, bi-level information.

1 Introduction

Often, an XML document describes multiple aspects of the same object. For example,
an XHTML document mixes data, metadata, styles, and scripts; an XML version of a
spreadsheet might mix presentation aspects and data aspects. Such mixing can affect
three common data-management activities (which we address in this paper):

• expressing aspect-specific queries which examine and return just one aspect of data,
• creating aspect-specific views, and
• executing aspect-specific queries.

174 S. Murthy, D. Maier, and L. Delcambre

We illustrate the aforementioned issues using the XML representation that
Microsoft® Excel® (MS Excel) uses for spreadsheets. (Section 4 discusses these
issues and our solution in the context of superimposed and bi-level information.)
Figure 1 shows an XML document for a spreadsheet containing just one active cell.
This document includes both the data aspect (such as cell value) and the presentation
aspect (such as cell height) of the spreadsheet. The parts in bold indicate spreadsheet
data; the other parts indicate presentation markup. For example, the element Styles
defines three different display styles using instances of the element Style. The figure
shows the full contents for only one display style. (Each Style element has five des-
cendant elements and those elements have several attributes.)

<Workbook xmlns="…" xmlns:o="…" xmlns:x="…" xmlns:s="…" xmlns:h="…">
 <Styles>
 <Style s:ID="Default" s:Name="Normal">…</Style><Style s:ID="s23">…</Style>
 <Style s:ID="s30">
 <Alignment s:Vertical="Top"/>
 <Borders>
 <Border s:Position="Left" s:LineStyle="Continuous" s:Weight="2"/>
 <Border s:Position="Right" s:LineStyle="Continuous" s:Weight="2"/>
 </Borders>

 </Style>
 </Styles>
 <Worksheet s:Name="Sheet1">
 <Table s:ExpandedColumnCount="1" s:ExpandedRowCount="1" s:StyleID="s23">
 <Column s:StyleID="s23" s:AutoFitWidth="0" s:Width="91.5"/>
 <Row s:Height="15">
 <Cell s:StyleID="s30"><Data s:Type="String">Arnold Ice Cave</Data></Cell>
 </Row>
 </Table>
 </Worksheet>
</Workbook>

Fig. 1. XML data generated for a single MS Excel cell. Parts in bold model the cell’s data; the
other parts contain presentation information for the cell.

This interweaving of presentation markup with spreadsheet data makes it hard to
perform the following activities involving spreadsheet data alone: expressing data-
only queries (which examine and return only the data parts), creating data-only views,
and executing data-only queries. (Likewise for presentation-only queries and views.)

For example, consider the task of extracting only the cell data. This task requires
the following XQuery query or an equivalent XSLT template. The simple XPath
expression //Cell does not suffice, because XPath cannot selectively remove con-
tained nodes such as the presentation attribute s:StyleID.

<result>{

 for $c in doc("w.xml")//Cell return <Cell>{$c/Data}</Cell>

}</result>

Likewise, extracting the complete worksheet data requires a rather complex XQuery
query (shown in Figure 2) due to the number and location of presentation nodes to be
excluded. Again, the XPath expression //Worksheet does not suffice.

One way to ease expression of data-only queries is to first create a data-only view
(say using the XQuery query shown in Figure 2) to expose only the spreadsheet data
and execute data-only queries over that view. For example, with the data-only view

 Cloaking Data to Ease View Creation, Query Expression, and Query Execution 175

created, one can use the simple XPath expression //Cell to easily retrieve informa-
tion related to cells, without intervening presentation information. However, in
addition to requiring a complex XQuery query to first create the data-only view, this
approach is inefficient because the view is materialized and thus constructs new nodes
(unlike XPath which simply returns existing nodes) [20].

<Workbook>{
 for $s in doc("w.xml")/Worksheet
 return
 <Worksheet s:Name"{s:Name}">{
 for $t in $s/Table
 return
 <Table>{
 for $r in $t/Row
 return
 <Row>{
 for $c in $r/Cell return <Cell>{$c/Data}</Cell>
 }</Row>
 }</Table>
 }</Worksheet>
}</Workbook>

Fig. 2. An XQuery query to create a data-only view of an MS Excel spreadsheet encoded as the
XML document shown in Figure 1

Lastly, with the data of Figure 1, some data-only queries might execute ineffi-
ciently in the traditional approach. For example, executing the expression //Cell
requires the query processor to examine all 26 elements in the document, but only six
of these elements represent spreadsheet data.

One solution to these problems is to separate the spreadsheet data from its presen-
tation markup, but this alternative organization makes it harder to express queries that
operate on both presentation information and spreadsheet data. Such queries would
need to explicitly join the two kinds of data, which in turn can require more complex
queries in XQuery, XSLT, or XPath 2.0. Also, this organization increases the overall
data-management effort because information will now be distributed.

Using indexes can address some of the query-execution problems, but typically
only query processors in high-end database management systems use persistent
indexes, whereas, though popular, standalone XML query processors have limited or
no support for indexes. For example, Saxon [10] builds temporary indexes for very
specific cases, but a user cannot decide which indexes are built and used.

In this paper, we present a means of easily and efficiently querying and returning
only parts of an XML document by cloaking data and revealing cloaked data only to
qualifying queries. Our solution has the following characteristics. It:

• creates several simultaneous conceptual views without constructing new data,
• allows user queries to be expressed in existing languages, and
• executes queries, as written, using a query processor that is largely unmodified.

176 S. Murthy, D. Maier, and L. Delcambre

The notion of cloaking is not specific to the XML model, but, for simplicity, we limit
the discussion in this paper to just XML. (A detailed discussion of our solution,
including application to other data models, is available elsewhere [15].)

The rest of this paper is organized as follows: Section 2 gives an overview of our
solution. Section 3 generalizes the problem and presents a formal model of the solu-
tion. Section 4 introduces the notions of superimposed information and bi-level
information and illustrates the benefits of cloaking in that context. It also presents the
results of an experimental evaluation of a cloaking query processor. Section 5 reviews
related work and Section 6 concludes the paper.

2 Solution Overview

We now informally illustrate cloaking by coloring nodes of an XPath tree [19]
(corresponding to an XML document) and queries over such a tree using a simple 2-
color scheme. We show how this simple scheme can be used to cloak tree nodes and
then selectively reveal nodes to queries.

In the 2-color scheme, colors of tree nodes and queries are chosen from an ordered
set. The tree nodes are colored such that the invariant Color(n) ≥ Color(Parent(n)) is
maintained for each node n where the ≥ relationship is performed on the ordinal posi-
tion of colors in the set. Queries are not performed directly on a tree, but on the scope
based on query color, which is a tree obtained by retaining only the nodes (and the
corresponding edges) that satisfy the condition Color(query) ≥ Color(node).

The ordering of the color set and the assignment of a single color to each node are
application constraints imposed here for illustration. As the formal model in Section
3 shows, our solution does not impose such constraints.

@s:StyleID

Cell

Styles

Input tree Scope of a white operation

D
D

D

D

D

D

Workbook

…

D
D

D

D

D

P P D P

P

P

Fig. 3. A tree colored from {White, Gray}, and the scope of a white operation

In this scheme, tree nodes can be cloaked from a query by setting the node colors
and the query color appropriately. For example, consider a tree whose nodes are
colored from the ordered set {White, Gray}, where Gray > White. Then, the scope of
a white query contains only white nodes, whereas the scope of a gray query is the
entire tree.

The input tree in Figure 3 shows the XPath representation of a part of the XML
document of Figure 1. The nodes of this tree are colored using the 2-color scheme.
The nodes labeled D (and colored white) represent spreadsheet data; nodes labeled P

 Cloaking Data to Ease View Creation, Query Expression, and Query Execution 177

(and colored gray) indicate presentation information; the unlabeled node (also colored
white) is the XPath root. Some nodes are also labeled for ease of comparison with the
XML document. The scope of a white query is shown on the right.

In this scheme, a white query is a data-only query because gray nodes are cloaked
from it. For example, the simple XPath expression //Cell colored white returns the
element Cell and the contained element Data, but leaves out the presentation attribute
s:StyleID. However, if the expression is colored gray, the result includes s:StyleID.

A color scheme applied to an XML tree cloaks tree nodes, in essence defining dif-
ferent views over the input XML document. A query color when applied to a cloaked
tree defines the scope of all queries of that color, creating a particular view over the
original document. Figure 3 shows the scope of white queries for the example 2-color
scheme applied to XML document of Figure 1. This scope (or view) is equivalent to
the view created using the XQuery query of Figure 2. We note that in our approach,
view creation does not create new nodes, unlike views created using XQuery or
XSLT (which always create new nodes).

Cloaking also makes processing of data-only queries more efficient. For example,
when executing the data-only query //Cell and limiting only to the nodes shown in
Figure 3, a cloaking query processor needs to examine only 10 nodes (the white nodes
plus the first gray child of each white node) instead of all 12 nodes as a traditional
processor would. (We omit the details, but in reality, a cloaking query processor using
the XPath model [19] needs to load only 44 nodes instead of loading 167 nodes.)

The 2-color scheme described thus far creates two classes of queries—data-only
queries and all other queries—and it eases the task of expressing data-only queries,
creating data-only views, and executing data-only queries. Likewise, a 3-color scheme
employing the ordered set {White, Gray, Slate} and allowing multiple colors per node
creates three query classes (data-only, presentation-only, and data plus presentation)
and eases operations on both data-only queries and presentation-only queries.
Needless to say, a 1-color scheme is the same as traditional query processing.

3 Solution Details

We now present a formal model and an architectural reference model for a cloaking
query processor. We relate the architectural model to the formal model and show how
the formal model applies to the relational and XML data models.

3.1 Formal Model

Formally, we model the data input to a cloaking query processor as a forest of trees.
We cloak tree nodes from queries by coloring both nodes and queries from a non-
empty color set according to a cloaking scheme. A test function determines the nodes
revealed to a query based on the query’s color. (Cloaking does not require colors, but
we use colors to aid visualization. See the upcoming Definitions 4 and 6.)

The formal model relaxes many of the constraints of the informal model used in
Section 2. For example, the formal model allows multiple colors per node, whereas
the informal model assigned just one color to each node.

178 S. Murthy, D. Maier, and L. Delcambre

The formal model employs the following domains:

B: The domain of truth values. B = {true, false}.
D: The domain of colors;

C: The domain of color sets. C = {C | C ⊆ D}.

K: The domain of cloaking schemes.
N: The domain of nodes;
F: The domain of forests.

F
k
: The domain of colored forests. F

k
 ⊆ F. See Definition 3.

Q: The domain of user queries; T: The domain of test functions. See Definition 6.

Definition 1: A tree T is a connected, directed acyclic graph represented by a pair (N,

E), where N ⊆ N is the set of tree nodes, and E ⊆ (N × N) is the set of edges between

the tree nodes. Each node has a structured label. The label includes the set of colors
associated with the node.

Definition 2: Colors: N → C is a function that returns the colors assigned to a node.
The function returns the empty set ∅ if no color is associated with the node. A
cloaking scheme assigns a node’s colors from a color set. See Definition 4.

Definition 3: A forest F is a set of trees represented by a pair (N, E), where
| |

1

F

t
t

N N
=

=∪

and
| |

1

F

t
t

E E
=

=∪ , where |F| is the number of trees in the forest F. Nt and Et denote the

node set and edge set, respectively, of the tth tree in the forest. A forest is colored if

Colors(n) ≠ ∅, ∀ n ∈ N. Additionally, the forest is colored from the color set C if

Colors(n) ⊆ C, ∀ n ∈ N.

Definition 4: A cloaking scheme is a function k: N × C × F → N that assigns colors
from a color set C to a node n in a forest F, producing a new node. If the nodes n and
k(n, C, F) differ, it is only on their colors. Also, Colors(k(n, C, F)) ⊆ C.

A cloaking scheme colors each node individually, but within the context of a forest
so it can examine other nodes and edges in the forest. For example, the 2-color
cloaking scheme of Section 2 colors a node based on the colors of the node’s parent.
Another scheme might assign colors based on the tree to which the node belongs.

A cloaking scheme might impose certain constraints on the color set and the input
forest. For example, the example scheme of Section 2 requires the color set to be
totally ordered. Another scheme might require the forest to contain a single tree.

Definition 5: The functional Cloak: F × K × C → F
k
 colors a forest F = (N, E) from a

color set C according to a cloaking scheme k to produce a colored forest Fk.
Cloak(F, k, C) = Fk = (Nk, Ek), where:

Nk = {k(n, C, F) | n ∈ N} and Ek = {(k(n1, C, F), k(n2, C, F)) | (n1, n2) ∈ E}

 Cloaking Data to Ease View Creation, Query Expression, and Query Execution 179

Definition 6: A test function t: D × C → B “tests” a color c against a color set C. For
example, a test function might test if a query’s color is one of the colors assigned to a
node. Though the second input’s domain is C, in our use, its value will be a subset of
the color set used to cloak the input forest. See Definition 7.

The choice of the domains D and C influences the test functions possible. For
example, if the color values are unordered, a test function would be limited to equality
tests on individual values. However, a function can test inequality as well if the values
are ordered. (The 2-color scheme of Section 2 uses a totally ordered color set.)

Definition 7: The functional Reveal: F
k
 × T × D → F

k
 produces the scope of a query,

based on query color, from a colored forest. Given a colored forest Fk = (Nk, Ek)
produced by Cloak, a test function t, and a query color c, the following holds:

Reveal(Fk, t, c) = Fs = (Ns, Es), where:

Ns = {n | n ∈ Nk ∧ t(c, Colors(n))} and

Es = {(n1, n2) | (n1, n2) ∈ Ek ∧ n1 ∈ Ns ∧ n2 ∈ Ns}

Because the set of edges Es is equal to Ek restricted to the set of nodes in Ns, we
express Es as Ek | Ns (read “Ek restricted to Ns”). Note that the revealed scope Fs might
have more trees than the input colored forest Fk.

Definition 8: A subtractor is a function s: F × N → B that determines if a node n in
the input forest F is passed to the output.

A user query can have two parts: a subtractive part that filters out some of the input
nodes; and an additive part that creates new nodes, say with aggregate values. Path
expressions (such as //Cell) in XML queries are subtractive; element and attribute
constructors in XQuery and XSLT are additive. A subtractor models the subtractive
part of a user query. It operates on one node at a time within the context of a forest.

Definition 9: An adder is a function a: F → F that produces a forest after examining
an input forest. Given a query scope Fs = (Ns, Es) produced by the function Reveal,
the following holds:

a(Fs) = Fa = (Na, Ea), where:

Na ⊆ {n | n ∈ N ∧ n ∉ Ns} and

Ea = {(n1, n2) | (n1 ∈ Na ∧ (n2 ∈ Na ∨ n2 ∈ Ns)) ∨ (n2 ∈ Na ∧ (n1 ∈ Na ∨ n1 ∈ Ns))}

An adder models the additive part of a user query. It produces nodes not already in the
input. (New nodes are not colored, but they can be. See Section 3.2.) If connected, a
new node forms an edge with another new node or with an input node. The output
forest can be ill-formed because Ea can refer to nodes not in Na, but this situation is
rectified when query execution is complete. See Definition 10.

Definition 10: The functional Query: F
k
 × Q → F

k
 computes the result of a user query

over a colored forest (produced by the functional Reveal). Given the scope Fs = (Ns,
Es) and a user query q with subtractive and additive parts qs and qa respectively, we
have:

180 S. Murthy, D. Maier, and L. Delcambre

Query(Fs, q) = Fr = (Nr, Er), where

Nr = {n | n ∈ NS ∧ (qs(Fs, n) ∨ n ∈ Na)} and Er = (Es ∪ Ea)| Nr

Here, Na and Ea are components of the forest Fa generated by qa, the additive part of
the user query q. (The functional Query internally invokes qa.)

3.2 Architectural Reference Model

Figure 4 shows a reference model for a cloaking query processor. The modules Cloak,
Reveal, and Query correspond respectively to the functionals Cloak, Reveal, and Query
in the formal model. The symbols in parentheses in Figure 4 correspond to the sym-
bols used in Section 3.1.

Given an input forest F = (N, E), a cloaking scheme k, a color set C, a test function
t, a query color c, and a user query q (with subtractive and additive parts qs and qa),
the query processor produces a forest Fr.

Fr = (Nr, Er) = Query(Reveal(Cloak(F, k, C), t, c), q), where:

Nr = Na ∪ {k(n, C, F) | n ∈ N ∧ t(Colors(c, k(n, C, F))) ∧ qs(F, k(n, C, F)) }

Er = Ea ∪ {(k(n1, C, F), k(n2, C, F)) | (n1, n2) ∈ E ∧ k(n1, C, F) ∈ Nr ∧ k(n2, C, F) ∈

Nr}

The equation for Nr is obtained by expanding the functionals Query, Reveal, and
Cloak using Definitions 10, 7, and 5. New nodes created by the additive part of the
user query are not colored, but they may be colored if desired. Coloring the new
nodes using the same scheme used to color input nodes alters the result as follows:

Nr = {k(n, C, F) | (n ∈ Na) ∨ (n ∈ N ∧ t(Colors(c, k(n, C, F))) ∧ qs(F, k(n, C, F)))}

Er = {(k(n1, C, F), k(n2, C, F)) | ((n1, n2) ∈ Ea ∨ (n1, n2) ∈ E) ∧ k(n1, C, F) ∈ Nr ∧

k(n2, C, F) ∈ Nr}

Regardless of the coloring of new nodes, the equations for Nr and Er show that a
cloaking query processor can execute a query without altering input nodes and
without explicitly constructing the scope Fs of a user query q. Also, because the test
function and the subtractor are conjunctive terms, the query processor may choose the
evaluation order of these terms, possibly based on cost estimates. The processor might
also be able to combine the test function with the subtractor, so that the query is
executed more efficiently.

Fig. 4. An architectural reference model for a cloaking query processor. Dashed arrows indicate
data flow. Solid arrows denote parameters of the query-execution process.

Result (Fr)

Query color (c) User query (q)

Scope (Fs) Cloaked data (Fk)

Reveal Query

Input data (F)

Cloak

Color set (C)

Cloaking scheme (k) Test function (t)

 Cloaking Data to Ease View Creation, Query Expression, and Query Execution 181

3.3 Key Operational Aspects

Applicable data models: Our model works for both the XML and relational data
models. In the XML model, an XML document is a tree in the data models of XPath,
XSLT, and XQuery. Also, XPath, XSLT, and XQuery operate on and produce trees.
In the relational model, a relation instance is a tree (of height 2): The relation is the
root node, a tuple in the relation is a child of the root node, and a field (that is, a col-
umn) in a tuple is a child of the tuple’s node. Also, an SQL query operates on a set of
trees and it outputs a single tree.

The scope of a query should be compatible with the data model and the query to be
executed. These compatibility needs are met for the XML model because any scope
will be a node sequence and queries in any of the three XML query languages can
operate on arbitrary node sequences. With the relational model, even if the scope is a
set of relations, a user query that is valid over the input data might be invalid over the
scope if an entity the query explicitly references is not included in the scope. (SQL
disallows referencing non-existent schema elements.) With respect to the need for the
scope to be compatible with the data model, model-specific structural constraints such
as “a tuple is revealed only if the containing relation is also revealed”, ensures that the
scope is a set of relations. (The 2-color scheme of Section 2 imposes this constraint.)

Representing and assigning colors: An input node’s color can be represented at the
schema level or at the instance level. Regardless, the color may be represented exten-
sionally or intensionally; and the assignment may be implicit or explicit. Instance-
level assignment affords different colors for different instances of a schema element.

Explicit extensional assignment requires support at the schema-specification level
(for example, SQL’s CREATE TABLE needs to support colors) or in a “metadata” layer.
Explicit intensional assignment requires associating a query or function (that returns
colors) with a schema or instance element. For example, an SQL query may be asso-
ciated with a field to determine the field’s color at schema or instance level.

Implicit assignment requires no additional data to represent colors, but it is limited
by the information accessible to the assignment machinery. For example, an HTML
node may be colored based on the kind of information it represents: data, metadata,
style, script, and so on. The 2-color scheme described in Section 2 performs implicit
assignment at the schema level: presentation nodes (as determined by the name and
namespace of nodes) are gray; all other nodes are white.

4 Evaluation

We now introduce the notions of superimposed information and bi-level information
and share the results of evaluating a cloaking query processor for such information.

4.1 Superimposed and Bi-level Information

We introduce the notions of superimposed information and bi-level information using
an application called the Superimposed Scholarly Review System (SISRS, pronounced
scissors) [14]: SISRS is useful in peer-review processes that conferences might use. It
allows reviewers to superimpose (that is, overlay) comments on documents and sub-
documents (document parts) of various formats (PDF, HTML, MS Word, MS Excel,

182 S. Murthy, D. Maier, and L. Delcambre

audio, video, and so on) without altering the base documents. Reviewers can upload
superimposed comments to a central repository where an administrator can merge
comments and process the merged comments in a variety of ways. For example, the
administrator can filter comments based on specific attributes in the comments or by
attributes in the documents reviewed. The administrator can also prepare author
feedback by grouping reviews from different reviewers for each document.

Figure 5(a) shows SISRS being used, from within MS Word, to superimpose a
comment on an MS Word sub-document. The Region marked “1” shows the SISRS
toolbar; Region 2 shows the commented sub-document. The “Insert Comment” dialog
window lets the reviewer create a structured comment. Region 3 shows the “address”
(Page 6, Line 9) of the commented sub-document. SISRS automatically generates this
address in both machine-friendly and human-friendly formats. Figure 5(b) shows an
HTML review report generated over collated reviews. The first comment is related to
content on Page 2; the second one is about Page 6 (the subject of Figure 5(a)).

(a) (b)

Fig. 5. (a) Using SISRS to superimpose a comment over an MS Word sub-document. (b) A
review report generated via a bi-level query over review comments.

Using a superimposed application (SA) such as SISRS provides three key benefits:
create superimposed information (SI) [13] in reference to base information (BI)
without modifying BI; integrate disparate and distributed BI without replicating it;
and evaluate queries over bi-level information [15], the combination of SI and BI.

SI is enabled by marks [5], which are addresses of BI. A mark can be a file-system
path or a URL to a document; it can be a document address in conjunction with a
fragment address such as “Page 6, Line 9” when addressing a sub-document. Ob-
viously, what constitutes a mark depends on the location, format, and other attributes
of the addressed BI. Also, multiple addressing methods might be possible for the
same document or sub-document. Due to the variety of addressing needs and
methods, the details of a mark are encapsulated inside a “mark descriptor” [16].

Bi-level information is SI extended by context. Context is a hierarchical set of
information obtained from the base layer, using a mark [16]. What constitutes a

 Cloaking Data to Ease View Creation, Query Expression, and Query Execution 183

context can vary across marks. For example, an MS Word sub-document has page
number and line number in its context, whereas an MS PowerPoint sub-document has
a slide number. Also, marks to different sub-documents within the same document
can have different context elements. For example, only an MS Word sub-document
located inside a table has a row number.

The notions of mark, mark descriptor, and context are supported in a middleware
called SPARCE [16]. SPARCE allows pluggable mark implementations and a mark
implementation may employ appropriate kinds of mark descriptors and dynamically
obtain context information for a given mark descriptor.

Mark, mark descriptor, and context are also supported in Sixml [18], an XML
representation of superimposed and bi-level information. Figures 6(a) shows the
Sixml representation of the superimposed comment in Figure 5(a). The bolded parts
denote SI; the other parts indicate marks and mark descriptors. The element EMark
associates a mark with the SI element Comment. The element Descriptor inside
EMark encodes the mark descriptor corresponding to the commented region. This
descriptor identifies the mark implementation that mediates access to the base layer. It
also includes the addresses of the base document and the marked sub-document.

The AMark element associates a mark with the SI attribute excerpt as denoted by
the attribute target of AMark. The attribute valueSource indicates that the target
attribute’s run-time value is the text excerpt obtained from the associated mark. (Not
shown, but both AMark and EMark contain identical Descriptor elements.)

Figures 6(b) shows an XML representation of a part of the context information
obtained from the MS Word sub-document in Figure 5(a). It shows the text content of
the marked sub-document; presentation information such as font name and size; and
placement information such as page number and line number.

<Comment excerpt="">
 Typo
 <AMark target="excerpt" valueSource="true">
 <Descriptor>…<Descriptor>
 </AMark>
 <EMark>
 <Descriptor>
 <Agent>OfficeAgents.WordAgent</Agent>
 <Doc location="c:/2LQ-XYZ-rp.doc"/>
 <Subdoc startChar="395" endChar="420"/>
 <Descriptor>
 </EMark>
</Comment>

<Context>
 <Content>
 <Text>but it ha many other uses</Text>
 </Content>
 <Presentation>
 <FontName>Times New Roman</FontName>
 <FontSize>11</FontSize>
 </Presentation>
 <Placement>
 <Page>6</Page>
 <Line>9</Page>
 </Placement>
<Context>

(a) (b)

Fig. 6. (a) A Sixml representation of the superimposed comment in Figure 5(a). (b) Partial
context information for the MS Word sub-document selected in Figure 5(a).

4.2 Bi-level Querying

A bi-level query processor evaluates bi-level queries (which are queries over bi-level
information) [15]. Internally, a bi-level query processor represents Sixml documents
using an extension of the XPath data model, but user queries are expressed in an
existing XML query language. Figure 7(a) shows a simplified form of the Sixml
fragment of Figure 6(a) represented in the XPath model.

184 S. Murthy, D. Maier, and L. Delcambre

The bi-level query processor performs the following tasks to ease view creation,
query expression, and query execution in a bi-level-information setting:

1. Make a mark association node a child of the node with which the corresponding
mark is associated. Figure 7(b) shows the AMark node as a child of the attribute
excerpt, because AMark associates a mark with that attribute. This extension of the
XPath data model does not affect query expression or evaluation.

2. Lazily add a node for the Context element as a child of a mark association ele-
ment. Also, lazily set the value of a node to be the text excerpt retrieved using a
mark if the attribute valueSource is enabled in the corresponding mark association
node. Figure 7(c) illustrates this action: The AMark and EMark nodes each have a
child named Context, and the value of the attribute excerpt has changed to the text
that is commented on. The content of Context is omitted for brevity, but its
contents will be based on the information in Figure 6(b).

3. Implicitly color tree nodes from the ordered set {White, Gray, Slate, Black} while
maintaining the invariant Color(n) ≥ Color(Parent(n)) for each node n in the tree:
White to SI; Gray to mark associations (AMark and EMark); Slate to mark
descriptors (Descriptor and its children); and Black to context information
(Context and its children). Figure 7(c) illustrates this coloring.

The bi-level query processor’s cloaking scheme supports four classes of queries: SI-
only (White), SI plus mark associations (Gray); SI, mark associations, and mark
descriptors (Slate); and everything (Black). Thus, as seen in Figure 7(d), a gray query
sees both SI and mark associations, but a white query sees only SI (Figure 7(e)).

(a) (b)

(c) (d) (e)

Fig. 7. (a) The Sixml document of Figure 5(a) represented in the XPath model (b) The Sixml
document of Figure 5(a) represented in the extended XPath model (c) Excerpts and other
context information added (d) Scope of a gray query (e) Scope of a white query

“Typo”

@valueSource

AMark

@excerpt

Comment

@target

EMark

“but it ...”

“Typo”

@valueSource

AMark

@excerpt

Comment

@target

Descriptor

EMark

Descriptor

Context

Context

“but it ...”

“Typo” @excerpt

Comment

“but it ...”

“Typo”

@valueSource

AMark

Comment

@target Descriptor

EMark

Descriptor “”

@excerpt “Typo”

@valueSource

AMark

@excerpt

Comment

@target

Descriptor

EMark

Descriptor

“”

 Cloaking Data to Ease View Creation, Query Expression, and Query Execution 185

4.3 Implementation and Observations

We have implemented a bi-level query processor using the .NET Framework [17] and
we have used this query processor with several SAs including SISRS. In this section,
we share our observations on the ease of view creation and query expression and
share some experimental results showing improved query-execution efficiency due to
cloaking, all in the context of bi-level information generated by SISRS.

First, the bi-level query processor’s cloaking scheme automatically defines and
creates four simultaneous views (which are in turn query scopes) over bi-level infor-
mation created with any SA (not just for SISRS). Users can readily access these views
by simply choosing an appropriate query color. For example, Figure 7(e) shows the
SI-only view over which white queries execute.

In terms of query expression, retrieving all SI requires the simple XPath expression
“.” colored white and executed in the context of the root node. In contrast, retrieving
SI with a traditional processor requires a 96-line XSLT style sheet containing eight
templates that employ 23 path expressions [15]. Improvements of this sort are possi-
ble for any SI-only query, because cloaking dynamically creates a view that hides
non-SI nodes.

We now share some experimental results illustrating improvement in query-
execution efficiency. Table 1 shows the four datasets used in the experiments. All
marks in these datasets were to PDF documents which represented conference papers.
The performance of the bi-level query processor was compared to the traditional
query processor included in the .NET Framework. In all, we executed 219 queries
(including queries over other datasets), but, for brevity, we report the result of only
two queries. We executed each query thrice and report the average execution time.

Table 1. SISRS datasets used in experimental evaluation of the bi-level query processor

Number of mark associations

Document File size (KB) # Base docs EMark AMark Total

SISRS-1 206 53 1,908 53 1,961

SISRS-2 414 106 3,816 106 3,922

SISRS-4 833 213 7,668 213 7,881

SISRS-8 1593 426 15,336 426 15,762

SI-only queries: We first report on the performance of the bi-level query processor
on the query to retrieve all SI from SISRS documents. Again, with the bi-level query
processor, the simple white XPath expression “.” was used, whereas an XSLT style
sheet was used with the traditional processor. Table 2 compares the performance of
the two processors for this task and shows that cloaking saved 50% or more time
when retrieving SI.

When retrieving SI, the bi-level processor is faster for two reasons: First, it
examines fewer nodes (62% fewer node movements than the traditional processor).
Second, the use of XPath allows existing nodes to be returned as they are, whereas
XSLT always constructs new nodes. Thus, the bi-level processor also consumes less
memory when executing this query.

186 S. Murthy, D. Maier, and L. Delcambre

Table 2. Time (in milliseconds) to retrieve SI only using the bi-level query processor and the
traditional query processor

Processor (language) SISRS-1 SISRS-2 SISRS-4 SISRS-8

Bi-level (XPath) 5.21 10.42 20.83 36.46

Traditional (XSLT) 10.42 20.83 41.67 78.12

Focused and un-focused path expressions: Cloaking encourages the use of unfo-
cused path expressions where a user might otherwise use focused expressions. A
focused path expression is an expression that guides the query processor strictly along
the path of interest. An unfocused path expression does not guide the processor in this
manner. A focused expression causes fewer navigator movements, but is sensitive to
schema revisions. Unfocused expressions frequently employ wildcards and other
shortcuts that ease query development, but they increase navigator movements. Our
observation is that cloaking reduces the number of navigator movements for unfo-
cused expressions, thereby reducing query-execution effort while making it easier to
express queries, a quality especially useful in ad-hoc querying. (Some schemas might
provide greater benefits than others.)

Table 3 compares the time to evaluate a focused expression and its equivalent
unfocused expression in both the bi-level processor and the traditional processor.
Whereas the bi-level processor provides the obvious savings over the traditional
processor in each case, it also considerably reduces the overhead of using unfocused
expressions: 25% overhead (9705 ms instead of 7742 ms) with the bi-level processor
compared to 75% with the traditional processor.

Table 3. Time (in milliseconds) to retrieve comment text using focused and unfocused path
expressions

Path expression Bi-level Traditional Savings due to Bi-level

Focused: /Reviews/Paper/Comment/text() 5834 7742 33%

Unfocused: //text() 9705 13521 39%

5 Related Work

Today, XML-management largely takes place in two settings: relational database
management systems (RDBMSs) and standalone XML processors. The exact tech-
niques commercial RDBMSs use for XML management are generally unpublished,
but we expect they shred XML data into relations and then employ traditional rela-
tional techniques for querying. Systems such as Microsoft SQL Server [4] also allow
creation of XML views of relational data.

Standalone XML processors generally specialize in XML querying (not in XML
storage). Conceptually, our approach is closer to that of a stand-alone processor (our
bi-level query processor is implemented as one), but nothing in our approach should
prevent DBMSs from employing cloaking in their query processing.

 Cloaking Data to Ease View Creation, Query Expression, and Query Execution 187

As outlined in Section 1, using indexes is a way to improve query-execution effi-
ciency. Luk and others [12] discuss the use of path-based indexes and other kinds of
indexes in XML querying, but they do not explicitly consider the problem of
accessing a systematic subset of an XML document as we do with cloaking.

There has been interest in XML views for over a decade. For example, Abiteboul [1]
discusses various aspects involved in supporting XML views including the benefits of
assigning an object identifier to each subdocument so that you can refer to it even if the
path changes. In a similar way, in our model, we explicitly identify nodes so that we can
attach additional information such as the colors that have been assigned.

The ActiveViews framework [2] introduces a feature that is in some sense a dual to
cloaking. The “with” clause in a view definition can specify what portions of a docu-
ment or element are retained in a view; cloaking, in contrast, specifies portions of a
document that are to be suppressed. Also, the “with” clause appears to operate only at
the schema level; our approach can operate at both the schema and instance levels.

Perhaps the work most related to cloaking involves XML views expressed using
XSLT [8] where queries against a view are translated based on the XSLT view defini-
tion into queries addressing the underlying XML documents. Query answers are then
translated back into the view, also based on the XSLT view definition. This approach,
as well as our approach using cloaking, refrains from transforming and materializing
the underlying XML documents based on the view definition. In their work, they
modify the (XPath) query appropriately whereas with cloaking we modify the navi-
gation operator that traverses the XML document, effectively “lying” to the XML
path processor when nodes have been cloaked.

Both view-materialization and view-unfolding are related to cloaking. View mate-
rialization aids repeated use of views and is preferred when the view is used without
refinement (such as filtering out parts of the generated view). View unfolding does
not materialize results and is beneficial when views are refined before use. View ma-
terialization is popular in data warehouses, whereas view unfolding is employed in
data-security and data-privacy systems (for example, SMOQE [6] and Hippocratic
databases [11]).

Cloaking can be integrated into view unfolding, because, as outlined in Section 3.2,
our test functions are just conjunctive terms. Specifically in the XML model, cloaking
aids the use of non-materialized views, but we see benefits to cloaking even when a
view is materialized, because view materialization follows view generation and
cloaking relates to view generation. (To materialize a view, the view has to be first
generated. The query processor can employ cloaking to generate the view.)

Data-privacy systems effectively cloak data, but cloaking in that context is an end,
not a means. Specifically, published literature does not show privacy systems using
cloaking to improve view creation, query expression, or query execution.

The compatibility issues of our cloaking model with the relational model (hig-
hlighted in Section 3.3) exist in data-privacy systems as well. Privacy systems
typically manage the issues by disallowing queries that address hidden elements and
impose structural constraints such as container visibility. Similar model-specific
constraints may be imposed in an application of our model as well.

Due to the use of colors, our cloaking approach appears similar to the multi-
colored tree model (MCT) [9], but MCT is not designed for cloaking. (Instead, it aims
to simplify query expression over shallow trees that result from normalization of

188 S. Murthy, D. Maier, and L. Delcambre

nested data.) In MCT, each XML document tree has a color. An element may be used
in multiple document trees, and each element is implicitly assigned the set of colors
formed by collecting the color of each tree in which the element is used. Attributes,
namespaces, and non-element child nodes are assigned the same colors as the parent
element. In our approach colors are assigned to tree nodes, not to trees; and any kind
of node may be colored without constraints.

MCT requires the use of MCXQuery, an extension of XQuery. MCXQuery allows
each step in a path expression to choose the tree in which navigation continues by
including a color in each step. Our approach uses existing query languages as they
are, and a node’s color determines if a node is visible to a query; not navigation paths.

 Buneman and others [3] use colors to represent data provenance in a nested rela-
tional model. Like us, they allow a different color to be assigned to tuples, fields, and
to entire relations, but they allow only one color per “object” and they introduce a
new primitive data type called “color”. Also, they require the use of nested relational
algebra extended with “provenance aware” semantics for querying.

MONDRIAN [7], a system to represent and propagate annotations, uses an exten-
sion of the relational model to represent annotations associated with colored blocks,
and an extension of relational algebra, called color algebra, to propagate annotations.
Colors are associated with operators within a query. Only three operators employ
colors, of which only one operator accepts a color. The other two operators have fixed
semantics to propagate colors, in effect fixing a “cloaking scheme”. In contrast, our
cloaking schemes are not fixed and the schemes are independent of operators and
queries. (The same cloaking scheme may be used for different queries.) Also, in our
approach, a color is assigned to an entire query, not to individual operators of a query.

6 Summary

We have introduced the notion of cloaking, a means of hiding data parts and selec-
tively revealing cloaked parts only to qualifying queries. We have presented both a
formal model and an architectural reference model (which are independent of appli-
cations and data models) of a cloaking query processor and showed how a query
processor can implement cloaking without altering its input data. We have also illu-
strated how cloaking improves view creation, query expression, and query execution
in both bi-level query and non-bi-level query settings.

Acknowledgments. This work was supported in part by NSF project numbers
0511050 and 0534762. Any opinions, findings, and conclusions or recommendations
expressed here are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

References

1. Abiteboul, S.: On Views and XML. In: Proceedings of 18th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS 1999), Philadephia, PA
(1999)

 Cloaking Data to Ease View Creation, Query Expression, and Query Execution 189

2. Abiteboul, S., Amann, B., Cluet, S., Eyal, A., Mignet, L., Milo, T.: Active Views for
Electronic Commerce. In: Proceedings of 25th International Conference on Very Large
Databases (VLDB 1999), Edinburgh, Scotland (1999)

3. Buneman, P., Cheney, J., Vansummeren, S.: On the Expressiveness of Implicit Provenance
in Query and Update Languages. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS,
vol. 4353, pp. 209–223. Springer, Heidelberg (2006)

4. Creating XML Views by Using Annotated XSD Schemas. Microsoft Corporation,
http://msdn.microsoft.com/en-
us/library/aa258637(v=sql.80).aspx (accessed October 10, 2011)

5. Delcambre, L., Maier, D., Bowers, S., Weaver, M., Deng, L., Gorman, P., Ash, J., Lavelle,
M., Lyman, J.: Bundles in Captivity: An Application of Superimposed Information. In:
Proceedings of ICDE 2001, Heidelberg, Germany (2001)

6. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: SMOQE: A System for Providing Secure
Access to XML. In: Proceedings of 32nd International Conference on Very Large Data
Bases (VLDB 2006), Seoul, Korea, September 12-16 (2006)

7. Geerts, F., Kementsietsidis, A., Milano, D.: MONDRIAN: Annotating and Querying
Databases through Colors and Blocks. In: Proceedings of 22nd International Conference
on Data Engineering (ICDE 2006), Atlanta, GA, April 3-7 (2006)

8. Groppe, S., Bottcher, S., Birkenheuer, G., Hoing, A.: Reformulating XPath Queries and
XSLT Queries on XSLT Views. Data & Knowledge Engineering 57(1), 64–110 (2006)

9. Jagadish, H.V., Lakshmanan, L.V.S., Scannapieco, M., Srivastava, D., Wiwatwattana, N.:
Colorful XML: One Hierarchy Isn’t Enough. In: Proceedings of SIGMOD 2004, Paris,
France (2004)

10. Kay, M.H.: SAXON: The XSLT and XQuery Processor 8.8,
http://saxon.sourceforge.net/ (accessed October 10, 2011)

11. LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrishnan, R., Xu, Y., DeWitt, D.J.:
Limiting Disclosure in Hippocratic Databases. In: Proceedings of 30th International
Conference on Very Large Data Bases (VLDB 2004), Toronto, Canada, August 31-
September 3 (2004)

12. Luk, R.W.P., Leong, H.V., Dillon, T.S., Chan, A.T.S., Croft, W.B., Allan, J.: A Survey in
Indexing and Searching XML Documents. Journal of the American Society for
Information Science and Technology 53(6), 415–437 (2002)

13. Maier, D., Delcambre, L.: Superimposed Information for the Internet. In: Proceedings of
WebDB 1999, Philadelphia, PA (1999)

14. Murthy, S., Maier, D.: SISRS: The Superimposed Scholarly Review System (2004),
http://sparce.cs.pdx.edu/pubs/SISRS-WP.pdf (accessed October 10,
2011)

15. Murthy, S.: A Framework for Superimposed Applications: Techniques to Represent,
Access, Transform, and Interchange Bi-level Information, Computer Science, Portland
State University (2009)

16. Murthy, S., Maier, D., Delcambre, L., Bowers, S.: Putting Integrated Information in
Context: Superimposing Conceptual Models with SPARCE. In: Proceedings of First Asia-
Pacific Conference of Conceptual Modeling, Dunedin, New Zealand, January 22 (2004)

17. .NET Framework Developer Center. Microsoft Corporation,
http://msdn.microsoft.com/netframework/ (accessed October 10, 2011)

18. Sixml. The Else Institute, http://www.sixml.org (accessed October 10, 2011)
19. XML Path Language (XPath) Version 1.0 (1999) W3C,

http://www.w3.org/TR/xpath (accessed October 10, 2011)
20. XQuery 1.0 and XPath 2.0 Data Model (XDM) (2007) W3C,

http://www.w3.org/TR/xpath-datamodel/ (accessed October 10, 2011)

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 190–196, 2012.
© Springer-Verlag Berlin Heidelberg 2012

On Models of Concepts and Data

Arne Sølvberg

NTNU – Norwegian University of Science and Technology, Trondheim, Norway

Abstract. Bernhard Thalheim’s landmark book titled “Entity-Relationship
Modeling: Foundations of Database Technology” [9] starts with listings of
weaknesses and strengths of contemporary approaches to database models. His
analysis is as valid today as when it was published in 2000. An important
feature of Information Systems Engineering is the need to master software and
data systems complexity while at the same time being able to present design
details in a comprehensible way. The trend towards embedded systems
necessitates that software and data models must be integrated with models of
the application domains, be they technical, organizational, people centered or a
mixture thereof. What follows is a discussion of possible underlying causes of
the weaknesses as stated by Bernhard Thalheim, as well as proposals to
approaches for removing the weaknesses.

1 Introduction

In the introductory chapter of his book [9] Bernhard Thalheim states that “The
problem of database design can be stated as follows:

Design the logical and physical structure of a database in a given database management
system (or for a database paradigm) so that it contains all the information required by the
user and for the efficient behavior of the whole information system for all users and with
application processes and user interaction.
”

This indicates that the whole information system serves as reference for validating a
database design. So the modeling concepts of the data model must be related to the
modeling concepts of the information system model. Furthermore, an information
system is usually built in order to support the operation of some other system which
we will call the usage domain, e.g., by keeping track of its state-of-affairs and making
this information available to actors of “the other system”. This “usage domain” is
known by many different names, e.g., the user domain, the business processes, the
application domain, the Universe of Discourse (UoD), “the real world”. The usage
domain serves as reference for the validation of the information system. Consequently
the modeling concepts of the two must be related in some way or another. So we end
up by requiring that the modeling concepts of the data base and software models, the
information system models and the usage domain models be related in some
transparent way for a proper design evaluation to take place.

The requirement of model integration cannot be satisfied with contemporary
modeling approaches. The practical solution to the dilemma is to treat separately the

 On Models of Concepts and Data 191

modeling in each of the three realms: the systems of the usage domain are modeled
with usage domain modeling languages which reflect on usage domain theories, the
data and software systems are modeled with programming languages and data
modeling languages, and the information systems are modeled with modeling
languages for this domain.

The transformations between the three modeling domains are mostly described
informally, either as textual statements alone, or in modeling languages created for
such purposes. An example of the latter is “behavior modeling”. The information
system is here seen as a structure of information stores and associated information
processes which relates to the usage domain via event notices that are interchanged
between the software/data domain and the usage domain. User interface design and
other types of protocol designs for exchanging information between the two are
associated with behavior modeling.

Information systems are closely related to people oriented usage domains. For
usage domains where no people are involved the interchange protocols between the
usage domain and the data/software domain can be designed directly without much
consideration to the comprehension aspects of data. “Comprehension” is hardcoded in
the interchange protocols. Only when people participate as actors in information
processes, comprehension becomes an issue. Those who interact with a data system
must understand what the data of their transactions means.

There is no generally agreed system model for persons seen as knowledge
processors. For the brake system of a car there are models, as there are for the
manufacturing of steel and for the cost optimal transportation of goods. Information
systems can be seen as models for the behavior of persons (and organizations of
persons) in their roles as knowledge consumers and knowledge producers interacting
with data/software systems. So the information systems domain may well be regarded
as a usage domain in its own right. It is quite common that information systems
interact with systems in other usage domains. So it becomes practical to classify
information systems as belonging to a separate domain in their own right.
Increasingly whole systems consist of interacting subsystems of software/data, people
and “other systems”.

The modeling regime of the information systems domain is “weaker” than for the
two other domains. The modeling regime of the data/software domain reflects the
technological practices of more than half-a-century of building computers, databases
and software. The modeling regimes of the physical world reflect on the laws of
nature as well as the practices of building technical products of various kinds.
Systems designers who do not respect those laws and practices will not be successful.
The information systems domain is different. There are no “laws” to obey or to use
for guidance and there are no agreed models of human behavior in information
processing situations.

Many of the unsolved challenges in application systems design appear as weaknesses
in information systems modeling. Examples are semantic modeling, lacking
comprehension of systems specifications, lacking integration of systems models, and so
on. The remainder of this paper contains a discussion of some of the central (in the
author’s opinion) aspects of the information system modeling regime. The paper may be
seen as an extension of a recent discussion in a similar paper of 2010 [8].

192 A. Sølvberg

2 Contemporary Data Modeling – The ER Model

Bernhard Thalheim gives in [9] a comprehensive review of contemporary data modeling
theory and practice, see [9] chapters 1-3. In [9] chapter 4, he introduces the HERM
extension to the Entity-Relationship Model, in order to overcome some of the stated
weaknesses in the original ER-model [2]. Even if the HERM extension represents a big
step forward it still suffers from some of the inherent weaknesses that the ER-model
shares with other modeling approaches, e.g., with the relational model of data.

The goal of data base modeling is to design an efficient and appropriate data base.
Some of the most important criteria are performance, integrity, comprehensibility and
expandability, see [9] p9. Each of these put different requirements on the data
modeling language. The performance criterion requires that the data model must
reflect the essential properties of data storage and data processing by computers. The
integrity criterion requires that the data model must reflect the rules of the usage
domain. Comprehensibility means that the data model must be understandable for
human beings, and expandability means that new versions of the data model both
must reflect the changes in the usage domain, and relate to already existing databases
that refer to previous versions of the data model.

No existing data modeling language satisfies these conflicting requirements. The
most important criteria to satisfy have been performance and integrity. The chosen
modeling concepts reflect this. Comprehension and expandability require modeling
concepts for capturing the essentials of the usage domains, including the people
domain (the information system domain). The Entity-Relationship model goes some
way in satisfying the comprehension and expandability criteria, at the expense of
satisfying the performance criterion.

The original intention for the ER-model was to provide an approach to modeling in
the usage domain. Judging from the examples of applying the ER-model one has to
conclude that the modeling concepts are mostly used for the modeling of data instead
of the modeling of phenomena in the usage domain. This is reflected in the many
definitions of the entity-concept, see [9] p4. The various (informal) definitions range
from viewing “an entity is a thing which can be distinctly identified”, via “an entity is
a specific thing about which information is kept”, to “the term entity refers to the
logical representation of data”. One may safely conclude that the practical realities of
the performance criterion being “the elephant in the room” have overtaken the noble
intentions of representing realistic models of usage domains. However, the popularity
of the ER-model and its extensions proves that in spite of this it still serves to some
degree to satisfy the criterion of comprehensibility.

Two interesting aspects of the data model problem are the relation between data
and usage domain phenomena, and the model characteristics of usage domains.
One interesting observation is that the contemporary approaches to data modeling are
solidly based on a set theoretic view of the world. Classical technology is,
nevertheless, based on parthood semantics: mereology. This will be discussed in the
following.

 On Models of Concepts and Data 193

3 Mismatch between Modeling in the Data and Usage Domains

A data base consists of values which represent objects in the usage domain. Data
modeling languages must be adequate for the purpose of designing databases with
satisfying performance. Bernhard Thalheim introduces three types of adequacy, see
[9] p14:

• Metaphysical adequacy is achieved if there are no contradictions between the
objects we wish to represent and our representation of them

• Epistemological adequacy regards the ability to express things in the real
world. To be epistemological adequate the representation must be capable of
being used to express the things that we know about the real world

• Heuristic adequacy is achieved if we can express database processing in our
representation.

Data semantics deal with the explicit relationships between the data in the database
and the real world phenomena that are represented by the data. This relationship is
straight forward if the data model is metaphysical adequate. The ER model is
metaphysical adequate for usage domains where all objects are discrete and can be
described in terms of set theory. But this is generally not the case. Most theories of
usage domains are not set-oriented at all. On the contrary, most world models reflect a
world of continuous phenomena. Discontinuities are very rare in nature.

An illustrative example is the modeling of copper. A set theoretic (ER-type)
modeling would have to assume that the extension of the concept of copper is all of
the copper metal in the world, including all things made of copper, and including all
of the copper metal that is found in alloys and ores. Furthermore, each copper sample
is itself copper, so each sample is therefore part of itself. Set oriented modeling is not
suitable for this situation.

The deficiencies of set theory may be counteracted by introducing mereology – the
theory of parthood relations - as a mathematical foundation of similar importance as
set theory, see [13], and [8]. This makes it possible within a respectable
mathematical framework, to express the alternative (but still similar) classification of
facts which is found in the American National Standard’s guidelines for thesauri
construction [11]. The standard document recommends that distinction is made
among the following kinds of concepts (non-exhaustive list):

• things and their physical parts, e.g. bird, car, mountain
• materials, e.g., water, steel, oxygen
• activities or processes, e.g., painting, golf
• events or occurrences, e.g., birthday, war, revolution
• properties or states of persons, things, materials or actions, e.g., elasticity,

speed
• disciplines or subject fields, e.g., theology, informatics
• units of measurement, e.g., hertz, volt, meter.

We must conclude that the ER model is not epistemological adequate. We are not able
to express what we know about the physical world in the ER model. In practice we
find ways around this deficiency by enforcing a set theoretic view on the world, and

194 A. Sølvberg

hiding the epistemological mismatch in heuristics. An excellent discussion of the
challenges involved is offered by Bernhard Thalheim in [10].

The mismatch nevertheless creates difficulties in expressing the semantics of the
ER model of data and of associated databases. A fundamental challenge is to provide
a theory that relates the different modeling regimes, e.g., mereology and set theory. It
may prove difficult to provide ER-extensions to fix the mismatch problem unless the
theoretical basis is in order.

4 Modeling in the People Domain: The Concept of Reflexivity

More than 30 years ago Lehman introduced a classification of software in S-, P-, and
E-programs [4]. S- and P-programs are seen as being separate from their usage
domains, while E-programs are seen as being embedded in their usage domains. An
E-program is itself part of the universe that it both models and controls. The E-
program contains a model of its own interaction with its operational environment. The
E-program designer must perceive the combined behavior of the E-program and its
environment as it will be once the program has been implemented and installed. The
E-programs are true evolutionary programs.

E-programs may be seen as particularizations of the more general concept of
reflexivity [12], which refers to circular relationships between cause and effect. In our
context reflexivity means that the model of a usage domain influences the individuals’
perception of the domain. So when the model changes so does the perception. In this
way the model becomes part of the domain. The financier George Soros claims that
an understanding of the principle of reflexivity is the secret behind his success as an
investor [7]. Reflexivity is important for modeling in the people domain, that is, it is
important for information systems engineering.

The essential feature of the principle of reflexivity applied to information systems
engineering is that every new information process, with associated data and computer
programs, becomes parts of the usage domain and consequently modifies the model of
the usage domain. Whenever people participate in the usage domain, the principle of
reflexivity guarantees that information systems will evolve with time. But the principle
of reflexivity also guarantees that it is impossible to develop a final model of a people
oriented usage domain. Every act of modeling that we do changes the usage domain.

Data semantics reflect relationships between the contents of a database and the
model of the world that is represented by the data. The continuous evolution of the
domain models also means that the modeling concepts evolve. In order to keep track
of the evolution of the semantics of data it becomes necessary to keep track of the
evolution of the modeling concepts. New concepts must relate to old concepts in
order for people to understand the essentials of new models. This must be taken into
consideration when designing approaches for capturing data semantics.

5 Concept and Data

We shall have a closer look at the relationship between data and concept. We follow
the usual distinction among concepts, terms and referents [6]. Terms are linguistic
units, and concepts are units of thought. Referents are what the terms and concepts

 On Models of Concepts and Data 195

refer to in the “real world”. Linguistic units are represented by digital numbers, that
is, by data. Concepts are denoted by terms. A name is a term. Labels are unique terms
within a name space. Concepts are uniquely identified within a name space if they are
denoted by labels from that namespace.

Bunge classifies concepts of natural sciences in four groups: individual concepts,
class concepts, relational concepts and magnitudes (quantitative concepts) [1] .
Individual concepts refer to individuals, e.g., the individual concept “Obama” refers
to a particular individual. Class concepts refer to classes of individuals sharing some
similarities, e.g., “US presidents”. Relational concepts refer to relationships between
class concepts. Distinctions are made between specific (definite) concepts and generic
(indefinite) concepts, e.g., “Obama” is a specific concept, but “x” is a generic concept
and denotes an arbitrary referent.

Quantitative concepts apply to properties that reflect magnitudes associated with
individuals and/or sets, e.g., the temperature of a body, the number of elements of a
set. No distinct object is associated with a quantitative concept. Functions are the
structure of quantitative concepts, e.g., weight, mass, heat, acceleration. For example,
weight is a function that maps the set of bodies (each of which has a weight) into the
set of real numbers. Quantitative concepts are thus the conceptual core of
measurement [1]. Quantitative concepts relate individual, class and relational
concepts to values, that is, to data.

Models are conceptual systems that attempt to represent some interrelated aspects
of real systems [1]. Quantitative concepts represent the essential details of a model
because they permit the representation of magnitudes, e.g., the weight of a person.
Models for some usage domain can be designed even if there is no available theory
for the domain. Theories are systems of hypothesis about how referents in a usage
domain as represented by relevant concepts are interrelated. E.g., an integrity
constraint in a database schema may be viewed as an expression of a part of a theory.
Models are expressed by data which represent the labels of the involved concepts as
well as the values of the involved quantitative concepts.

The Entity-Relationship model of data has the three modeling concepts entity type,
relationship type and attribute, see [9] and [2]. In our context attributes are data types
that represent quantitative concepts and their values, as well as the scale and the
precision of the values [8]. Assume that we have defined the class concept PERSON
and the quantitative concepts WEIGHT and P-ID, where P-ID is a 1:1 function that
maps from PERSON to a value set of unique labels for individuals in the extension of
PERSON. A valid expression for this situation in the ER-model of data could be
ERperson(ERpid, ERweight) where ERperson is an entity type, ERpid is a key
attribute and ERweight is a non-key attribute. Then ERpid and ERweight are data
types with a stated precision and a stated scale, e.g., ERweight may be measured in
kilograms with a precision of three decimals.

Every physical body has a weight. There are many scales for measuring weights.
The level of precision depends on the purpose of recording weights. Class concepts
are established to serve the purpose of the model designer. So are attributes. E.g., the
weights of Americans are measured in pounds, the weights of Europeans are
measured in kilograms. When establishing entity types for the two situations we
would probably get something like ERamerican(SSN, ERamericanweight) and
EReuropean(ER-some-id, EReuropeanweight). The two weight attributes would

196 A. Sølvberg

probably be of different scales and different precisions. In the ER-model there is no
explicit way of establishing that the two weight-attributes refer to the same
quantitative concept of WEIGHT.

Furthermore, WEIGHT is a concept whose measurement values depend on the
location of the measurement. The higher the altitude, the less is the weight of a given
mass. This is of interest if the required precision is high, otherwise the altitude effect
can be disregarded.

6 Conclusion

Prospects for further progress in data semantic modeling may be bleak if we do not
bring quantitative concepts more directly into data modeling. The ER model seems to
be a good candidate if properly extended. Possible extension should include
appropriate relations between attributes and quantitative concepts.

In practice it seems that the applications of the ER model assume metaphysical
adequacy, that is, there are no contradictions between the objects we wish to represent
and our representation of them. So, while an entity type in theory is assumed to
represent referents in “the real world”, in practice the entity types represent data about
the referents. A consequence of this is that the inherent structure of data bases has to
be superimposed on the models of the world, in order to achieve metaphysical
adequacy. This limitation should be removed in order to achieve better descriptions of
usage domains and their associated data semantics. A possible way forward may be to
bring parthood semantics into the modeling loop, and not only rely on set semantics.

References

1. Bunge, M.: The Philosophy of Science. Transaction Publishers (1998) ISBN 0-7658-0415-8
2. Chen, P.P.: The Entity-Relationship Model: Toward a unified view of data. ACM

TODS 1(1), 9–36 (1976)
3. Krogstie, J., Opdahl, A.L., Brinkkemper, S. (eds.): Conceptual Modeling in Information

Systems Engineering. Springer, Heidelberg (2007) ISBN 978-3-540-72676-0
4. Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proceedings of the

IEEE, 1060–1076 (September 1980)
5. Nurcan, S., Salinesi, C., Souveyet, C., Ralyté, J. (eds.): Intentional Perspectives on

Information Systems Engineering. Springer, Heidelberg (2010) ISBN 978-3-642-12543-0
6. Ogden, C.K., Richards, I.A. (eds.): The meaning of meaning. Kegan, Paul, Trench,

Trubner, London (1923)
7. Soros, G.: The Alchemy of Finance. Simon & Schuster (1988); ISBN 0-671-66338-4,

paperback: pp 49–51. Wiley (2003) ISBN 0-471-44549-5)
8. Sølvberg, A.: On Roles of Models in Information Systems. In: [5], pp. 17–38
9. Thalheim, B.: Entity-Relationship Modeling: Foundations of Database Technology.

Springer, Heidelberg (2000) ISBN 3-540-65470-4
10. Thalheim, B.: Challenges to Conceptual Modeling. In: [3], pp. 58–74
11. ANSI/NISO Z39.19-1993: Guidelines for the Construction, Format, and Management of

Monolingual Thesauri, ISBN 1-880124-04-1
12. http://en.wikipedia.org/wiki/Reflexivity_social_theory (accessed

July 15, 2011)
13. http://plato.stanford.edu/entries/mereology/ (accessed July 15, 2011)

Model Transformation By-Example:

A Survey of the First Wave�

Gerti Kappel1, Philip Langer2, Werner Retschitzegger2,
Wieland Schwinger2, and Manuel Wimmer1

1 Vienna University of Technology, Austria
{gerti,wimmer}@big.tuwien.ac.at

2 Johannes Kepler University Linz, Austria
{langer,retschitzegger,schwinger}@jku.at

Abstract. Model-Driven Engineering (MDE) places models as first-
class artifacts throughout the software lifecycle. In this context, model
transformations are crucial for the success of MDE, being comparable in
role and importance to compilers for high-level programming languages.
Thus, several model transformation approaches have been developed
in the last decade, whereby originally most of them are based on the
abstract syntax of modeling languages. However, this implementation
specific focus makes it difficult for modelers to develop model transfor-
mations, because they are familiar with the concrete syntax but not with
its computer internal representation.

To tackle this problem, model transformation by-example approaches
have been proposed which follow the same fundamental idea as query
by-example and programming by-example approaches. Instead of using
the computer internal representation of models, examples represented
in concrete syntax are used to define transformations. Because different
transformation scenarios occur in MDE, different by-example approaches
have been developed. This chapter gives an overview on the emerging
concepts, techniques, and approaches in this young by-example area.

Keywords: model transformation, by-example, model-driven engineer-
ing.

1 Introduction

Model-Driven Engineering (MDE) places models as first-class artifacts through-
out the software lifecycle [7,16,38]. In this context, model transformations [39]
are crucial for the success of MDE, being comparable in role and importance to
compilers for high-level programming languages, for bridging the gap between
design and implementation. Thus, several model transformation approaches (cf.
[13] for an overview) have been developed in the last decade, whereas most of
them are based on the abstract syntax of modeling languages which is defined by

� This work has been partly funded by the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT) and FFG under grant FIT-IT-819584.

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 197–215, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

198 G. Kappel et al.

so-called metamodels [26]. Metamodels describe by a limited set of UML class
diagram concepts the object structure for computer internally representing and
persisting models. However, this implementation specific focus makes it difficult
for modelers to develop model transformations, because modelers are mainly fa-
miliar with the concrete syntax of the modeling languages (i.e., their notation)
and not with their metamodels. This is aggravated by the fact that metamodels
may become very large: for instance, the UML 2 metamodel [34] has about 260
metamodel classes [30]. Moreover, some language concepts, which have a partic-
ular representation in the concrete syntax, are not even explicitly represented
in the metamodel. Instead, these concepts are hidden in the metamodel and
may only be derived by using specific combinations of attribute values and links
between objects [20]. Thus, they are often hard to discover as illustrated in the
example in Fig. 1.

Student1 *Professor examines

Concrete
Syntax

examiner examineename name

Professor:Class

name:Property name:Property

Student:Class
examines:Assoc

Abstract
Syntax examiner:Propertyexaminee:Property

examines:Assoc

Fig. 1. Gap between user intention and computer internal representation

To tackle this problem, model transformation by-example (MTBE) approaches
[45,47] have been proposed which follow the same fundamental idea as query by-
example developed for querying database systems by giving examples of query
results [48] and programming by-example for demonstrating actions which are
recorded as replayable macros [29]. This means, instead of using the computer
internal representation of models, MTBE allows to define transformations using
examples represented in concrete syntax. Consequently, the modeler’s knowledge
about the notation of the modeling language is sufficient.

Because different transformation scenarios occur in MDE [31], different MTBE
approaches have been developed in the last years. In general, two kinds of ap-
proaches may be distinguished: (i) Approaches following a demonstration-based
approach, meaning that model transformations are demonstrated in the model-
ing editor by modifying example models. These modifications are recorded and
from the concrete changes, the general transformation is derived which may be
replayed on other models as well. (ii) Approaches which follow a correspondence-
based approach. Instead of demonstrating the transformation in modeling edi-
tors, the input model, the output model as well as the correspondences between
them have to be given by the user. For both kinds, a multitude of approaches
have been proposed during the last years [4,8,14,17,23,27,43,45,47].

Model Transformation By-Example 199

2 MDE in a Nutshell

Before MTBE is presented, the prerequisites, i.e., the core techniques of MDE,
are explained. First, the essence of modeling language engineering is outlined to
illustrate how models are represented in the context of MDE, and subsequently,
the main principles and patterns of model transformations are introduced.

2.1 Modeling Language Engineering

Modeling language engineering in MDE comprises at least two components [24].
First, the abstract syntax of a language has to be defined by a metamodel, i.e.,
a model defining the grammar of the language. Second, to make a language
more usable, a mapping of abstract syntax elements to concrete syntax elements
(such as rectangles, edges, and labels) has to be provided. In the following, an
example-based description of defining a modeling language is given.

Abstract Syntax. Similar as EBNF-based grammars [18] for programming
languages, metamodels represent the concepts and their interrelationships of
modeling languages. The most widely used formalism to define metamodels in
MDE is the Meta Object Facility [33] (MOF), which is a standardized language
to define modeling languages based on the core concepts of UML class diagrams
(classes, attributes, and references). In the upper part of Fig. 2, an excerpt of
the kernel of the UML metamodel is represented in terms of MOF concepts.

The aim of metamodeling lies primarily in defining modeling languages in an
object-oriented manner leading also to efficient repository implementations for
storing and retrieving models. This means that in a metamodel not necessarily
all modeling concepts are represented as first-class citizens. Instead, the concepts
are frequently hidden in attributes and in references. We call this phenomenon
concept hiding (cf. [20] for an in-depth discussion).

By instantiating metamodels, models are created. An instantiation is repre-
sented by a UML object diagram comprising of objects as instances of classes,
values as instances of attributes, and links as instances of references as e.g.,
depicted in the middle part of Fig. 2. It has to be noted that in contrast to
EBNF-based grammars, metamodels do not define the concrete syntax of the
languages. Thus, only generic object graphs as depicted in the middle part of
Fig. 2 may be created. The concrete syntax has to be defined in addition to the
metamodel which is explained next.

Concrete Syntax. The concrete syntax of modeling languages [2] comprises in
most cases graphical elements such as ellipse, label, and rectangle, which may
be further combined to more complex forms. The actual notation of modeling
concepts is defined by a mapping of abstract syntax elements to concrete syntax
elements. The mappings may be expressed in triples of the following form:

Triple :=< as E, cs E, const(as E)? > (1)

The first part as E stands for an element of the abstract syntax, the second
cs E for an element of the concrete syntax, and the last const(as E) stands

200 G. Kappel et al.

NamedElement
St i

0 1

name:String

Class

isAbstract:Boolean

Association Property

type:String
type

attribute classrole
assoc

*

0..1
0..1

*

isAbstract:Booleantype:String
lower:Integer
upper:Integer

p1:Property p2:Property

0..1

(a)

(b) p1:Property

p4:Propertyp3:Property

examines:Assoc
name:”name”
lower: 1
upper: 1
type: String

p p y

name:”name”
lower: 1
upper: 1
type: String

name:”examines”

c1:Class

p4:Propertyp3:Property

name:”Professor”
isAbstract: false

c2:Class

name:”Student”
isAbstract: false

name:”examiner”
lower: 1
upper: 1
type: Undefined

name:”examinee”
lower: 1
upper: -1
type: Undefined

ProfessorProfessor StudentStudent11
name:Stringname:Stringname:Stringname:String

**
examiner examinee

examines(c)

Fig. 2. (Meta)modeling: (a) UML Metamodel Kernel, (b) Example Model in AS, and
(c) Example Model in CS

for an optional constraint, mostly defined in the Object Constraint Language
(OCL) [36], that defines under which conditions, i.e., links and attribute values
of an as E element, this element is represented by a cs E element. In case no
constraint is defined, there is a one-to-one mapping between an abstract syntax
element and a concrete syntax element, i.e., the concept defined in the metamodel
is directly represented by one concrete notational element. However, the other
case is the more interesting one in the context of MTBE. The presence of a
constraint defines a new concept for the notation layer, which is not explicitly
represented by one of the metamodel classes. Consequently, when defining model
transformations based on the abstract syntax, the constraints for these concepts
must be defined by the user. This is a tedious and error-prone task that requires
excellent knowledge about the metamodel.

When considering our running example, for instance, the Class concept is
mapped to Rectangle and Class.name is mapped to Label. By using such
mappings, the UML object diagram shown in the middle part of Fig. 2 may be
rendered as shown in the lower part of Fig. 2 by graphical modeling editors.

2.2 Transformation Engineering

In general, a model transformation takes a model as input and generates a model
as output1. Mens et al. [31] distinguish between two kinds of model transfor-
mations: (i) exogenous transformations a.k.a. model-to-model transformations

1 Also several input models and output models may be possible, but in the scope of
this paper, such settings are not considered.

Model Transformation By-Example 201

or out-place transformations, in which the source and target metamodels are
distinct, e.g., transforming UML class diagrams to relational models, and (ii)
endogenous transformations a.k.a. in-place transformations, in which the source
and target metamodels are the same, e.g., a refactoring of a UML class diagram.
In the following, we elaborate on these two kinds in more detail.

Exogenous Transformations. Exogenous transformations are used both to
exploit the constructive nature of models in terms of vertical transformations,
thereby changing the level of abstraction and building the bases for code gener-
ation, and for horizontal transformation of models that are at the same level of
abstraction [31]. Horizontal transformations are of specific interest to realize dif-
ferent integration scenarios, e.g., translating a UML class model into an Entity
Relationship (ER) model. In vertical and horizontal exogenous transformations,
the complete output model has to be built from scratch.

Endogenous Transformations. In contrast to exogenous transformations,
endogenous transformation only rewrite the input model to produce the output
model. For this, the first step is the identification of model elements to rewrite,
and in the second step these elements are updated, added, and deleted. Endoge-
nous transformations are applied for different tasks such as model refactoring,
optimization, evolution, and simulation, to name just a few.

Model Transformation Languages. Various model transformation approaches
have been proposed in the past decade, mostly based on either a mixture of
declarative and imperative concepts, such as ATL [19], ETL [25], and RubyTL
[12], or on graph transformations, such as AGG [44] and Fujaba [32], or on re-
lations, such as MTF2 and TGG [1]. Moreover, the Object Management Group
(OMG) has published the model transformation standard QVT [35] which is cur-
rently only partly adopted by industry. Summarizing, all approaches describe
model transformations by rules using metamodel elements, whereas the rules
are executed on the model layer for transforming a source model into a target
model. Rules comprise in-patterns and out-patterns. The in-pattern defines when
a rule is actually applicable as well as retrieves the necessary model elements
for computing the result of a rule by querying the input model. The out-pattern
describes what the effect of a rule is, such as which elements are created, up-
dated, and deleted. All mentioned approaches are based on the abstract syntax
of modeling languages only, and the notation of the modeling language is totally
neglected.

Defining model transformations by using the abstract syntax of modeling
languages comes on the one hand with the benefit of the generic applicability.
On the other hand, the creation of such transformations is often complicated and
their readability is much lower compared to working with the concrete syntax
[3,28,41,45,46]. Therefore, MTBE approaches have been proposed to use the
concrete syntax of modeling languages for defining model transformations. In
the following two sections, we present the essence of MTBE for endogenous
transformations as well as for exogenous transformations.

2 http://www.alphaworks.ibm.com/tech/mtf

202 G. Kappel et al.

3 MTBE for Endogenous Transformations

For endogenous transformations, two dedicated by-example approaches [8,43]
have been proposed in the last years that can be seen as a special kind of MTBE
called Model Transformation By Demonstration (MTBD). MTBD exploits the
edit operations demonstrated on an example model in order to obtain transfor-
mation specifications that are also applicable to other models. Interestingly, no
correspondence-based approach has been proposed for endogenous transforma-
tions, so far. In the following, we present the common process of both MTBD
approaches for specifying an endogenous transformation by demonstration and
show how this process is applied to a concrete model refactoring example. Fi-
nally, we conclude this section by elaborating on the peculiarities of both MTBD
approaches.

3.1 Process

In general, the MTBD process consists of two phases: (1) demonstrating the edit
operations and (2) the configuration and generation of the general transforma-
tion. This process is illustrated in Fig. 3, which is explained in the following
step-by-step.

Phase 1: Modeling. In the first step, the user creates a model in the con-
crete syntax of the modeling language in her familiar modeling environment.
This model comprises all model elements which are required to apply the trans-
formation. The output of this step is called the initial model. In the second step,
the user performs the complete transformation on this initial model by applying
all necessary atomic operations, again in the concrete syntax. The output of this
step is the revised model and a change model containing all changes that have
been applied to the initial model during the demonstration. This change model
together with the initial model and the revised model is the input for the second
phase of the transformation specification process.

Phase 2: Configuration & Generation. In the second phase, an initial
version of the transformation’s pre- and postconditions is inferred by analyzing
the initial model and the revised model, respectively. These automatically gen-
erated conditions from the example might not entirely express the intended pre-
and postconditions of the transformation. Therefore, they only act as a basis for
accelerating the transformation specification process and can be refined by the
user in the next step and additional conditions may be added. After the revision
of the conditions is finished, the transformation is generated from the change
model and the revised pre- and postconditions.

3.2 Example

For exemplifying the presented MTBD process, a transformation for a simplified
UML Class Diagram refactoring, namely “Extract Class” [15], is used. The aim
of the refactoring is to create a new class and move the relevant attributes from
an existing class into the new class.

Model Transformation By-Example 203

g Initial
model

Create
model

Perform
changes

M
od

el
in
g

RevisedImplyConditions

M
at
io
n

Change
model

p y
conditions

Edit

[implied]

&
Ge

ne
ra model

Edit
conditions

ur
at
io
n
&

Legend:

Generate
transformation

TransformationConditions
[revised]

Co
nf
ig
u Manual

Automatic

Fig. 3. MTBE Process for Endogenous Transformations

The transformation is demonstrated in Fig. 4(a). The user models the ini-
tial situation by introducing one class containing one attribute. Then, the user
demonstrates the transformation by introducing another class and an association
with two roles and, finally, the user moves the attribute to the newly introduced
class. From this demonstration, the change model shown in Fig. 4(c) is obtained.
For readability purposes, the changes are structured according to the container
hierarchy of the model elements.

In addition to the change model, pre- and postconditions are derived from the
initial and revised models, respectively. Subsequently, the user may fine-tune the
inferred conditions by activating, deactivating, or modifying conditions as is de-
picted in Fig. 4(b). On the precondition side of our example, the name of a class
and whether it is abstract or not does not matter. Furthermore, the transfor-
mation should be agnostic of the name and type of the attribute. Thus, these
derived preconditions are deactivated. On the postcondition side, the user may
introduce also some annotations for specifying how certain values in the result-
ing model should be obtained. In this context, a value may either be computed
from values in the initial model, or by querying the user for an input value. In
our example, the name of the newly introduced class is not derivable from the
initial model and therefore has to be specified as user input before executing the
transformation. The same is true for the association name. However, the role
names should be derived from the existing model context. This is specified by
additional expressions. In particular, the property name should be equal to the
name of the adjacent class but the first letter has to be converted to lower case
to fulfill common modeling conventions.

Besides fine-tuning the conditions, current MTBD approaches allow for anno-
tating repetitions of certain edit operations. By this, the transformation may be
configured to equally transform multiple model elements that fulfill the trans-
formation’s preconditions. In this example, such a mechanism is quite useful,
because the transformation may then be capable of moving an arbitrary number
of attributes from the original class to the newly introduced class.

An excerpt of the generated transformation is depicted in Listing 1.1. For
simplicity, we just assume that the input parameters of the extractClass op-
eration are specified by the user, e.g., by selecting the elements in the modeling

204 G. Kappel et al.

assoc1Class NewClass1

Cl
Class(a)

attToMove:String attToMove:Stringclass newClass

c1 : Class
attributes = {p1}
name = “Class”

..
c2 : Class

attributes = {p1}
name = UserInput

(b)

isAbstract = false
p1 : Property [Iteration]

name = “attToMove”
type = “String”
…

name UserInput
a3 : Association

properties = {p3,p4}
name = UserInput

p3 : Property
name = c2.name.firstToLowerCase()
…

p4 : Property
name = c1.name.firstToLowerCase()
…

No Operation Depending Operations L1 Depending Operations L2(c) No. Operation Depending Operations L1 Depending Operations L2

1 Add Class Set name

2 Add Association

Add Property Set name, Set upper,…

Add Property Set name, Set upper,…

(c)

Set name

3 Move Property p1

Fig. 4. Example for Endogenous Transformations: (a) Demonstration, (b) Revised
Conditions, and (c) Change Model

editor. Another scenario would be that the preconditions are employed to match
all occurrences of the initial situation for a given model.

Listing 1.1. Generated Refactoring Code

1 method ex t ra c tC l a s s (S t r i ng className , S t r i ng attName ,
2 Class c , Co l l e c t i on<Property> props){
3

4 //Check precondit ion
5 assert c . a t t r i b u t e s −> i n c l ud e sA l l (props) ;
6

7 //Create add i t iona l c l a s s
8 Class newClass = new Class () ;
9 newClass . setName(className) ;

10

11 // Sh i f t At t r i bu t e s into new Class
12 I t e r a t o r i t e r = props . i t e r a t o r () ;
13 while (i t e r . hasNext ()){
14 Property p = i t e r . hasNext () ;
15 c . a t t r i b u t e s () . remove (p) ;
16 newClass . a t t r i b u t e s () . add (p) ;
17 }
18 . . . //Create add i t iona l e lements and l i n k them proper ly
19 }

The first statement is to verify that the preconditions are fulfilled by the given
input elements. In this example, only one precondition has to be checked, namely
if the selected attributes are all included in the feature attributes of the selected
class. After checking the precondition, a new class is created and each attribute
contained in the collection props is moved to the new class. Assuming that the
user configured the transformation to support extracting multiple attributes at
once, all changes applied to the attribute in the demonstration are repeated in
a loop. Afterwards, the additional elements, particularly the association and the

Model Transformation By-Example 205

roles, have to be created and properly linked. Due to space limitations, this is
not shown in the listing.

3.3 Existing Approaches

To the best of our knowledge, two MTBE approaches dedicated to endogenous
transformations exist in literature. In the following we compare both approaches
by highlighting their differences.

Brosch et al. [8,9] were the first to propose a “by-demonstration” approach to
specify endogenous transformations. With this approach, endogenous transfor-
mations for any Ecore-based modeling language can be specified. Moreover, to
be also independent from the used modeling editor, a state-based model compar-
ison is employed to derive the atomic changes that have been performed on the
initial model during the demonstration. The inherent imprecision of state-based
model comparison is overcome by annotating unique identifiers to each model
element before the user starts to demonstrate the transformation. By this, also
element moves and intensively modified elements are supported. For expressing
the pre- and postconditions, OCL constraints are employed. In the postcondi-
tions, users may also specify how attribute values in the target model shall be
derived from values in the initial model. Repetitions of certain changes are real-
ized by the notion of so-called iterations. Iterations are attached to precondition
elements (representing model elements in the initial model) and indicate that
each model element that fulfills these preconditions shall be transformed equally
to the respective initial model element in the demonstration.

In the approach by Sun et al. [43], the changes applied during the demon-
stration are recorded and not derived by a subsequent comparison. After the
demonstration, an inference engine generates a general transformation pattern
which comprises the transformation’s preconditions and its sequence of opera-
tions. This pattern may also be refined by the user in terms of adding precondi-
tions and attribute value computations. In contrast to Brosch et al., Groovy3—a
script language for the JVM—is employed to express these conditions and com-
putations. In a more recent publication [42], Sun et al. extended this step so that
users may also identify and annotate generic operations, which corresponds to
the concept of iterations in [8]. However, these annotations are directly attached
to the change model instead of to the preconditions as in [8].

4 MTBE for Exogenous Transformations

Various MTBE approaches [4,14,17,23,27,45,47], dedicated to exogenous trans-
formations, have been proposed. Except [27] which is a demonstration-based
approach, all others are based on correspondences. Thus, in the following, we
discuss the general process of specifying exogenous transformations by-example
based on correspondences, and subsequently, we present an instantiation of this

3 http://groovy.codehaus.org

206 G. Kappel et al.

Source
model

Create
source model

de
lin
g

Create model
correspondences

Model
correspondences

M
od Create

target model
Target
model

correspondences correspondences

Imply metamodel
correspondences

at
io
n
&

at
io
n

Metamodel
correspondences

[implied]

Edit
correspondences

Legend:

Transformation

Co
nf
ig
ur
a

Ge
ne

ra

Metamodel
correspondences

[i d]

Generate
Transformation

Manual

A i

Legend:

C [revised] Transformation Automatic

Fig. 5. MTBE Process for Exogenous Transformations

process for transforming UML Class Diagrams to ER Diagrams [11]. Finally,
we conclude this section by elaborating on the peculiarities of current MTBE
approaches.

4.1 Process

The main idea of MTBE for exogenous transformations is the semi-automatic
generation of transformations from so-called correspondences between source
and target model pairs. The underlying process for deriving exogenous model
transformations from model pairs is depicted in Fig. 5. This process, which is
largely the same for all existing approaches, consists of five steps grouped in two
phases.

Phase 1: Modeling. In the first step, the user specifies semantically equiv-
alent model pairs. Each pair consists of a source model and a corresponding
target model. The user may decide whether she specifies a single model pair
covering all important concepts of the modeling languages, or several model
pairs whereby each pair focuses on one particular aspect. In the second step, the
user has to align the source model and the target model by defining correspon-
dences between source model elements and corresponding target model elements.
For defining these correspondences, a correspondence language has to be avail-
able. One important requirement is that the correspondences may be established
using the concrete syntax of the modeling languages. Hence, the modeling envi-
ronment must be capable of visualizing the source and target models as well as
the correspondences in one diagram or at least in one dedicated view.

Phase 2: Configuration & Generation. After finishing the mapping task,
a dedicated reasoning algorithm is employed to automatically derive metamodel
correspondences from the model correspondences. How the reasoning is actually
performed is explained in more detail based on an example in Subsection 4.2.
The automatically derived metamodel correspondences might not always reflect
the intended mappings. Thus, the user may revise some metamodel correspon-
dences or add further constraints and computations. Note that this step is not
foreseen in all MTBE approaches, because it may be argued that this is contra-
dicting with the general by-example idea of abstracting from the metamodels.

Model Transformation By-Example 207

11ProfessorProfessor StudentStudent11
name:Stringname:Stringname:Stringname:String **

i

examines ProfessorProfessor StudentStudentexaminesexamines11 **
examiner examineename:Stringname:String

examiner examinee
namename namename

(a)(a)

(b)

p1:Property
a1:Association

p2:Property a1:Attribute
r1:Relationship

a2:Attribute
name: examinesa1:Associationname: name

lower: 1
upper: 1

name: name
lower: 1
upper: 1

name: examines
ro2:Rolero1:Role

name: name name: name
name: examines

p4:Propertyp3:Property
type: String type: String

name: examiner name: examinee

c1:Class

name: Professor
i Ab t t f l

c2:Class

name: Student
i Ab t t f l

name: examiner
lower: 1
upper: 1

name: examinee
lower: 1
upper: -1

e1:EntityType

name: Professor

e2:EntityType

name: Studentc1:Cardinality c2:Cardinality
isAbstract: false isAbstract: false

pp
type: Undefined

pp
type: Undefined lower: 1

upper: 1
lower: 1
upper: -1

ClassAssociation
type

EntityType Role Cardinality
type card(c)

classassoc 0..1 0..1

ClassAssociation
0..1

EntityType Role Cardinality

*

1
2

1

atts
roles

attributerole
* *Property RelationshipAttribute

Fig. 6. Example for Exogenous Transformations: (a) Correspondences in concrete syn-
tax, (b) Correspondences in abstract syntax, and (c) Metamodels

Nevertheless, it seems to be more user-friendly to allow the modification of the
metamodel correspondences in contrast to modifying the generated model trans-
formation code at the end of the generation process. Finally, a code generator
takes the metamodel correspondences as input and generates executable model
transformation code.

4.2 Example

For exemplifying the presented MTBE process, we now apply it to specify the
transformation of the core concepts of UML class diagrams into ER diagrams.
As modeling domain, a simple university information system is used. The user
starts with creating the source model comprising the UML classes Professor and
Student as well as a one-to-many association between them as depicted in the
upper left area of Fig. 6. Subsequently, the corresponding ER diagram, depicted
in the upper right area of Fig. 6, is created. In this figure, both models are
represented in the concrete syntax as well as in the abstract syntax in terms of
UML object diagrams. After both models are established, the correspondence
model is created which consists of simple one-to-one mappings. These mappings
are depicted as dashed lines in Fig. 6(a) and (b) between the source and target
model elements.

In the next step, a reasoning algorithm now analyzes the model elements in the
source and target models, i.e., objects, attribute values, and links, as well as the
correspondences between them in order to derive metamodel correspondences. In

208 G. Kappel et al.

the following, we discuss inferring metamodel correspondences between classes,
attributes, and references.

Class correspondences. For detecting class correspondences, the reason-
ing algorithm first checks whether a certain object type in the source model
is always mapped to the same object type in the target model. In this case,
a full equivalence mapping between the respective classes is generated. In our
example, a full equivalence mapping between objects of type Class and objects
of type EntityType is inferred. However, Properties in the source model are
mapped to different object types, namely Attributes and Roles, depending on
their attribute values and links. For such cases, an additional mapping kind is
used, namely conditional equivalence mapping. The conditions of such a map-
ping are derived by analyzing the links and values of the involved objects to
find a discriminator for splitting the source objects into distinct sets having an
unambiguous mapping to target objects. One appropriate heuristic for finding
such a discriminator is to examine the container links of these objects. By this,
the algorithm may deduce the constraints property.class != null to find an
unambiguous mapping to Attributes and the condition property.assoc !=

null for Roles. Finally, also unmapped objects such as the Cardinality ob-
jects have to be considered. In our example, these objects have to be generated
along with their container objects of type Role. Thus, the mapping for Roles has
to be extended to a one-to-two conditional equivalence mapping. By this, a Role

object and a properly linked Cardinality object is created for each Property

in the source model.
Attribute correspondences. Generally, attributes in metamodels may be

distinguished in ontological attributes and linguistic attributes [20]. Ontological
attributes represent semantics of the real-world domain. Values have to be ex-
plicitly given by the user. Examples for ontological attributes are Class.name

or Attribute.name. In order to find correspondences between ontological at-
tributes, heuristics have to be used which compare the attribute values, for
instance, based on edit distance metrics. In our example, we may conclude that
Class.name should be mapped to EntityType.name because the values of the
name attributes are equivalent for each Class/EntityType object pair. In con-
trast, linguistic attributes are used for the reification of modeling concepts such
as Class.isAbstract. Usually these attributes have predefined, restricted value
ranges in the language definition. When dealing with linguistic attributes in the
context of MTBE, similar heuristics based on string matching as for ontologi-
cal attributes may be used. However, the probability for accidentally matching
wrong pairs and for ambiguities is much higher. Consider for instance the map-
ping between the property p3 and the role ro1 without taking into account other
mappings. Then, we cannot decide if the attribute Property.lower is mapped
to Role.cardinality.lower or to Role.cardinality.upper by solely looking
at the example. Here, the problem is that we do not have unique values which
help us finding the metamodel correspondences. This may be improved by us-
ing matching techniques on the metamodel level for finding similarities between
attribute names. An alternative solution used in this example is to define an

Model Transformation By-Example 209

additional mapping between the property p4 and the role ro2 where we have
unique values for the lower and upper attributes.

Reference correspondences. For deriving reference correspondences, the
afore calculated class correspondences are of paramount importance since they
serve as anchors for reasoning about corresponding links. For example, consider
the reference atts in the ER metamodel between EntityType and Attribute.
For finding the corresponding reference in the UML metamodel, we have to rea-
son about the previously derived class correspondences. First, the Attribute

class in the ER metamodel is mapped to the Property class of the UML meta-
model. Furthermore, when looking at the example models, each Attribute is
contained by an EntityType and each Property is contained by a Class. Luck-
ily, the EntityType class is accordingly mapped to the Class class on the meta-
model level, so that we can conclude that whenever transforming a Property into
an ER Attribute, a link between the created Attribute and the EntityType

previously generated for the Class containing the aforementioned Property is
generated. Thus, there should be a correspondence between the reference atts

in the ER metamodel and the reference attribute in the UML metamodel.
After the metamodel correspondences have been derived automatically, MTBE

approaches usually allow the user to verify and adapt the generated correspon-
dences. For our running example however, this is not required. The next task is
to automatically translate the correspondences into executable transformation
code. Listing 1.2 depicts the transformation required for our running example in
imperative OCL [10]. For each metamodel correspondence, a transformation rule
is generated which queries the source model and generates the corresponding tar-
get model elements. Inside each rule, the attribute and reference correspondences
are translated to assignments. Please note that current transformation engines
are able to schedule rules automatically and to build an implicit trace model
between the source and target model. Based on this trace model, assignments
such as e.atts = c.attribute (cf. line 2 in Listing 1.2) are automatically re-
solved. In particular, not the UML attributes (c.attribute) are assigned to the
EntityType, but the ER attributes generated from these UML attributes are re-
solved by applying the trace model. These features of transformation languages
and their encompassing engines drastically ease the transformation code gener-
ation from correspondences.

Listing 1.2. Generated Transformation Code

1 rule 1 : Class . a l l I n s t a n c e s () −> f o r e ach (c |
2 create Entity e (e . name = c . name , e . a t t s = c . a t t r i b u t e) ;
3 rule 2 : Property . a l l I n s t an c e s ()
4 −> s e l e c t (p | p . c l a s s <> OclUndefined) −> f o r e ach (p |
5 create Attr ibute a (a . name = p . name)) ;
6 rule 3 : Property . a l l I n s t an c e s () −> s e l e c t (p |
7 p . assoc <> OclUndefined) −> f o r e ach (p |
8 create Role r (r . name = p . name , r . c a r d i n a l i t y = c) ,
9 create Card ina l i t y c (c . upper = p . upper , c . lower = p . lower ,

10 r . type = p . type)) ;
11 rule 4 : As soc i a t i on . a l l I n s t an c e s () −> f o r e ach (a |
12 create Re la t i on sh ip r (r . name = a . name , r . r o l e s = a . r o l e)) ;

210 G. Kappel et al.

4.3 Existing Approaches

We now compare existing approaches by highlighting their commonalities and
differences. Mostly all approaches define the input for deriving exogenous trans-
formations as a triple comprising an input model, a semantically equivalent out-
put model as well as correspondences between these two models. These models
have to be built by the user, preferably using the concrete syntax as is, e.g.,
supported by [47], but most approaches do not provide dedicated support for
defining the correspondences in graphical modeling editors.

Langer et al. [27] presented, in contrast to the correspondence-based ap-
proaches, a demonstration-based approach which allows to demonstrate transfor-
mation rules incrementally by giving for each rule an input model fragment and
a corresponding output model fragment so that the correspondences between
the fragments can be automatically inferred and do not have to be manually
specified in advance.

Subsequently, reasoning techniques such as specific rules again implemented
as model transformations [17,27,45,47], inductive logic [4], and relational con-
cept analysis [14] are used to derive model transformation code. Current ap-
proaches support the generation of graph transformation rules [4,45] or ATL
code [17,27,47].

All approaches aim for semi-automated transformation generation meaning
that the generated transformations are intended to be further refined by the user.
This is especially required for transformations involving global model queries and
attribute calculations such as aggregation functions, which have to be manually
added. Furthermore, it is recommended to iteratively develop the transforma-
tions, i.e., after generating the transformations from initial examples, the exam-
ples must be adjusted or the transformation rules must be adapted in case the
actual generated output model is not fully equivalent to the expected output
model. However, in many cases it is not obvious whether to adapt the aligned
examples or the generated transformations. Furthermore, adjusting the examples
might be a tedious process requiring a large number of transformation examples
to assure the quality of the inferred rules. In this context, self-tuning transfor-
mations have been introduced [22,23]. Self-tuning transformations employ the
examples as training instances in an iterative process for further improving the
quality of the transformation. The goal is to minimize the differences between
the actual output model produced by the transformation and the expected out-
put model given by the user by using the differences to adapt the transformation
over several iterations. Of course, adapting the transformation is a computation
intensive problem leading to very large search spaces. While in [22] domain-
specific search space pruning tailored to EMF-based models is used, a generic
meta-heuristic based approach is used in [23] to avoid an exhaustive search.

5 Lessons Learned and Future Challenges

In this section, some lessons learned from applying and developing MTBE ap-
proaches during the last 5 years are summarized.

Model Transformation By-Example 211

Correspondences Demonstrations

Endogenous
Transformations

Exogenous
Transformations [4,14,17,23,45,47]

[8,42]

[27]

MTBE Technique

Tr
an
sf
or
m
at
io
n

Sc
en

ar
io

Fig. 7. Classification of MTBE approaches by whether they support exogenous or
endogenous transformations and whether they are correspondence or demonstration-
based

Different Transformation Scenarios/DifferentMTBE Techniques.When
categorizing MTBE approaches w.r.t. transformation scenarios and MTBE tech-
niques (cf. Fig 7), the following discriminators are derivable. Approaches using
correspondences are exclusively but intensively applied for deriving exogenous
transformations. Surprisingly, not a single work considers to apply correspon-
dences for endogenous transformations. In contrast, demonstration-based ap-
proaches originally have been proposed for endogenous transformations and only
one work discusses the application of demonstrations to derive exogenous trans-
formations.

Challenge:What are the commonalities and differences of correspondence-
based and demonstration-based approaches?

MTBE as Enabler for Test-driven Transformation Development. A
significant advantage of MTBE is the existence of examples. Besides serving as
input for the derivation of a model transformation during the MTBE process,
the example models may also be used to test the generated transformation. By
applying the inferred transformation again to the source model, the obtained
target model may be compared to the target model specified during the MTBE
process. If any differences are found in the comparison, either the transformation
or the target model is obviously wrong. In this sense, MTBE inherently imple-
ments the idea of test-driven development [5]. An interesting direction for future
work in this area is to automatically suggest corrections to the transformation
based on the detected differences between the target example model and the
actual transformation result.

Challenge:Which logic and machine learning techniques can be employed
for optimizing the quality of derived transformations in reasonable time
with a small amount of examples?

MTBE outperforms Metamodel Matching. With the rise of the Semantic
Web and the emerging abundance of ontologies, several automated matching
approaches and tools have been proposed (cf. [37,40] for an overview). The typi-
cal output of such tools are correspondences mostly computed based on schema
information, e.g., name and structure similarity. In experiments, we have reused
ontology matching tools for matching metamodels by beforehand transforming

212 G. Kappel et al.

metamodels into corresponding ontologies. However, the quality of the produced
correspondences is on average significantly lower compared to MTBE approaches
[21]. The reasons for this are twofold. First, structural heterogeneities between
metamodels and the mismatch between the terminology used for different mod-
eling languages makes it hard to reason about correspondences solely on the
metamodel level. Second, there is no automated evaluation of the quality of cor-
respondences based on the model level, because the matching approaches are
not bound to a specific integration scenario [6], such as transformation, merge,
or search. Finally, we also learned that the preparation phase required for using
MTBE approaches, i.e., building the example models, is less work than the com-
prehensive reworking phase, i.e, validating and correcting the correspondences,
required for metamodel matching approaches.

Challenge: More empirical studies on MTBE approaches for identifying
the strengths and weaknesses of existing approaches are required.

Multifaceted Usage of Examples. Another benefit of specifying endogenous
model transformations by demonstration is to reuse the developed transforma-
tion specifications for detecting applications of the transformation. Since such
a specification developed using an MTBD approach comprises the transforma-
tion’s preconditions, postconditions, and its change pattern, a dedicated detec-
tion mechanism may triage arbitrary model differences for the transformation’s
change pattern and, given the pattern could be found, validate its pre- and post-
conditions to reveal an application of the transformation. This is especially useful
if these transformations implement model refactorings because this knowledge
gains valuable information on the evolution of a model and is of paramount
importance for various application domains such as model co-evolution, model
versioning, and model repository mining.

Challenge: How may the developed examples and derived transformations
be employed for supporting different model management tasks in MDE?

6 Resume

More than 30 papers have been published in the first 5 years and more and more
research groups start working in this area. MDE and by-example approaches
both aim to ease the development of software systems. However, both stand on
orthogonal dimensions. MDE aims to abstract from the implementation level
of software systems such as particular technology platforms and programming
languages by using platform independent modeling techniques. In contrast, by-
example approaches aim to ease the development of systems by using examples
instead of directly developing generalized programs. We believe that combining
both paradigms seems to be promising and would have a major impact on end-
user programming or better say end-user modeling.

Model Transformation By-Example 213

References

1. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer,
Heidelberg (2006)

2. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Founda-
tion. IEEE Software 20(5), 36–41 (2003)

3. Baar, T., Whittle, J.: On the Usage of Concrete Syntax in Model Transformation
Rules. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp.
84–97. Springer, Heidelberg (2007)

4. Balogh, Z., Varró, D.: Model transformation by example using inductive logic pro-
gramming. Software and System Modeling 8(3), 347–364 (2009)

5. Beck, K.: Test Driven Development: By Example. Addison-Wesley (2002)
6. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings.

In: Int. Conf. on Management of Data (SIGMOD 2007), pp. 1–12. ACM (2007)
7. Bézivin, J.: On the unification power of models. Software and System Model-

ing 4(2), 171–188 (2005)
8. Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel, G., Rets-

chitzegger, W., Schwinger, W.: An Example Is Worth a Thousand Words: Com-
posite Operation Modeling By-Example. In: Schürr, A., Selic, B. (eds.) MODELS
2009. LNCS, vol. 5795, pp. 271–285. Springer, Heidelberg (2009)

9. Brosch, P., Langer, P., Seidl, M., Wimmer, M.: Towards End-User Adaptable Model
Versioning: The By-Example Operation Recorder. In: Proc. of CVSM 2009 @ ICSE
2009. IEEE (2009)

10. Cabot, J.: From Declarative to Imperative UML/OCL Operation Specifications.
In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS,
vol. 4801, pp. 198–213. Springer, Heidelberg (2007)

11. Chen, P.P.S.: The Entity-Relationship Model—Toward a Unified View of Data.
ACM Transactions on Database Systems 1, 9–36 (1976)

12. Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: RubyTL: A Practical, Extensible
Transformation Language. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006.
LNCS, vol. 4066, pp. 158–172. Springer, Heidelberg (2006)

13. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–646 (2006)

14. Dolques, X., Huchard, M., Nebut, C.: From transformation traces to transformation
rules: Assisting Model Driven Engineering approach with Formal Concept Analysis.
In: 17th Int. Conf. on Conceptual Structures (ICCS 2009), vol. 483, pp. 15–29.
CEUR-WS (2009)

15. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

16. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-
search Roadmap. In: 29th Int. Conf. on Software Engineering (ICSE 2007) - Future
of Software Engineering, pp. 37–54 (2007)

17. Garćıa-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández, R.: Model Transfor-
mation By-Example: An Algorithm for Generating Many-to-Many Transformation
Rules in Several Model Transformation Languages. In: Paige, R.F. (ed.) ICMT
2009. LNCS, vol. 5563, pp. 52–66. Springer, Heidelberg (2009)

18. ISO/IEC: 14977:1996(E) Information technology – Syntactic metalanguage – Ex-
tended BNF, International standard (1996)

214 G. Kappel et al.

19. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Sci. Comput. Program 72(1-2), 31–39 (2008)

20. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger,
W., Schwinger, W., Wimmer, M.: Lifting Metamodels to Ontologies: A Step to
the Semantic Integration of Modeling Languages. In: Wang, J., Whittle, J., Harel,
D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 528–542. Springer,
Heidelberg (2006)

21. Kappel, G., Kargl, H., Kramler, G., Schauerhuber, A., Seidl, M., Strommer, M.,
Wimmer, M.: Matching Metamodels with Semantic Systems - An Experience Re-
port. In: Workshop Proceedings of Datenbanksysteme in Business, Technologie und
Web, BTW 2007 (2007)

22. Kargl, H., Wimmer, M., Seidl, M., Kappel, G.: SmartMatcher: Improving Auto-
matically Generated Transformations. Datenbank-Spektrum 29, 42–52 (2009)

23. Kessentini, M., Sahraoui, H.A., Boukadoum, M.: Model Transformation as an Op-
timization Problem. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 159–173. Springer, Heidelberg (2008)

24. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley (2008)

25. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Transformation Language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008)

26. Kühne, T.: Matters of (Meta-)Modeling. Software and System Modeling 5(4), 369–
385 (2006)

27. Langer, P., Wimmer, M., Kappel, G.: Model-to-Model Transformations By Demon-
stration. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 153–167.
Springer, Heidelberg (2010)

28. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-formalism and Meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 174–188. Springer, Heidelberg (2002)

29. Lieberman, H.: Your wish is my command: programming by example. Morgan
Kaufmann Publishers Inc. (2001)

30. Ma, H., Shao, W.-Z., Zhang, L., Ma, Z.-Y., Jiang, Y.-B.: Applying OO Metrics to
Assess UML Meta-models. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J.
(eds.) UML 2004. LNCS, vol. 3273, pp. 12–26. Springer, Heidelberg (2004)

31. Mens, T., Gorp, P.V.: A Taxonomy of Model Transformation. Electr. Notes Theor.
Comput. Sci. 152, 125–142 (2006)

32. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: Int. Conf. on
Software Engineering (ICSE 2000), pp. 742–745 (2000)

33. Object Management Group (OMG): Meta Object Facility, Version 2.0 (2006),
http://www.omg.org/spec/MOF/2.0/PDF/

34. Object Management Group (OMG): Unified Modeling Language Superstructure
Specification, Version 2.1.2 (2007),
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF

35. OMG, O.: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifi-
cation. Final Adopted Specification (November 2005)

36. OMG, O.: OCL Specification Version 2.0 (June 2005),
http://www.omg.org/docs/ptc/05-06-06.pdf

37. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4), 334–350 (2001)

38. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2), 25–31 (2006)

http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF
http://www.omg.org/docs/ptc/05-06-06.pdf

Model Transformation By-Example 215

39. Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and Soul of Model-
Driven Software Development. IEEE Software 20, 42–45 (2003)

40. Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. In:
Spaccapietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–
171. Springer, Heidelberg (2005)

41. Strommer, M., Wimmer, M.: A Framework for Model Transformation By-Example:
Concepts and Tool Support. In: 46th Int. Conf. on Objects, Components, Models
and Patterns (TOOLS 2008). LNBIP, vol. 11, pp. 372–391. Springer, Heidelberg
(2008)

42. Sun, Y., Gray, J., White, J.: MT-Scribe: an end-user approach to automate software
model evolution. In: 33rd Int. Conf. on Software Engineering (ICSE 2011), pp. 980–
982. ACM (2011)

43. Sun, Y., White, J., Gray, J.: Model Transformation by Demonstration. In: Schürr,
A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 712–726. Springer, Hei-
delberg (2009)

44. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003.
LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

45. Varró, D.: Model Transformation by Example. In: Wang, J., Whittle, J., Harel,
D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410–424. Springer,
Heidelberg (2006)

46. Whittle, J., Moreira, A., Araújo, J., Jayaraman, P.K., Elkhodary, A.M., Rabbi, R.:
An Expressive Aspect Composition Language for UML State Diagrams. In: Engels,
G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 514–528. Springer, Heidelberg (2007)

47. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards Model Transfor-
mation Generation By-Example. In: 40th Hawaiian Int. Conf. on Systems Science
(HICSS 2007). IEEE Computer Society (2007)

48. Zloof, M.M.: Query-by-Example: the Invocation and Definition of Tables and
Forms. In: Int. Conf. on Very Large Data Bases (VLDB 1975), pp. 1–24. ACM
(1975)

On Computing the Importance of Associations

in Large Conceptual Schemas

Antonio Villegas, Antoni Olivé, and Maria-Ribera Sancho

Department of Service and Information System Engineering
Universitat Politècnica de Catalunya

Barcelona, Spain
{avillegas,olive,ribera}@essi.upc.edu

Abstract. The visualization and the understanding of large conceptual
schemas require the use of specific methods. These methods generate
clustered, summarized or focused schemas that are easier to visualize and
to understand. All of these methods require computing the importance
of the elements in the schema but, up to now, only the importance of
entity types has been taken into account. In this paper, we present three
methods for computing the importance of associations by taking into
account the knowledge defined in the structural and behavioral parts of
the schema. We experimentally evaluate these methods with large real-
world schemas and present the main conclusions we have drawn from the
experiments.

Keywords: Conceptual Modeling, Importance, Associations.

1 Introduction

A conceptual schema defines the general knowledge about the domain that an
information system of an organization needs to know to perform its functions
[16,20,18]. The conceptual schema of many real-world information systems are
too large to be easily managed or understood. One of the most challenging
and long-standing goals in conceptual modeling is to ease the comprehension of
large conceptual schemas [11,15]. The visualization and understanding of these
schemas requires the use of specific methods, which are not needed in small
schemas. These methods generate indexed [24,5,23,22], clustered [10,12,19], sum-
marized [8,28,27] or focused [26,25] schemas that are easier to visualize and to
understand.

Many of the above methods require computing the importance (also called
relevance or score) of each element in the schema. The computed importance
induces an ordering of the elements, which plays a key role in the steps and
result (output) of the method. Up to now, the existing metrics of importance for
schema elements were mainly centered in computing the importance of entity
types, but not in the importance of associations.

The main objective of this paper is to analyze existing metrics for measuring
the importance of entity types, and then to adapt them to be able to work

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 216–230, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Computing the Importance of Associations 217

with associations. We present two different methods to compute the importance
of associations inspired by the entity-type importance methods of occurrence
counting and link analysis [24]. In addition, our contribution also includes a
method to obtain the importance of associations by adapting a betweenness-
centrality measure [2,3] from the fields of graph theory and complex networks
[1].

Our approach takes into account the knowledge defined in the schema about
associations, including their participant entity types, the cardinality constraints
of those participations, the general constraints of the schema, and the specifica-
tion of behavioral events. All of them contribute to measure the importance of
associations.

We have experimentally evaluated each method using the conceptual schemas
of the osCommerce [21] and EU-Rent [9], the UML2 metaschema [13], a fragment
of the HL7 schemas [26], and the OpenCyc ontology [6]. All of them contain a
large amount of entity types and associations, which make difficult their under-
standing. We analyze the differences between methods and schemas, and make
conclusions on the importance of associations and its value in the comprehension
of large conceptual schemas.

The rest of the paper is organized as follows. Section 2 introduces the basic
concepts and notations. Section 3 reviews the concept of reification of associa-
tions. Section 4 presents the methods to compute the importance of associations
in detail. Section 5 describes the experimentation with the methods, the results
obtained, and the conclusions we have drawn. Finally, Section 6 summarizes the
paper and points out future work.

2 Basic Concepts and Notations

In this section we review the main concepts and the notations we have used to
define the knowledge of conceptual schemas. In this paper, we deal with schemas
written in the UML/OCL[13,14], which consists of the elements summarized in
Def. 1.

Definition 1. (Conceptual Schema) A conceptual schema CS is defined as a
triple CS = 〈E ,R, C〉, where:

- E is a set of entity types. Some e ∈ E represents event types [17].
- R is a set of associations between entity types of E. The degree of an asso-
ciation is the number of entity types that participate on it. An association r
has a degree n ≥ 2.

- C is a set of schema rules. C contains textual OCL constraints and the trans-
formation of all graphical UML constraints, including cardinality constraints,
into OCL expressions.

Table 1 summarizes the basic metrics used in the rest of the paper. If r ∈ R
then members(r) denotes the set of entity types that participate in the associa-
tion r, and assoc(e) the set of associations in which e participates. Note that an

218 A. Villegas, A. Olivé, and M.-R. Sancho

entity type e may participate more than once in the same association, and there-
fore members(r) and assoc(e) are multisets (may contain duplicate elements).
Moreover, conn(e) denotes the multiset of entity types connected to e through
associations.

Table 1. Definition of basic metrics

Notation Definition

members(r) = {e ∈ E | e is a participant of r}
assoc(e) = {r ∈ R | e ∈ members(r)}
conn(e) = �r∈assoc(e){members(r)\{e}}1

We denote by C the set of schema rules of a conceptual schema, including
constraints, derivation rules and pre- and postconditions. Each schema rule c is
defined in the context of an entity type, denoted by context(c). In OCL, each rule
c consists of a set of OCL expressions (see OCL [14]) that may refer to several
entity types which are denoted by ref(c). We also include in C the schema rules
corresponding to the equivalent OCL invariants of the cardinality constraints.

Table 2. Definition of extended metrics

Notation Definition

ref(c) = {e ∈ E | e is referenced in c ∈ C}
linkscontext(c) = {{e, e′} | e, e′ ∈ E ∧ e = context(c) ∧ e′ ∈ ref(c)}
linksnav(c) = {{e, e′} | e, e′ ∈ E ∧ e → e′ is a navigation in c}
links(c) = linkscontext(c) ∪ linksnav(c)

rconn(e) = �c∈C{e′ ∈ E | {e, e′} ⊂ links(c)}

A special kind of OCL expression is the navigation expression that define
a schema navigation from an entity type to another through an association
(see NavigationCallExp of OCL in [14]). Such expressions only contain two
entity types as its participants, i.e. the source entity type and the target one
(e → e′). We denote by linksnav(c) the set of pairs 〈e, e′〉 that participate in
the navigation expressions of c. We also denote by linkscontext(c) the sets of
pairs of entity types composed by the context of the rule c and every one of the
participant entity types of such rule (e ∈ ref(c)). Finally, we define links(c) as
the union of linkscontext(c) with linksnav(c) and, rconn(e) as the multiset of
entity types that compose a pair with e in links(c). Note that since we use (,
rconn(e) may contain duplicates because it takes into account each rule c, and
an entity type e can be related to another one e′ in two or more different rules.

1 Note that “\” denotes the difference operation of multisets as in {a, a, b}\{a} =
{a, b} and “�” denotes the multiset (or bag) union that produces a multiset as in
{a, b} � {a} = {a, a, b}.

On Computing the Importance of Associations 219

Intuitively, rconn(e) is the multiset of entity types to which an entity type e
is connected through schema rules. Table 2 shows the formal definition of the
extended metrics for schema rules.

3 Reifications

Reifying an association consists in viewing it as an entity type [16]. When we
view an association r as an entity er, we say that the entity reifies the association.
The reification of an association does not add any new knowledge to a schema,
but it is an interesting schema transformation that can be used in our context of
importance of associations. Since the existing methods for importance computing
are defined for entity types, the reification of association into entity types is a
way to easily adapt the schema and such methods in order to compute the
importance of associations.

Formally, the reification of an association r ∈ R is an entity type er connected
with the participant entity types of r through intrinsic binary associations. For
the case of association classes, since an association class is also an entity type, we
make an implicit reification only changing the connections with the participants
by adding the intrinsic binary associations.

In the case of a binary association r (left side of Fig. 1), the cardinality
constraints after the transformation are placed in the sides of the entity type er
that reifies the association. The cardinality constraints of a participant (e.g. α
of A) go to the new intrinsic association between the other participant (B) and
the new entity (C), placed on the side of the new entity type. On the side of
the previous participants (A and B) the cardinality equals 1. Furthermore, to
maintain all the semantics we also need a new uniqueness constraint expressed
in OCL, as shown in Fig. 1.

Fig. 1. Reification of binary (left side) and ternary (right side) associations

For the case of an n-ary association the transformation is similar (see right
side of Fig. 1). However, the multiplicities in the intrinsic binary associations
between the participants and the entity type that reifies the n-ary association
are always “1” on the participant side and “∗” on the entity-type side. In this case
a uniqueness constraint is also needed and follows the same idea as with binary

220 A. Villegas, A. Olivé, and M.-R. Sancho

associations. Furthermore, the cardinality constraints of the initial association
must be expressed as an OCL constraint to maintain all the semantics in the
reified version. For example, the multiplicity “0..2” in the Table participant of
Fig. 1 (right side) is transformed into the OCL constraint shown at the bottom.

Fig. 2. A fragment of conceptual schema (up) and its version with reifications (down)

After reifying all the associations in a schema CS = 〈E ,R, C〉 we obtain a new
schema CS+ = 〈E+,R+, C+〉. The set of entity types E+ contains the entity types
E of CS, and the entity types ER from the reifications of the initial associations
(E+ = E ∪ER). The associations in R+ are the binary intrinsic associations that
connect each er ∈ ER with its participants e ∈ E . Finally, C+ contains the same
constraints as in C including the required navigation changes to match the new
schema CS+, and the uniqueness constraints introduced in the reifications.

Figure 2 (top) shows an example of conceptual schema with 6 associations
(one of them, an association class of degree 3) and two OCL constraints that
describes a fragment of an information system for reservations in restaurants.
Figure 2 (bottom) shows the same schema with reifications (marked with bold
rectangles). Note that the two constraints include the new navigations (bold
text) to match with the new schema. Basically, a navigation e → e′ has to be
changed by including the navigation to the entity type that reifies the association
in the middle of the expression, producing a navigation like e → er → e′. The
reification of the schema produces 6 additional uniqueness constraints and a
constraint to preserve the cardinality 0..2 in Table as indicated in Fig. 1. These
7 constraints are not shown in Fig. 2 for the sake of simplicity.

4 Methods for Computing the Importance

In this section we present the definition of three methods for computing the im-
portance of associations in a schema. The methods are an adaptation of meth-
ods that compute the importance of entity types to associations. Each method

On Computing the Importance of Associations 221

is followed by a brief description showing its details, and its application to the
example of Fig. 2. We apply the methods to both entity types and associations,
but the focus of the paper is on associations. Concretely, these methods require
to be applied to the schema with reifications (bottom of Fig. 2) in order to com-
pute the importance of the entity types er that are reifications of associations.
Then, such importance is directly the importance of each association r ∈ R of
the original schema because each er is the representation of an association r in
the schema with reifications.

4.1 Occurrence Counting

There exist different kinds of methods to compute the importance of elements in
a schema. The simplest family of methods is that based on occurrence counting
[5,12,22], where the importance of a schema element is equal to the number of
characteristics it has in the schema. Therefore, the more characteristics about
an element, the more important it will be.

Our approach adapts the occurrence counting methods described in [24] to
compute the importance of associations taking into account the characteristics
an association may have in a schema. Those include the number of participants,
its multiplicities, and its usage in OCL expressions to navigate the schema.
Formally, the importance OC(r) of an association r ∈ R is defined as,

OC(r) = |conn(er)|+ |rconn(er)|

where the previous metrics for entity types are applied to the entity type er that
appears from the reification of r, as explained in Sec. 3. Concretely, |conn(er)| is
the number of associations where er participates, which can be easily mapped to
the number of connections that the original association r has in the schema. In
the same way, |rconn(er)| indicates the usage in OCL expressions of the entity
type er, and consequently, the usage of r.

Table 3 shows the results of applying the occurrence method to the example
in Fig. 2. Note that Reservation is the association that has a greater importance
due to its number of participants and its usage in OCL navigations. As expected,
the association Owns has a lower importance because it does not participate in
any OCL expression apart from the uniqueness constraints of its reification (as
shown in Fig. 1 for a binary association).

We also show in Tab. 3 the importance of entity types computed with the same
method (the sum of |conn(e)| and |rconn(e)|). Restaurant is the most important
entity types according to the method, followed by Customer and Table.

4.2 Link Analysis

Link-analysis methods [23,22] define the importance of a schema element as a
combination of the importance of the schema elements connected to it. Therefore,
the more important the elements connected to a schema element are, the more
important such schema element will be. In these methods the importance is

222 A. Villegas, A. Olivé, and M.-R. Sancho

Table 3. Occurrence counting method applied to schema of Fig. 2

r ∈ R |conn(er)| |rconn(er)| OC(r)
Grants 2 8 10

Has 2 13 15

Owns 2 7 9

Serves 2 9 11

WorksIn 2 10 12

Reservation 4 21 25

e ∈ E |conn(e)| |rconn(e)| OC(e)
CreditCard 1 4 5

Customer 3 9 12

Date 1 2 3

Restaurant 3 16 19

Table 2 10 12

Waiter 2 9 11

shared through connections, changing from an element-centered philosophy to a
more interconnected view of the importance.

Our approach adapts the link-analysis methods to compute the importance of
entity types that are described in [24] to be used with associations. Concretely,
we follow the same approach as the extended version of the EntityRank method
(see Sec. 3.4 of [24]), which is based on Google’s PageRank [4]. Each entity type
in the schema is viewed as a state and each association between entity types as
a bidirectional transition between them.

The link-analysis method we propose requires the reification of all the associ-
ations in the schema. Thus, we can compute their importance as in the case of
entity types. Concretely, from a link-analysis perspective the importance of an
entity type is the probability that a random surfer exploring the schema arrives
at that entity type with random jumps (q component) or by navigation through
associations (1 − q component). Therefore, the resulting importance of the en-
tity types in the schema with reifications e ∈ E+ correspond to the stationary
probabilities of the Markov chain, given by:

LA(e) = q

|E+| + (1− q)

⎛

⎝
∑

e′∈conn(e)

LA(e′)
|conn(e′)| +

∑

e′′∈rconn(e)

LA(e′′)
|rconn(e′′)|

⎞

⎠

Once we have the importance of all entity types e ∈ E+ in the schema with
reifications, the next step is to obtain the importance of associations by analyzing
the cases of those entity types e ∈ ER that are the reification of associations
separately. Formally,

LA(r) = LA(er)∑
e∈ER LA(e)

where LA(r) is the relative importance of the association r ∈ R, taking into
account the importance LA(er) of its reification and the importance of the rest
of reifications of associations in the schema CS+.

Table 4 shows the results of applying the link analysis method to associations
and entity types of the example in Fig. 2. We forced that

∑
e∈E LA(e) = 1. Note

that the link-analysis method discovers that the most important association is

On Computing the Importance of Associations 223

Reservation but do not obtain big differences between the rest of associations.
This situation occurs because of the small size of our example. According to our
experience [24], this method should be used with schemas of larger sizes.

Table 4. Link analysis method applied to schema of Fig. 2

r ∈ R |conn(er)| |rconn(er)| LA(r)

Grants 2 8 0.13

Has 2 13 0.16

Owns 2 7 0.15

Serves 2 9 0.14

WorksIn 2 10 0.14

Reservation 4 21 0.28

e ∈ E |conn(e)| |rconn(e)| LA(e)

CreditCard 1 4 0.11

Customer 3 9 0.21

Date 1 2 0.08

Restaurant 3 16 0.26

Table 2 10 0.17

Waiter 2 9 0.17

4.3 Betweenness Centrality

Betweenness, in graph theory and network analysis [1], is a measure of the cen-
trality of a vertex or an edge within a graph. It indicates the relative importance
of such vertex/edge within the graph [2,3]. Since a conceptual schema can be
seen as a graph with nodes (entity types) and edges (associations), it is possible
to adapt the measure of node betweenness from graphs to compute the impor-
tance BC(r) of associations. Figure 3 shows a mini-example where E5 is the most
central (appears in a higher number of shortest paths) entity type, followed by
E3 and E7.

Fig. 3. Example of betweenness centrality of entity types in a conceptual schema

Basically, those associations that belong to more navigation paths in OCL and
that their reifications are central in the schema are meant to be important. We
firstly compute the betweenness of the entity types er ∈ ER that are reifications
of associations r ∈ R by using the schema with reifications CS+. Formally,

BC(er) =
∑

e,e′∈E+

Ne,e′ (er)

Ne,e′
,

where Ne,e′ is the number of shortest paths between a pair of entity types e, e′ ∈
E+ in the schema with reifications traversing intrinsic associations r ∈ R+, and
Ne,e′(er) is the number of those paths that go through er, which results from
the reification of an association r.

Once we have the importance in the schema with reifications, the next step
consists of obtaining the importance of associations of the original schema as in
the case of the link-analysis method. Formally,

224 A. Villegas, A. Olivé, and M.-R. Sancho

BC(r) = BC(er)∑
e∈ER BC(e)

To compute the shortest paths between entity types in the schema with reifica-
tions, we give a different length to each intrinsic association r ∈ R+ that appears
in such schema, denoted by δ(r), according to its usage in OCL expressions. Con-
cretely, we assign a shorter length for those intrinsic associations that are more
navigated in order to favor their selection in the computation of shortest paths.
To do so, we define in Table 5 a new measure rconn(r) that computes the OCL
navigations where an association r is traversed in the constraints C+.

Table 5. Definition of metrics for r ∈ R+

Notation Definition

rconn(r) = �c∈C+{{e, e′} ∈ linksnav(c) | association({e, e′}) = r}
δ(r) = M− |rconn(r)| + 1

M = maxr∈R+(|rconn(r)|)

Additionally, Table 5 includes the definition of the length δ(r) of an associ-
ation of the schema with reifications. Note that M is the maximum number of
navigations where an association r ∈ R+ is traversed. Therefore, those asso-
ciations r types without occurrences in OCL expressions (|rconn(r)| = 0) will
have a greater length (concretely, the greatest, δmax =M+ 1) than those with
a big amount, and therefore their participation in shortest paths will be lower.
On the contrary, the associations with a number of navigations closer to the
maximum (|rconn(r)| ≈ M) will have a shorter length (δ ≈ 1), and will partic-
ipate in shortest paths. Therefore, this approach uses the navigations through
associations described in OCL expressions to compute the shortest paths in an
importance-related way.

Table 6. Betweenness centrality method applied to schema of Fig. 2

r ∈ R BC(r) BCδ(r)

Grants 0.14 0.07

Has 0.06 0.1

Owns 0.17 0.16

Serves 0.13 0.16

WorksIn 0.07 0.05

Reservation 0.43 0.46

e ∈ E BC(e) BCδ(e)

CreditCard 0 0

Customer 0.53 0.5

Date 0 0

Restaurant 0.25 0.19

Table 0.13 0.21

Waiter 0.09 0.1

Table 6 shows the results of applying the betweenness centrality method to
the example in Fig. 2. Note that BCδ takes into account the lengths δ(r) whereas
BC does not. We forced that

∑
e∈E BE(e) = 1 and

∑
e∈E BEδ(e) = 1.

It is important to observe that without lengths the path from Restaurant to
Customer through the association Grants is shorter than traversing the entity

On Computing the Importance of Associations 225

type Table. By contrast, since that second path is more navigated in OCL con-
straints, taking into account lengths we observe a significant reduction in the
importance of Grants (0.14 to 0.07) and an increment in the importance of Has
and Table (0.06 to 0.1 and 0.13 to 0.21, respectively). Therefore taking into ac-
count the lengths in associations according to their usage in OCL expressions is
a more realistic approach to compute the importance.

5 Experimental Evaluation

We have implemented the three methods described in the previous section and
we have evaluated them using five distinct case studies: the osCommerce [21], the
EU-Rent [9], the UML2 metaschema [13], a fragment of the HL7 schemas [26],
and the OpenCyc ontology [6]. For the case of the betweenness centrality method
we used an existing implementation of the Brandes algorithm [7,3]. Table 7
summarizes the main characteristics of the five schemas.

Table 7. Schema elements of the case studies

Entity Types Associations Constraints

osCommerce schema 346 183 457

EU-Rent schema 185 152 283

UML2 metaschema 293 377 188

HL7 schemas 2695 228 9

OpenCyc 2951 1385 0

In case of two or more entity types or associations get the same importance,
our implementation is non-deterministic: it might rank first any of those. Some
enhancements can be done to try to avoid ranking equally-important entity
types or associations in a random manner, like prioritizing those with a higher
amount of attributes or a higher amount of participations in OCL expressions
(or any other measure) in case of ties. However, this does not have an impact to
our experimentation. In the following, we summarize the main studies we have
performed with the results of the application of the three methods.

5.1 Time Analysis

The first study we have made measures the execution time of each importance-
computing method when applied to each of the five schemas. It is clear that a
good method does not only require to achieve relevant results, but it also needs
to present them in an acceptable time according to the user requirements. To
find the time spent by our method it is only necessary to record the time lapse
between the start of the method, and the receipt of the rankings of associations
and entity types.

Figure 4 shows the execution time (in seconds) of all three methods in an Intel
Core 2 Duo 3GHz processor with 4GB of DDR2 RAM. According to the results,

226 A. Villegas, A. Olivé, and M.-R. Sancho

osCommerce EU-Rent UML HL7 OpenCyc

0

2

4

6

8

10
T
im

e
(s
)

OC
LA
BC

Fig. 4. Execution time between methods for each schema

the occurrence-counting method (OC) is the fastest method for all the schemas,
because of its simplicity with respect to the other two methods. On the contrary,
the betweenness-centrality method (BC) is the slowest one due to its bottleneck
on computing the shortest paths between schema elements. Despite that, the BC
method performs better than the link-analysis method (LA) in the case of the
HL7 due to the reduced number of associations it contains (in comparison to the
number of entity types), which dramatically reduces the previous bottleneck of
the shortest-paths computing process.

Consequently, if the method is intended to be used for determining the im-
portance of associations and entity types in a context where the target schema
is rapidly evolving through changes, it is better to select a faster method like the
OC, or even the LA (taking into account the size of the schema). Otherwise, if
the context is static and the schema does not change, the method to select may
be any of the three (the importance could be pre-calculated without runtime
consumption).

5.2 Correlation between Methods

We apply the three methods to each of the five schemas. Each method can
compute the importance of associations and entity types, and therefore produces
two different rankings of schema elements: the one of entity types and the one of
associations. Our research aims to know which methods give similar results, in
order to select the simpler method in any case. Thus, we study the correlation
between methods by analyzing the correlation of the rankings they produce.

Figure 5 shows, for each pair of methods, the results obtained in the correla-
tion analysis for the rankings of importance of associations. Our aim is to know
whether it is possible to compare the results of the importance methods and to
search for a common behavior. We can observe that the most correlated meth-
ods to compute the importance of associations are the occurrence-counting and
link-analysis methods, although there exists a certain variability in the results,
denoted by the fact that their correlation in larger schemas tend to decrease.

Figure 6 shows, for each pair of methods, the results obtained in the correlation
analysis for the rankings of importance of entity types. In this case, although

On Computing the Importance of Associations 227

osCommerce EU-Rent UML HL7 OpenCyc

0

0.2

0.4

0.6

0.8

1

0.81

0.35

0.15

0.96

0.81
0.78

0.35

0.15 0.15

0.58

0.01

0.21

0.57

0.16
0.10

C
o
rr
el
a
ti
o
n
co
effi

ci
en
t

OC and LA OC and BC LA and BC

Fig. 5. Correlation between methods for each schema in the case of the importance of
associations

osCommerce EU-Rent UML HL7 OpenCyc

0.2

0.4

0.6

0.8

1 0.95

0.85
0.89

0.97

0.88

0.94 0.95

0.82
0.86

0.99

0.760.78

0.99

0.890.86

C
o
rr
el
a
ti
o
n
co
effi

ci
en
t

OC and LA OC and BC LA and BC

Fig. 6. Correlation between methods for each schema in the case of the importance of
entity types

the pair of methods with a higher correlation are the same than in the case of
associations (OC and LA), all the methods produce similar rankings. It means
that the three methods of importance are more consistent when applied to entity
ranks than when applied to associations.

The fact that the pair of methods OC and LA produce more similar results
between them than with the betweenness-centrality method (BC) is due to the
different approach each method follows. On one hand, OC and LA compute the
importance of schema elements by counting the characteristics they have (and
the characteristics of the elements connected to them, in LA) in the schema.
On the opposite, BC computes the importance by analyzing the topology and
structure of the schema measuring the shortest paths between elements and their
participation in those shortest paths.

Therefore, to select a method or another depends on the approach the user
wants to follow to compute the importance of associations. An approach closer
to counting the number of characteristics the associations have, will choose OC

228 A. Villegas, A. Olivé, and M.-R. Sancho

or LA, while an approach closer to select those associations that are more central
in the schema will choose BC. For the case of entity types, as shown in Fig. 6,
the selection of a method or another has a lower impact in the obtained results,
because of the greater correlation between them.

5.3 Impact of the Reifications

We have analyzed the results of the three methods when applied to compute the
importance of the entity types of each of the five test schemas in their original
form (CS) and after their reification (CS+). The resulting correlation between
CS and CS+ is an indicator of the impact that reifications have in the importance
of entity types.

osCommerce EU-Rent UML HL7 OpenCyc

0.2

0.4

0.6

0.8

1 0.99

0.92
0.87

0.98
0.93

0.84

0.95
0.92

0.83

0.98 0.95

0.86

0.97

0.89

0.83

C
o
rr
el
a
ti
o
n
co
effi

ci
en
t

OC LA BC

Fig. 7. Correlation between results before and after reifications for the case of the
importance of entity types

Figure 7 shows that the transformation of the associations into entity types
through the reification process has an impact in the importance of entity types
by introducing changes in the resulting rankings. Those changes are mainly pro-
duced by the addition of implicit associations after reifications to maintain the
connections. However, the correlation between the rankings of importance of
entity types in CS and CS+ is close to 1, which means that the impact of reifica-
tions is minimal. Therefore, although CS+ changes with respect to CS, reifying
associations produces a low impact on the computed importance of entity types.

6 Conclusions and Further Work

The visualization and the understanding of large conceptual schemas require the
use of specific methods. These methods generate indexed, clustered, summarized
or focused schemas that are easier to visualize and understand. Almost all of these
methods require computing the importance of each element in the schema but, up
to now, only the importance of entity types has been studied in the literature.

The computed importance induces an ordering of the elements, which plays a
key role in the steps and result of the methods that deals with large schemas. We

On Computing the Importance of Associations 229

have proposed three methods to compute the importance of associations, and
also entity types. The methods we describe are based on occurrence-counting
(OC), link-analysis (LA), and betweenness-centrality (BC). Our approach trans-
forms the schema by reifying the associations into entity types. As a result,
we use existing importance-computing methods from the literature with minor
modifications to be able to work with associations.

We have implemented the three methods in a prototype tool and we have ex-
perimented them with five large real-world conceptual schemas. The results we
obtained indicate that the quickest method is the OC, which must be selected if
the interaction context is dynamic and the user wants real-time feedback. Fur-
thermore, we observe that the computed rankings of importance for entity types
have a greater similarity independently of the selected method which indicates
that all three methods are indistinguishable in that aspect. Conversely, for the
case of the rankings of associations, the selection of a method or another has an
impact in the obtained results.

The combination of the importance of entity and associations our methods
compute can be applied to several techniques to deal with large conceptual
schemas in order to reduce the effort a non-expert user must do to understand
the knowledge within the schema. An example is the construction of reduced
schema summaries with the top of both importance rankings to give a simple
view of the schema contents. We plan to continue our work in that direction.

Acknowledgements. This work has been partly supported by the Ministerio de
Ciencia yTecnologia andFEDERunder projectTIN2008-00444/TIN,GrupoCon-
solidado, and by Universitat Politècnica de Catalunya under FPI-UPC program.

References

1. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks:
Structure and dynamics. Physics Reports 424(4-5), 175–308 (2006)

2. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology 25, 163–177 (2001)

3. Brandes, U.: On variants of shortest-path betweenness centrality and their generic
computation. Social Networks 30(2), 136–145 (2008)

4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems 30(1-7), 107–117 (1998), Proceedings of
the 7th International World Wide Web Conference

5. Castano, S., De Antonellis, V., Fugini, M.G., Pernici, B.: Conceptual schema anal-
ysis: techniques and applications. ACM Transactions on Database Systems 23(3),
286–333 (1998)

6. Conesa, J., Storey, V.C., Sugumaran, V.: Usability of upper level ontologies: The
case of ResearchCyc. Data & Knowledge Engineering 69(4), 343–356 (2010)

7. Dutot, A., Guinand, F., Olivier, D., Pigné, Y.: Graphstream: A tool for
bridging the gap between complex systems and dynamic graphs. EPNACS:
Emergent Properties in Natural and Artificial Complex Systems (2007),
http://graphstream-project.org

8. Egyed, A.: Automated abstraction of class diagrams. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM) 11(4), 449–491 (2002)

http://graphstream-project.org

230 A. Villegas, A. Olivé, and M.-R. Sancho

9. Frias, L., Queralt, A., Olivé, A.: EU-Rent Car Rentals Specification. LSI Research
Report. Tech. rep., LSI-03-59-R (2003),
http://www.lsi.upc.edu/dept/techreps/techreps.html

10. Jaeschke, P., Oberweis, A., Stucky, W.: Extending ER Model Clustering by Rela-
tionship Clustering. In: Elmasri, R.A., Kouramajian, V., Thalheim, B. (eds.) ER
1993. LNCS, vol. 823, pp. 451–462. Springer, Heidelberg (1994)

11. Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding quality in conceptual mod-
eling. IEEE Software 11(2), 42–49 (1994)

12. Moody, D.L., Flitman, A.: A Methodology for Clustering Entity Relationship Mod-
els - A Human Information Processing Approach. In: Akoka, J., Bouzeghoub, M.,
Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS, vol. 1728, pp. 114–130.
Springer, Heidelberg (1999)

13. Object Management Group: Unified Modeling Language (UML) Superstructure
Specification, version 2.2 (February 2009), http://www.omg.org/spec/UML/2.2/

14. Object Management Group: Object Constraint Language Specification (OCL), ver-
sion 2.0 (February 2010), http://www.omg.org/spec/OCL/2.2/

15. Olivé, A., Cabot, J.: A research agenda for conceptual schema-centric development.
In: Conceptual Modelling in Information Systems Engineering, pp. 319–334 (2007)

16. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg
(2007)

17. Olivé, A., Raventós, R.: Modeling events as entities in object-oriented conceptual
modeling languages. Data & Knowledge Engineering 58(3), 243–262 (2006)

18. Schewe, K.-D., Thalheim, B.: Conceptual modelling of web information systems.
Data Knowl. Eng. 54(2), 147–188 (2005)

19. Schmidt, P., Thalheim, B.: Management of UML Clusters. In: Abrial, J.-R.,
Glässer, U. (eds.) Borger Festschrift. LNCS, vol. 5115, pp. 111–129. Springer, Hei-
delberg (2009)

20. Thalheim, B.: Entity-relationship modeling: foundations of database technology.
Springer, Heidelberg (2000)

21. Tort, A., Olivé, A.: The osCommerce Conceptual Schema. Universitat Politècnica
de Catalunya (2007), http://guifre.lsi.upc.edu/OSCommerce.pdf

22. Tzitzikas, Y., Kotzinos, D., Theoharis, Y.: On ranking RDF schema elements (and
its application in visualization). Journal of Universal Computer Science 13(12),
1854–1880 (2007)

23. Tzitzikas, Y., Hainaut, J.-L.: How to Tame a Very Large ER Diagram (Using Link
Analysis and Force-Directed Drawing Algorithms). In: Delcambre, L.M.L., Kop,
C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp.
144–159. Springer, Heidelberg (2005)

24. Villegas, A., Olivé, A.: Extending the methods for computing the importance of
entity types in large conceptual schemas. Journal of Universal Computer Science
(J.UCS) 16(20), 3138–3162 (2010)

25. Villegas, A., Olivé, A.: A Method for Filtering Large Conceptual Schemas. In:
Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS,
vol. 6412, pp. 247–260. Springer, Heidelberg (2010)

26. Villegas, A., Olive, A., Vilalta, J.: Improving the usability of HL7 information
models by automatic filtering. In: IEEE 6th World Congress on Services, pp. 16–
23 (2010)

27. Yang, X., Procopiuc, C.M., Srivastava, D.: Summarizing relational databases. In:
35th Intl. Conf. on Very Large Data Bases, VLDB 2009, pp. 634–645 (2009)

28. Yu, C., Jagadish, H.V.: Schema summarization. In: 32nd Intl. Conf. on Very Large
Data Bases, VLDB 2006, pp. 319–330 (2006)

http://www.lsi.upc.edu/dept/techreps/techreps.html
http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/OCL/2.2/
http://guifre.lsi.upc.edu/OSCommerce.pdf

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 231–250, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Conceptual Modeling of Human Genome: Integration
Challenges

Oscar Pastor, Juan Carlos Casamayor, Matilde Celma, Laura Mota,
M. Ángeles Pastor, and Ana M. Levin

Centro de Investigación en Métodos de Producción de Software (PROS)
Departamento de Sistemas Informáticos y Computación,

Universitat Politècnica de València, Camino de Vera S/N. 46022, Valencia, Spain
opastor@pros.upv.es

Abstract. While Information Systems (IS) principles have been successfully
applied to the design, implementation and management of a diverse set of
domains, the Bioinformatics domain in general and the Genomic one in
particular, often lacks a rigorous IS background, based on elaborating a precise
Conceptual Model where the relevant concepts of the domain were properly
defined. On the contrary, current genomic data repositories focus on the
solution space in the form of diverse, ad-hoc databases that use to be hard to
manage, evolve and intercommunicate. Conceptual Modeling as a central
strategy is then far from the current biological data source ontologies that are
heterogeneous, imprecise and too often even inconsistent when compared
among them. To solve this problem, a concrete Conceptual Schema for the
Human Genome (CSHG) is introduced in its latest version on this chapter. With
a holistic perspective, the CSHG focuses on the different genomic views that
must be integrated and emphasizes the value of the approach in order to deal
appropriately the challenge of correctly interpreting the human genome.

Keywords: Conceptual Modeling, Information Systems in Bioinformatics,
Semantic Integration, Human Genome.

1 Introduction

Nowadays, the importance of Conceptual Modeling (CM) is widely accepted in the
Information Systems (IS) community. If designing and implementing a correct
information system is the goal, a conceptual schema becomes the essential software
artifact [1]. Conceptual modeling is the appropriate key activity to understand the
relevant concepts of the domain, to represent them accordingly to a selected notation,
and to transform their representation accurately into the subsequent software
components that will conform the final system.

During the last decades, a lot of knowledge and experience has been accumulated
in the IS area, and a huge number of applications –mainly database-oriented
applications– covering practically any human working domain, have put IS on the top
of the technological wave. Facing any domain, understanding it through the

232 O. Pastor et al.

corresponding conceptual modeling framework and defining its conceptual schema
have become the central part of any software production process. Ontologically
speaking, conceptualization is essential for this mandatory understanding process, and
a conceptual schema is seen as the ontological representation of the relevant
knowledge of a selected universe of discourse. A set of modeling elements or
conceptual constructs provides the basis to determine the breaks that will build the
conceptual schema. A good example of this conceptual characterization can be found
in the FRISCO proposal [2], where organizational systems concepts were introduced,
with a sound, ontological background that makes possible to elaborate conceptual
modeling-based software processes oriented to design and implement this type of IS,
as the OO-Method presented in [3].

Having the conceptual schema that corresponds to a target domain, modern model
engineering strategies (Model-Driven Development, Extreme Non-Programming,
Conceptual Schema-Centric Software Development or MDA-based CASE tools)
provide a set of diverse technologies that allow to transform models, from the early
requirements models to the final software models. In these technologies, conceptual
models always play a role as the essential software artifact on which the full software
production process pivots.

We find IS-based applications in almost every relevant organizational domain
(universities, hospitals, banking, any type of shopping centers, companies, …)
covering a huge set of different human activities (accounting, selling, purchasing,
stock control, staff management, …). Therefore, it is interesting to analyze how this
IS background is affecting the development of bioinformatics, a modern and
challenging domain that nowadays concentrates a lot of interest and where IS
principles –especially a sound Conceptual Modeling-based perspective- are not so
clearly applied.

Data management –an essential feature of any IS-based application domain– is a very
big issue in the bioinformatics area, especially in the context of Genomics, and more
particularly, in the human genome domain. Literally, tons of genomic data are produced
every day and are stored in very different sources, intended to provide an adequate
answer to one of the most outstanding challenges of the XXIst century: understanding
the human genome. The need for emerging technologies to face this proliferation of data
resources is a problem that has already been pointed out by different authors [4, 5]. This
need presents an even bigger challenge for ‘omics” researchers who need to automate
large-scale data aggregation across many different sites. Additionally, the continuous
need of collecting all the phenotypically interesting variants of the human genome
requires the use of new strategies of data storage and reference [6].

But, while this huge amount of data is feeding a large number of biological
databases, it is highly remarkable the absence of a formal IS approach to understand
this domain, and the representation of the current knowledge in a precise conceptual
schema that could be called “Conceptual Schema of Human Genome”. This schema
should provide a reliable basis to fix, discuss and understand, without ambiguity,
which are the precise biological concepts that conform the current state of the
knowledge associated to the human genome. Additionally, as new information is
continuously generated in this domain, a conceptual-schema centric approach is also

 Conceptual Modeling of Human Genome: Integration Challenges 233

intended to provide a more efficient conceptual framework much better prepared to
face evolution of concepts than other approaches that are strictly centered on concrete
database schemas.

There are many biological databases and domain ontologies covering different
genomic perspectives (Gene Ontology [7,8], Entrez-Gene [9], Ensembl [10,11],
GeneBank [12] or HGMD[13,14] for understanding mutations; OMIM [15,16] for
representing phenotypes related to human illnesses; KEGG [17,18], UniProt [19,20],
InterPro [21,22], for understanding proteins and their interactions; Reactome
[23,24] for understanding pathways, and many much more). But when we look for a
common conceptual schema to have a holistic, unified conceptual view of all this
knowledge, it is difficult to find a clear response. If the key question to be answered
in this context is the definition of a precise set of semantic mappings between
genotype (the “source” genetic code) and phenotype (its external, perceivable
characteristics), it is clear that such a unified conceptual view is a strong need. This
integrated conceptual schema should become the cornerstone of any well-founded
biological exploitation of reliable data, especially considering the high rate of
modification that affects the involved domain of knowledge.

Following the research direction introduced in [25], our work aims to provide an
answer to this challenge, under the belief that only by having a well-defined conceptual
schema of the human genome, it would be possible to put the required order in the
current chaotic management of genomic data. We refer to this vast set of data spread out
in many different data sources, with different formats, too often inconsistent, redundant
and with a doubtful reliability in terms of data validity as the “genome data chaos”. An
additional problem of this context is that day after day new data become available and
some of the existing one change. The continuous advances in DNA sequencing
strategies and their cost reduction accelerate dramatically this phenomenon. If we
consider just the human genome case, we talk about 30.000 genes whose individual
behavior, in terms of detailed functionality, is in most of the cases still ignored and
whose precise interactions open a huge field of research still to be explored. It seems
evident that we face the challenge of modern times: managing adequately this immense
set of data, in constant evolution, and with underlying concepts whose definition can
often be considered still work in progress. This challenge has an evident IS-oriented
“taste”, and it can only be correctly approached if we take careful advantage of the good
practices accumulated during years in the IS arena.

In this context, this chapter introduces a complete conceptual schema of the human
genome, intended to provide a conceptual framework to develop a correct Genomic
Information System –GIS-. By GIS, we mean to look at the Genome as a concrete
Information System where the relevant concepts are those of the Molecular Biology,
intended to understand how to link genome structure with phenotype expression. This
is the main objective of this work: to provide the subsequent Conceptual Schema that
should make possible to understand and interpret the genome, including its different
perspectives (genotype, phenotype, pathways and any other relevant information).
Under the quoted, current chaos in the genomic data management, the proposed
conceptual schema is a main contribution in the bioinformatics area, constituting a
well-defined link between Information Systems principles and Bioinformatics works
oriented to understand the language of life represented by the genome.

234 O. Pastor et al.

One important aspect of the genomic domain is how dynamic the current
knowledge about it is. Day after day, new information is generated as the result of the
huge amount of research that is being developed. This evolution affects directly the
completeness and correctness of a Conceptual Schema as the one that we want to
create. But this is at the same time a main benefit of following a Conceptual
Modeling-centric approach. Using the Conceptual Schema as the central repository of
current, relevant genomic information, genomic data evolution can be much better
managed. The evolution of our work is –on the one side- discovering new genomic
information that must be incorporated into the model, while on the other side
conceptual updates are precisely located, understood and traced to the corresponding
data sources –either databases or data ontologies-.

Another important advantage is to facilitate data integration from heterogeneous
data sources: only having a precise Conceptual Schema as the central, essential
component, pieces of information stored in diverse data sources can be adequately
interconnected.

However, we want to emphasize that this work should not be seen as just an
attractive exercise of conceptual modeling in a fashionable domain. The joint work
performed by information system experts and biology experts provides a very
interesting example of how conceptual modeling is a powerful tool to determine
precisely the semantics of basic genome-related concepts that sometimes are not as
clear as one could expect. The definition of the proposed conceptual schema has lead
to interesting discussions where often basic concepts have been strongly discussed
raising successive conceptual schema versions, and even restructuring initial
knowledge when new insights in the definition of those concepts were introduced. To
fix the meaning of gene, alleles, mutations, transcripts, splicing or SNPs among many
others, originated rich discussions, and this is from our perspective a second, major
contribution of this work: to show how the use of a sound conceptual modeling
framework leads to a much powerful context to make feasible and reliable the major
value of our expected result, that is the adequate interpretation and understanding of
the human genome.

According to these objectives, the structure of the presented chapter is concise: after
this introduction where the problem is stated and our basic objectives are explained, the
most significant related work developed in this context is discussed in section 2. The
proposed conceptual model of the human genome is then developed in section 3,
showing its structure in five different views that are properly integrated. These five
views are the structural view –where the main basic genome-related concepts are
introduced-, the transcription view –where the concepts related to how the source DNA
is processed to synthesize proteins are presented-, the variation view –intended to show
how changes in the genome affect the expected normal behavior-, the pathway view –
that adds the cellular metabolism principles that are required to understand relationships
between genotype and phenotype- and the source & bibliography view –oriented to
assure that the source of reliable information is properly documented-. The adequate
integration of the information involved in these views provided the full picture of a
complete Conceptual Schema ready to be used and managed according to those well-
founded IS principles needed to assure the successful manipulation of the genomic data.
Conclusion and references close the work.

 Conceptual Modeling of Human Genome: Integration Challenges 235

2 Related Work

It is true that many different databases related to the storage of different types of
genomic-oriented information can be found in the biological domain. We have quoted
some of the above in the introduction. But while it is usual to see diverse biological
databases used to manage different types of genome data, it is not so normal to have
an associated sound and rigorous conceptual schema background behind them. In the
Bioinformatics domain they are often referred as data sources, data repositories or
ontologies. The use of the “ontology” term is in that context somewhat controversial,
as those data sources often represent more a glossary of genomic terms, than a true,
shared conceptualization of the domain as an ontology is supposed to do. We would
not say that data sources as RefSeq, Gene Ontology, Entrez Gene, Ensembl… are
precise ontologies in the “pure”, philosophical notion of ontology. Instead, they can
be seen closer to the notion of databases, centered around a very concrete database
schema, without a precise conceptual schema associated to its definition, and totally
concentrated on the solution space perspective instead of on the problem space. As we
look at a conceptual schema as a concrete representation of an ontology, the lack of
such a conceptual background in the most widely-known and widely-used genomic
databases constitutes a problem that our work faces directly. The Conceptual Schema
of the Human Genome that we present in this chapter would provide the required
“conceptual structure” needed to store each piece of genomic data in the right place,
independently of the selected origin of data.

This way has been previously explored by a few authors, that we consider pioneers
of our proposal. Paton et al. were in [26, 28, 29] the first ones introducing the idea of
modeling the genome, and they introduced a first set of data models intended to
achieve this goal. In their proposal a collection of data models for genomic data is
presented. These models describe elements involved in transcriptional and
translational processes as well as the variant effects generated by them. Their work
could be said to be preliminary, and it had no clear continuation, but in some way
what we present here is based on the shared principle of using conceptual modeling as
the key artifact for managing genome data. The results that we present can then be
seen as a major extension and conceptual enrichment of those ideas.

Moreover Ram has successfully applied in [27] conceptual modeling principles in
the context of the protein notion. More concretely, in her work it is shown how 3D
protein structure search and comparison can be facilitated through conceptual
modeling, not only enabling to predict unknown structures, but also revealing distant
evolutionary relationships that are otherwise undetectable, and perhaps suggesting
unsuspected functional properties. Even if the considered domain is more restricted,
the work demonstrates that conceptual modeling provides the adequate background to
manage data more effectively. That paper concentrates on the 3D protein structure,
while in this chapter our goal is to introduce a holistic perspective of the human
genome data model; in some way, the work presented by Ram could be embedded in
the global perspective that our proposal wants to provide.

236 O. Pastor et al.

We find these conceptual modeling-based experiences in other genomic domains
different from the human genome one. Some other attempts to model more viable
genomes have been reported. An interesting experience is provided by the e-Fungi
initiative [30, 31], where a systematic comparative analysis of fungal genomes is
supported. The e-Fungi database integrates a variety of data for more than 30 fungal
genomes and it provides fungal biologists with a powerful resource for comparative
studies of a large range of fungal genomes. This work is developed in a different
domain -the fungi genome instead of the more complex human genome- but it shows
a clear path of results exploitation that could be perfectly projected to our Human
Genome modeling effort.

In order to close this related work analysis, we want to mention our previous, first
attempts to build a conceptual schema for the human genome, published in [32, 33].
These very first proposals constitute the starting point to the conceptual schema
presented in this chapter. While we have been increasing the perspective of our
conceptual modeling-based approach to the genomic domain, these works present
initial and partial views of the whole picture, that help to understand how the current
state has been achieved. The conceptual schema views reported in these works have
been largely corrected and extended. Even if not all the components were present as
we do in this chapter, the evolution followed by the conceptual representation of the
genomic knowledge, and how difficult is to synchronize the discourse and the
communication between IS experts and biologists, becomes evident when following
the subsequent schema evolution reports. We are conscious about the difficulty of this
“conceptual trip”. We know that what appears to be correct today according to the
current genomic knowledge, may change tomorrow and may need to be updated. But
we are convinced that our conceptual model-driven perspective is the right choice to
manage this domain that is in continuous evolution.

It is especially relevant in this chapter the presentation of the five views that we
introduce next, including metabolic pathways and data provenance notions that are
essential to deal with all the genomic information. We refer to the “integration
challenge” problem as how well all of them together provide the required full
perspective of the genome ontological background.

These works are a few of the existing examples about the use of conceptual modeling
in bioinformatics applications. They can be used to prove that conceptual modeling is an
effective approach to help to improve biologic research. It is our belief that the work
described in this chapter is an important contribution to the global understanding of the
human genome, because only having a conceptual schema to characterize it, it will be
possible to store the right contents, to manage them efficiently, and to understand the
precise relationships existing between phenotype (external manifestation of human
properties) and genotype (their corresponding genomic code).

3 A Conceptual Schema for the Human Genome

In this section, we present the current version of the Conceptual Schema of the
Human Genome (CSHG).

 Conceptual Modeling of Human Genome: Integration Challenges 237

To simplify the presentation of the scheme, five conceptual views are considered:
the structural view, the transcription view, the variation view, the pathway view and
the data source and bibliography view. The joins between these views are pointed out
by shadowed boxes.

It is important to remark that this presentation is built over the experience acquired
in our joint work with biologists and bioinformaticians during the last couple of years,
where previous attempts to construct the conceptual schema have been restructured
and extended. Different, partial versions have been presented in the past, and in this
chapter we introduce the latest one, where the very important metabolic pathway
perspective is included, and where a set of relevant, organizational changes are
introduced as a result of a more detailed knowledge of the genomic domain. With
these changes, we claim to provide the most complete conceptual schema for the
human genome that –up to what we know– currently exists. Understanding all the
pieces of genomic information can be a hard task that we try to alleviate with
additional explanations. In any case, we invite the reader to appreciate the value of
having the most relevant concepts needed to understand the human genome all
together collected and represented in just one whole conceptual schema (CSHG).

3.1 Structural View

A genome is defined as all the genomic information carried by an organism, in this
case a human being. This information is codified in 3 billion base pairs that constitute
our DNA. The DNA structure is a double helix of complementary and anti-parallel
strands, where the nucleotides (A, C, G, T) stand inside and the sugar-phosphate
backbone outside. Due to complementary base pairing, A always binds together with
T and C with G. Considering the enormous size of the DNA molecule, the
information is distributed in 23 pairs of chromosomes. Inside them we can find
protein coding genes (around 23.000) but also non-coding DNA, regulatory sequences
or introns [34]. To model its internal structure, some significant chromosomal
fragments have to be considered (Figure 1).

Although our current interest is just on the human genome, the conceptual model
intends to cope also with genomes from different species. To represent which species
one chromosome belongs to, a class Species is included in the schema. The relevant
properties of this class are the following: scientific_name, common_name,
ncbi_taxon_id (identification given to the species by the NCBI organization),
assembly (identification of the version used), date_assembly (version creation date)
and source (where the DNA sequences used as references are obtained from).

The main class in this view is the Chromosome class. It is important to remark that
the presented structural view is centered on the concept of chromosome and the
different types of chromosome elements that have distinctive properties, instead of
focusing strictly on the more conventional notion of gene that can be found in [35, 36]
. With this modeling strategy, we go one step forward in the evolution of the gene
concept –see [37] for a complete review of how the term has being evolved until

238 O. Pastor et al.

now-, proposing an alternative perspective that we find to be more accurate to define
adequately the basic, structural genome terms. A chromosome is an organized
structure of DNA and protein that is found in cells. It is a single piece of DNA where
genes, regulatory elements and other nucleotide sequences are located. The
chromosome has a name (chromosome identification at the source where the
reference sequence is obtained), a sequence (reference sequence) and a lenght (how
many nucleotides the sequence has). There are two important things to emphasize in
this class, the first one is that different genome versions will be stored in different
databases, and the second one is that the reference sequence does not correspond to
any particular individual.

To describe other features of a chromosome, there are two classes in the view:
hotspot and cytoband. To understand those concepts we have to understand Meiosis
and how cells assure that all the genetic material is present every time they divide.
Meiosis is the process where sexual cells from our body are formed. During this
process, chromosome pairs align on the cell´s equator and are pulled apart, so only
one copy of all of the chromosome pairs ends up at opposite sides of the cell. To
ensure a proper alignment, the chromosomes exchange certain sections of genes. This
is also called genetic recombination and is an essential part of sexual reproduction,
since it ensures greater genetic diversity. Recombination is an extraordinarily precise
process where segments exchanged have to be exactly the same length, to avoid
"frame-shift" mutations. This is a rather important phenomenon, since wrong
recombination could produce misalignment that can result in both copies of a
chromosome ending up in one cell. When this happens, the cells die or suffer from
severe genetic problems, such as Down syndrome [38].

Those chromosome zones where recombination occurs most frequently are called
hotspots (for a more detailed explanation see [39]). Consequently, the hotspot class
represents information about the points in the sequence where this process happens. It
has two attributes: hotspot_id1 and position. The cytoband class (or cytogenetic band
class) refers to stored information about the subregions of a chromosome that
becomes microscopically visible after a staining during a specific cell cycle phase
(Metaphase). This is important since it is reproducible and allows identifying each
chromosome pair, like a barcode, but also permits physical localization of genes on
the chromosome. It is even demonstrated that there are patterns of mutational input
related to chromosome bands [40]. Our cytoband class has four attributes, name
(always in the same format, following the naming rules where "p" or "q" describes the
arm of the chromosome followed by a number with one, two or three digits separated
with dots, depending on the resolution used), score (staining intensity which can take
five different values proportional to the presence of A and T nucleotides),
start_position (initial position in the chromosome reference sequence) and
end_position (final position in the chromosome reference sequence).

The chromosome_element class represents the information about relevant
chromosomal fragments. It has four attributes: chromosome_element_id,
start_position (initial fragment position in the reference sequence), end_position
(final fragment position in the reference sequence) and strand (the strand of the
double helix where the fragment is found).

1 The attributes ending with _id denote internal identifiers.

 Conceptual Modeling of Human Genome: Integration Challenges 239

Chromosome elements are classified in three types: transcribable_element
(chromosome element that is transcribed), regulatory_element (chromosome element
with regulatory function) and conserved_region (chromosome element that occurs in
many species). The conserved regions usually tend to be non-coding regions and the
attribute score represents the region´s conservation degree (or a statistical value
indicating a probability or an output value of a formula); it is a real number, the
larger, the more conserved.

Transcribable elements can be of two types: gene and exon. A gene is a DNA
region with regulatory elements (promoters, activators, etc.) that control the
transcription process. The gene class has five attributes: ensemble_gene (gene name
given by Ensembl2), description, biotype (possible values: snRNA (Small nuclear
ribonucleic acid, a class of RNA involved in processes such as splicing or telomere
maintenance), protein coding (RNA that will produce proteins), miRNA (MicroRNA,
short RNA molecule involved in gene silencing, etc.), status (possible values:
deprecated, new, etc.) and gc_percentage (percentage of GC base pairs in the
element). An exon is a gene fragment that is the basic unit of the transcripts.

If a gene produces transcription factors it will be included in the tf class. The
attribute cons_seq in this class represents the consensus sequence.

Regulatory elements are DNA regions that affect gene expression either enhancing
or repressing it. They can work on two different levels, directly regulating the
expression of a gene (gene_regulator) or indirectly regulating its transcript
(transcript_regulator).

A gene regulator can be a tfbs (transcription factor binding site), a cpg_island or a
triplex. A tfbs is a DNA region where transcription factors bind producing an effect
on gene transcription (activation or repression). The class where these elements are
represented has five attributes: name, type, description, score (degree of similarity
between the consensus sequence and the tbfs) and cons_seq (consensus sequence
which binds the tbfs). A cpg_island is a set of CG repetitions close to the promoter
that are targets for methylation, which is another way to alter gene expression; the
attribute cg_percentage is the percent of GC nucleotides in the element. Finally, a
triplex is a DNA region a where the structure is a triple helix.

Moreover, a transcript regulator can be of two types: mirna_target (a target of a
microRNA element) and splicing_regulator with two properties: type (possible
values: enhancer, silencer) and regulated_element (intron or exon).

2 The Ensembl Project produces genome databases for vertebrates and other eukaryotic species,

and makes this information freely available online.

240 O. Pastor et al.

Fig. 1. Structural view

3.2 Transcription View

A significant number of genes express their functional effect through the production
of proteins. This process begins with the formation of an RNA molecule whose
sequence is complementary to the genomic DNA sequence. The transcription view
shows the components and concepts related to protein synthesis. The DNA sequence
that is transcribed into an RNA molecule encodes at least one protein. If the
transcribed gene encodes for a protein, the transcription result is a messenger RNA
(mRNA), which will then be used to create a protein via the translation process.

After transcription, an RNA modification called splicing takes place. During the
splicing, introns are removed and exons are joined. In many cases, the splicing
process can affect exon composition of the same messenger RNA. This phenomenon
is called alternative splicing and it is the reason why one gene encodes for more than
one protein. Alternative splicing can occur in many ways. Exons can be extended or
skipped, or introns can be retained. A more detailed description of these biological
processes can be found in [41].

 Conceptual Modeling of Human Genome: Integration Challenges 241

In the Transcription view (Figure 2), the Transcript class represents the different
transcripts that can be produced from genes. Each transcript may have different
functions, represented in the biotype attribute, whose value can be ‘Protein Coding’,
‘tRNA’(for Transfer RNA, the molecule that “reads” the nucleotide sequence and
traduce it to aminoacids), ‘rRNA’(for Ribosomal RNA, a structural RNA that forms
the ribosomes, organelles involved in protein synthesis), ‘miRNA’, ‘siRNA’ (for
small interference RNA, small double strand RNA involved in the process of RNA
interference that modulates gene expression), ‘piRNA’ (for Piwi-interacting RNA,
small RNA molecules involved in silencing of retrotransposons), ‘Antisense’(RNA
molecule that is complementary to mRNA, this molecule sticks to it and represses its
expression), ‘Long noncoding’ (RNAs that do not code for proteins but with several
other functions, not as relevant as the small ones), ‘Riboswitch’ (part of a mRNA
involved on its own regulation), ‘snRNA’, ‘snoRNA’ (small nucleolar RNAs or guide
RNAs, involved in modifications of other functional RNAs), ‘mitochondrial’ (RNA
produced by DNA that is inside mitochondrias, organelles that have its own genetic
material), or others.

The relationship between Transcript class and Exon class represents the
information about the exons combined in a transcript.

The Protein coding class is a specialization of the Transcript class representing the
first of the biotypes cited above. It is necessary because the translation start position
and the translation end position have to be stored.

From a Protein coding transcript, many different proteins can be synthesized. The
Protein class stands for proteins; it has a name, an accession number, the sequence of
the protein and the source where this information has been taken.

The Transcript class and the Protein class are also represented in the conceptual
schema by the rna_e class and the protein_e class respectively.

Fig. 2. Transcription view

242 O. Pastor et al.

3.3 Variation View

The Variation View (Figure 3) models the knowledge related to the differences in
DNA sequence among individuals. It is widely accepted that there are not two persons
genetically identical, even identical twins have some variations acquired during
development. For this reason, the study of the genetic differences between individuals
or populations becomes relevant for medical and evolutionary reasons.

The main class in this view is the Variation class, with an internal identifier
(variation_id) and a description (description). Variations are specialized following
two criteria: the precision in their description (Description), and its frequency
(Frequency).

In hierarchy Frequency, a variation can be specialized in two types, variations with
low frequency and pathologic effect (Mutation), and variations that appear in more
than 1% of the population (Polymorphism).

Polymorphisms are specialized as CNV (copy number variation) or as SNP (single
nucleotide polymorphism).

Copy number variations or CNVs are defined as variations consisting in abnormal
repetitions or deletions of a nucleotide sequence. Recent discoveries reveal that CNV
are the most prevalent and important form of genetic variation and they may have
important roles in disease and drug response. The CNV class represents this concept,
the multivalued attribute repetitions storing the usual repetitions.

On the other hand, a SNP is a polymorphism that occurs when a single nucleotide
in the genome differs between individuals, many of them have no effect on gene
function but others, as CNV, may predispose to disease or influence on the response
to a drug. The SNP class represents this concept and the map_weight attribute is the
number of times that this variation is found in the genome. Related to SNP variations,
more information is modeled. The SNP_Allele class represents the different alleles of
a SNP (attribute allele with domain {A, T, G, C}). The SNP_Genotype class
represents the allele pairs of a SNP taking into account both homologue chromosomes
(attributes allele1 and allele2, with domain {A, T, G, C}).

Information about the frequency of SNP variations in different populations is also
modeled, this kind of information is very important for population genetics studies,
which have direct impacts in genetic counseling, forensic medicine and genetic
screening. The Population class represents human groups with common features
(name, description and size of each group are stored). The SNP_Allele_Pop and
SNP_Genotype_Pop classes represent the frequency (frecuency attribute) of each SNP
in each population.

Another concept modeled in the view is the LD class (linkage disequilibrium), that
models the relation between two SNPs in one specific population with attributes
Dprime, Rsquare and LOD. These are just indicators of the level of disequilibrium of
that specific allele combination on a specific population. The amount depends of the
difference between observed and theoretically random frequencies.

In the other hierarchy –complementary and orthogonal to the previous one-,
Description, a variation is specialized into two classes, Precise and Imprecise.

 Conceptual Modeling of Human Genome: Integration Challenges 243

Imprecise class represents variations whose unique known information is a
description in natural language, which does not indicate position within the DNA
sequence or base pair length.

Fig. 3. Variation view

244 O. Pastor et al.

On the contrary, Precise class represents variations with known position (position)
within the chromosome DNA sequence. Precise class is specialized into four new
types: Insertion, Deletion, Indel and Inversion.

Insertion class represents variations consisting of insertions of nucleotide
sequences (sequence) a number of times (repetition) in the chromosome DNA
sequence; Deletion class represents variations consisting of deletions of a number
(bases) of nucleotides; Indel class represents variations consisting of both insertions
(ins_sequence, ins_repetition) and deletions (del_bases); and finally, Inversion class
represents variations that causes a reversal in the order of a nucleotide sequence
(bases) in the chromosome.

The Category, Feature, Value, Measurable and Syndrome classes associate a
variation to a phenotype. Syndrome class corresponds to the general concept of
disease; neurofibromatosis and Huntington´s are examples of instances of this class.
A syndrome can be caused by one or several variations; and a variation can have
multiple diseases associated to it. Usually, syndromes are characterized by various
features, instances of the Feature class; in the case of neurofibromatosis, this includes
the so-called café au lait spots features. These features in turn, are classified by
categories, which have a recursive property indicated by the self-referencing
relationship. Adding to this, each feature has an associated value, which is the
measurable effect on phenotype (Measurable class). In the case of Huntington’s
syndrome, this corresponds to the blood markers used to detect tumors. It is important
to note that not every variation is associated to a specific phenotype; typically,
variations characterized as polymorphisms do not cause pathological phenotypes.

3.4 Pathway View

Proteins, transcripts, chromosomal elements and many other molecules interact inside
the cell in many different ways. This molecular interactions and reaction networks are
generally called Metabolic Pathways. Through metabolic pathways the cell produces
the energy and cell components needed for cell function. If metabolic pathways are
altered, cell function might be compromised and this lead to disease. Examples of
metabolic diseases are Phenilketonuria, Galactosemia or Tay-Sachs disease.

In the cell metabolism, some substances are broken down producing energy for
vital processes while other substances necessary for life are synthesized. Pathways are
important to the maintenance of homeostasis within an organism. Pathways are
catalyzed by enzymes that regulate these reactions, and often require minerals,
vitamins, and other cofactors in order to function properly. Since metabolic pathways
usually involve many metabolites, they can be quite elaborated. Inside the cell an
enormous number of distinct pathways exist; this collection of pathways is called the
metabolic network.

A metabolic pathway is a sequential modification, or process, that transforms the
initial metabolite into a final product, obtaining in the way energy or another kind of
sub products. All these products resulting from the metabolism can be used
immediately or be stored in the cell. There are also cases where the end product of a
pathway is just the initial product of another one. This process composition is

 Conceptual Modeling of Human Genome: Integration Challenges 245

represented in the schema (Figure 4) by the Event class, and its specialized classes,
Process and Pathway. Process class represents a single, atomic process and Pathway
class represents a complex process formed by a sequence of complex and single
processes. The association between Event and Pathway represents the pathway
composition in its simpler event components; and the association with edges Pre and
Post allows us to know the order of simpler events in a pathway composition.

An entity can take part in a process in three ways. In the first one, the entity is the
principal chemical or one cofactor, that is, the necessary input for that process;
sometimes these entities are also called the substrates. The second way, the entity is
the result of that process, that is, the output or end-product. And the third and last
way, the entity is a regulator of that process; we distinguish two kinds of regulation:
activation and inhibition. There is a special kind of regulation, catalysis, which has
been modeled apart due to the fact that in some processes the catalyst is unknown.

This behavior is modeled by the specialization of Takes_part class into input,
output and regulator classes. The stoichiometry attribute of input and output classes
represents the amount of entity that is involved in the process. The values for the type
attribute of regulator class are activator and inhibitor, indicating the type of
regulation. Due to the exception commented above, the catalysis class is included. In
the situations that the catalyst is known, an enzime is associated with the
corresponding process.

The entities that participate in a simple process from a metabolic pathway are
specialized in several classes: Simple, Polymer, Complex and EntitySet. The Simple
class represents the elementary entities; it is specialized in the Gen_E, Rna_E,
Protein_E, Aminoacid_E, Nucleotide_E and Basic_E classes. The Polymer class
represents entities that are generated by the repetition of some complex or simple
entity; its min and max attributes represent the simple entity range of repetitions.
Complex class models entities formed by the combination of some other simpler
entities; its detection_method attribute indicates the technique used to detect complex
formation. The class Component represents how a complex entity is formed by its
simpler component entities; stoichiometry and interaction attributes allows us to
know how and in which quantities the complex is formed by its components
respectively. The EntitySet class represents the common way of participation of
several entities in some process, and allows us to simplify the way we describe similar
processes.

246 O. Pastor et al.

Fig. 4. Pathway view

3.5 Data Source and Bibliography Reference View

To maintain information about data sources and bibliographic references that might be
interesting, the schema includes the following classes (Figure 5): data_bank (with name
and description attributes), data_bank_version (with release and date attributes),
element_data_bank (with source_identification which identifies the chromosome
element in the data bank), Bibliography DB which represents the different sources
where scientific publications can be found in the web, and Bibliography reference
which represents the published articles. Relationships between this class and many
classes in the schema (variation, exon, transcript, entity) can be found.

 Conceptual Modeling of Human Genome: Integration Challenges 247

-transcript_id <<oid>> : int
-biotype

transcript

-source_identification : string
element data bank

*

-{id}

1

-bibliogrphy_reference_id <<oid>>
-title
-authors
-abstract
-publication
-pubmed_id

bibliography reference

-Bibliography Name DB <<oid>>
-URL

bibliography DB

*

-{id} 1

*
*

*

*

-name <<oid>> : string
-description : string

data bank

*

-{id}1

-variation_id <<oid> : int
-description : string
-db_variation_id : string

variation
**

-Obtained

1

*

-type : string
process

-entity_id <<oid>> : string
-name : string

entity*

*

0..*

-{id}

1

*

*

-source_identification : string
Data Bank Entity Identification

1..*

-{id}1

-release <<oid>> : string
-date

data bank version

-{id} 1
*

-chromosome_element_id <<oid>> : string
-start_position : long
-end_position : long
-strand : string

chromosome element

Fig. 5. Data source and bibliography reference view

4 Conclusions

In the recent times we are pursuing the goal of defining a Conceptual Schema of the
Human Genome that could be used as a sound ontological background to provide
some sort of “Genome Wikipedia” intended to capture all the valuable data that exists
in the Bioinformatics domain. We introduced in this work the latest version of such an
effort, where the main effort has been concentrated around integrating the different,
relevant views that exist when dealing with genome information: the structural view,
the transcription view, the variation view, the pathway view and the source &
bibliography view.

All these views are normally treated separately, what generates heterogeneous and
dispersed set of data sources, too often including inconsistencies, out-of-date
information, redundancies, and that are at the end hard to manage and exploit
efficiently. It is our position that only under the coverage of a complete Conceptual
Schema that collects appropriately all the relevant concepts for all the five considered
views, it will be possible to provide an answer to the adequate management of the
huge amount of genomic data that is continuously being generated.

The Conceptual Schema presented in this chapter is a concrete answer to the
quoted integration challenge, and it is our belief that it constitutes the only valid road
to success: a proper link between the knowledge accumulated during decades in the
Information Systems community, adapted to the idiosyncrasy of the human genome
domain.

248 O. Pastor et al.

The way in which the knowledge of the human genome domain is captured and
acquired by the IS experts is also one of the richest contributions of the work, together
with the potential applications of the subsequent genome database obtained from the
conceptual schema in the context of the genome-based personalized medicine, that
will require a reliable data storage system. A very interesting description of the so-
called “DNA revolution” and how it can affect human health systems can be found in
[42], where what we need to know about our DNA and why it matters is explained in
a brilliant way. It is well-known how faster and cheaper a complete sequence of
human DNA will be obtained very soon [43]. But to manage this huge amount of
information, new IS have to be designed and implemented. That type of systems will
be only possible if genotype and phenotype are formally associated through a strong
conceptual connection that only a precise, complete and correct Conceptual Schema
can provide. Having the required database design as a logical consequence of that
Conceptual Schema, it is now the time of finding where are the reliable data, and
defining the corresponding data provenance-based mechanisms intended to store it
accordingly for efficient exploitation.

Our current efforts concentrate on demonstrating in some concrete scenarios that the
conceptual model-centric approach can be used effectively by biologists. The
Conceptual Schema of the Human Genome has been transformed into its corresponding
database, and a set of projects are being developed to load the data that correspond to a
set of selected genes related with well-known clinical pathologies (i.e. NF1 for
Neurofibromatosis,or BRCA1-2 for Breast Cancer), whose current genomic
manipulation requires a manual, costly, and prone-to-error process. The selection of the
relevant information (data provenance perspective) is the first problem to solve. Once
the relevant stakeholders are identified, and the information that they use is determined,
the design and implementation of the database load modules is the next step to
overcome, the goal being having the data under the control of “our” Data Base of the
Human Genome. Having the structural order guaranteed by the sound Conceptual
Schema background, a software application is constructed, intended to generate the
reports that compare DNA patient samples with the DNA information stored in the
database. Once the data are captured and managed in the database, the benefits of
having a Conceptual Schema-centered approach becomes evident, in terms of quality of
data, support to schema evolution and efficiency of the report generation process.
Finally, scalability is an issue: what we do now for a few genes, could be done for the
whole genome, providing that the genomic information were available. This is a work
that will take years, and that constitutes the direction of our present and future work.

References

[1] Olivé, A.: Conceptual Modelling of Information Systems. Springer, Heidelberg (2007)
[2] Falkenberg, E., Hesse, W., Lindgreen, W., Nilsson, E., Han, J., Rolland, C., Stamper, R.,

Van Assche, F., Verrijn-Stuart, A., Voss, K.: A Framework of Information System
Concepts. IFIP (1998)

[3] Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice. Springer, Heidelberg
(2007)

 Conceptual Modeling of Human Genome: Integration Challenges 249

[4] Thorisson, G.A., Muilu, J., Brookes, A.: Genotype-phenotype databases: challenges and
solutions for the post-genomic era. Nature Reviews – Genetics 10 (2009)

[5] Stein, L.: Creating a bioinformatics nation. Nature 417, 119–120 (2002)
[6] Crowd sourcing human mutations (Editorial). Nature Genetics 43(4) (2011)
[7] The Gene Ontology Consortium.: Gene Ontology: tool for the unification of biology.

Nat. Genet. 25, 25–29 (2000)
[8] http://www.geneontology.org/ (accessed December 05, 2011)
[9] http://www.ncbi.nlm.nih.gov/gene (accessed December 05, 2011)

[10] Hubbard, T., et al.: The Ensembl genome database project. Nucleic Acids
Research 30(1), 38–41 (2002)

[11] http://www.ensembl.org (accessed December 05, 2011)
[12] http://www.ncbi.nlm.nih.gov/genbank/ (accessed December 05, 2011)
[13] http://www.hgmd.org/ (accessed December 05, 2011)
[14] Cooper, D.N., Krawczak, M.: Human gene mutation database. Hum. Genet. 98(5), 629

(1996)
[15] Hamosh, A., Scott, A.F., Amberger, J., Valle, D., McKusick, V.A.: Online Mendelian

Inheritance in Man (OMIM). Hum. Mutat. 15(1), 57–61 (2000)
[16] http://www.ncbi.nlm.nih.gov/omim (accessed December 05, 2011)
[17] http://www.genome.jp/kegg/ (accessed December 05, 2011)
[18] Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M.: KEGG: Kyoto

Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27(1), 29–34 (1999)
[19] Apweiler, R., et al.: UniProt: the Universal Protein knowledgebase. Nucleic Acids

Res. 32 (Database issue): D115-9 (2004)
[20] http://www.uniprot.org/ (accessed December 05, 2011)
[21] Apweiler, R., et al.: The InterPro database, an integrated documentation resource for

protein families, domains and functional sites. Nucleic Acids Res. 29(1), 37–40 (2001)
[22] http://www.ebi.ac.uk/interpro/ (accessed December 05, 2011)
[23] Croft, D., et al.: Reactome: a database of reactions, pathways and biological processes.

Nucleic Acids Res. (Database issue): D691-7 (2011)
[24] http://www.reactome.org/ReactomeGWT/entrypoint.html (accessed

December 05, 2011)
[25] Pastor, O.: Conceptual Modeling Meets the Human Genome. In: Li, Q., Spaccapietra, S.,

Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 1–11. Springer, Heidelberg
(2008)

[26] Paton, W.N., Khan, S., Hayes, A., Moussouni, F., Brass, A., Eilbeck, K., Globe, C.,
Hubbard, S., Oliver, S.: Conceptual modeling of genomic information.
Bioinformatics 16(6), 548–557 (2000)

[27] Ram, S., Wei, W.: Modeling the Semantics of 3D Protein Structures. In: Atzeni, P., Chu,
W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 696–708.
Springer, Heidelberg (2004)

[28] Garwood, K., Garwood, C., Hedeler, C., Griffiths, T., Swainston, N., Oliver, S., Paton,
W.: Model-driven user interface for bioinformatics data resources: regenerating the
wheel as an alternative to reinventing it. Bioinformatics 7, 532, 1–14 (2006)

[29] Bornberg-Bauer, E., Paton, N.: Conceptual data modelling for bioinformatics. Briefings
in Bioinformatics 3(2), 166–180 (2002)

[30] e-fungi Project, http://www.cs.man.ac.uk/cornell/eFungi/index.html
[31] Hedeler, C., Wong, H.M., Cornell, M.J., Alam, I., Soanes, D., Rattray, M., Hubbrad, S.J.,

Talbot, N.J., Oliver, S.G., Paton, N.: e-Fungi: a data resource for comparative analysis of
fungal genomes. BMC Genomics 8, 426, 1–15 (2007)

250 O. Pastor et al.

[32] Pastor, O., Levin, A., Celma, M., Casamayor, J., Virrueta, A., Eraso, L.: Model-Based
Engineering Applied to the Interpretation of the Human Genome. In: Kaschek, R.,
Delcambre, L. (eds.) The Evolution of Conceptual Modeling. LNCS, vol. 6520, pp. 306–
330. Springer, Heidelberg (2011)

[33] Pastor, O., van der Kroon, M., Levin, A., Casamayor, J.C., Celma, M.: A Conceptual
Modeling Approach to Improve Human Genome Understanding. In: Embley, D.,
Thalheim, B. (eds.) Handbook of Conceptual Modeling: Theory, Practice and Research
Challenges, pp. 517–541. Springer, Heidelberg (2011)

[34] International Human Genome Sequencing Consortium: Initial sequencing and analysis of
the human genome. Nature 409(6822), 860–921 (2001)

[35] Gene Nomenclature Committee, http://www.genenames.org
[36] National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov
[37] Gerstein, M.B., Bruce, C., Rozowsky, J., Zheng, D., Du, J., Korbel, J., Emanuelsson, O.,

Zhang, Z., Weissman, S., Snyder, M.: What is a gene, post-ENCODE? History and
updated definition. Genome Res. 17, 669–681 (2007)

[38] Blitzblau, H.G., Bell, G.W., Rodriguez, J., Bell, S.P., Hochwagen, A.: Mapping of
Meiotic Single-Stranded DNA Reveals Double-Strand-Break Hotspots near Centromeres
and Telomeres. Current Biology 17(23), 2003–2012 (2007)

[39] Paigen, K., Petkov, P.: Mammalian recombination hot spots: properties, control and
evolution. Nature Reviews Genetics 11, 221–233 (2010)

[40] Holmquist, G.P.: Chromosome bands, their chromatin flavors, and their functional
features. Am. J. Hum. Genet. 51(1), 17–37 (1992)

[41] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology
of the Cell. Garland Science, New York (2002),
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mboc4

[42] Collins, F.S.: The Language of Life: DNA and the Revolution in Personalized Medicine.
Harper Colllins Publishers (2010)

[43] Wheeler, D.A., et al.: The complete genome of an individual by massively parallel DNA
sequencing. Nature 452, 872–877 (2008)

Transforming Geometrically Enhanced

Conceptual Model Schemas to GML

Hui Ma

Victoria University of Wellington, New Zealand
hui.ma@ecs.vuw.ac.nz

Abstract. Successful implementation of geographic applications starts
with conceptual design. A conceptual schema will then be transformed
into a database schema that can be implemented. Geography Markup
Language (GML) has emerged as an open standard that provides a com-
mon grammar for coding geo-spatial content and exchanging over the
Internet. In this paper we discuss the transformation from Geometrically
enhanced ER model (GERM) to GML. GERM is an extension of the clas-
sical ER model that has been successfully used for conceptual modelling
of geographic applications. The transformation rules have been chosen
such that relevant application semantics is preserved during the trans-
formation. We further present an bottom-up algorithm for transforming
GERM schemas into their GML counterparts. A case study is conducted
to demonstrate the effectiveness of the algorithm.

1 Introduction

The Geography Markup Language (GML) is an XML-based language defined by
the Open Geospatial Consortium (OGC) for storing and transporting geographic
information. With the increasing number of web-based geographic information
systems, GML is becoming the industry standard for exchanging and sharing
information between geographic applications distributed across the Internet. For
complex geographic applications, however, the creation of an adequate GML
database schema is not easy. It is meanwhile regarded as best practise to design
geographic information first at the conceptual level, and then to transform the
conceptual schema into GML. Various conceptual modelling languages have been
proposed for designing geographic information in the literature [7,8,13,24,25,26].
However, none of them comes without deficiencies, for a detailed discussion we
refer to [19].

Motivated by the author’s work on the sustainable land use initiative (SLUI)
of the New Zealand government, we have recently introduced a geometrically
enhanced ER model (GERM) as our approach to the conceptual modelling of
geographic information [20]. The SLUI initiative which addresses environmental
problems in New Zealand’s agricultural and silvicultural regions. Whole farm
plans (WFP) are a common tool to integrate environmental goals with current
farming operations [1,21]. Based on an assessment of available natural resources,

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 251–267, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

252 H. Ma

environmental issues are identified and evaluated, and countermeasures are de-
veloped. This task involves the capture and analysis of data from distributed
data collections such as image data, classification data, spatial data, observa-
tional data, climate data, soil data, air pollution data, ecology data, vegetation
distribution data, biodiversity data, and business data. The need to adequately
model and process geometric properties of data objects involved (i.e., features
such as farms, paddocks, buildings, trails, water resources) led us to propose an
extension of the popular ER model that supports database designers in dealing
with the geometry of objects to be represented in the database application.

We found GERM useful for various reasons. Firstly, GERM preserves the
aggregation-based approach [12] of the ER model by means of (higher-order) re-
lationship types [27], thus naturally supporting hierarchical structure. Secondly,
GERM allow roles in relationship types to use bulk and choice constructors, thus
supporting entity sets, lists, multisets, options and alternatives to occur as com-
ponents of relationships. Using GERM, geometric properties in the application
domain can be modelled by attributes that have geometric data types assigned to
them. This defines the syntactic layer of GERM that largely remains within the
popular ER framework, thus enabling a smooth integration with non-geometric
conceptual models. It allows data architects to cope with modelling tasks that
involve geometry in a familiar, non-challenging way thereby preserving all the
positive experience made with ER modelling. The syntactic layer of GERM is
complemented by an internal layer where geometric properties are represented
as point sets. Thus, common geometric shapes like lines, rectangles, polygons,
circles, Bézier curves, or Bézier patches can be captured in a most natural way.
On its internal layer, GERM makes use of an extended algebra that modifies the
standard Boolean operators (i.e., union, intersection, difference, complement) on
point sets to achieve a higher degree of accuracy for derived geometric properties
[19].

Once a conceptual schema has been created (e.g., using GERM) that captures
the data needs of some geographic application under development, it has to be
transformed into a data model on implementation level that can be stored and
manipulated by a DBMS. Today, most popular DBMS have spatial extensions
that use GML to import/export data. In this paper we will discuss the transfor-
mation from GERM to GML. The mapping from a GERM schema to GML will
be guided by a set of transformation rules that ensure that the resulting GML
schema conforms to the OGS standard [22].

Our paper is organised as follows. Section 2 reviews relevant contributions on
the transformation from conceptual models to GML found in the literature. In
Section 3 we briefly summarize basic ideas of GERM and GML that are essential
for the transformation. In Section 4 we introduce rules for the transformation
from GERM to GML. We use examples from whole farm plan modelling to illus-
trate our approach. Finally, Section 5 concludes the paper and makes suggestions
for future research.

Transforming GERM Schemas to GML 253

2 Related Work

In the literature, various approaches have been proposed for transforming con-
ceptual schemas to XML. Most of them assume the input schema to be given in
some variant of the classical ER model (such as EER or UML class diagrams).
The target schema is then generated using the W3C standards XML DTD or
XML Schema. For example, [14] proposes an algorithm for transforming EER
schemas to DTDs, while [15] discusses the transformation of UML class diagrams
to DTDs. [5,18,23] study the transformation of ER/EER schemas to XSDs. [2]
introduces a new conceptual modelling language for hierarchical data (called
C-XML) and studies the transformation of C-XML schemas to XSDs. All these
proposals differ in the amount of application semantics that they preserve dur-
ing the transformation. [17] discusses which parts of the application semantics
captured in an ER schema can be preserved by a DTD or XSD.

With the increasing popularity of GML as a standard for representing and
exchanging geographic information, researchers have started to investigate how
to tailor the general transformation approaches above to the special case of geo-
graphic applications. Here the focus is on how to best match spatial extensions of
conceptual modelling languages with constructs defined by GML. [4], for exam-
ple, discusses the mapping of UML class diagrams with additional stereotypes for
geographic information to GML 2.0. The proposed transformation rules generate
flat GML schemas as all relationships between classes are transformed into GML
elements located directly under the root element, thus neglecting the opportuni-
ties offered by XML for capturing hierarchical structures and resulting in poor
query performance. Furthermore, cardinality constraints are ignored completely.

More recently, [11] presents a method for mapping conceptual schemas for ge-
ographic applications defined as extended UML class diagrams (called OMT-G)
to GML 3.0. Here, relationships are transformed by nesting of GML elements,
thus ensuring a better query performance. A case study is conducted to demon-
strate that the nested approach performs better than the flat approach proposed
in [4]. Based on [5], a table is presented showing how the classes participating
in a relationship be transformed into nested GML elements depending on their
associated cardinality constraints. However, in practice there are various ways
of nesting and the paper gives no indication on which one to choose.

In this paper we will extend the discussion to GERM and the additional
constructs it offers for data architects such as higher-level relationships and
relationships with complex components (e.g. set-valued). Our transformation
rules for mapping GERM schemas to GML make use of the capabilities of XML
to capture hierarchical structure. In addition, we choose nestings that are likely
to optimize query performance during the runtime of the geographic application,
thus providing better assistance for data architects.

3 GERM and GML

Before we discuss the transformation from GERM to GML, we will briefly sum-
marise basic ingredients of both languages that will be used later on.

254 H. Ma

3.1 GERM

GERM is an extension of Bernhard Thalheim’s higher-order ER model [27] with
emphasis on integrated geometric modelling. It preserves the aggregation-based
modelling principle of the ER model, where a schema S consists of a set of
object types. Object types are characterised by their attributes. We start with
a countable set U of simple attributes (called the universe) together with a type
assignment tp(A) that assigns to each attribute A ∈ U its data type tp(A).
Complex attributes may be built from simple ones by nesting. Let A be the
smallest superset of U such that

X(A1, . . . , An), X{A}, X [A], X〈A〉, X1(A1)⊕ · · · ⊕Xn(An), X(A1 → A2) ∈ A

holds whenever A,A1, . . . , An ∈ A holds, with labels X,X1, . . . , Xn chosen from
some fixed alphabet L. The type assignment tp extends naturally from U to A

as follows:

– tp(X(A1, . . . , An) = (a1 : tp(A1), . . . , an : tp(An))
with labels a1, . . . , an ∈ L,

– tp(X{A}) = {tp(A)}, tp(X [A]) = [tp(A)], tp(X〈A〉) = 〈tp(A)〉,
– tp(X1(A1)⊕ · · · ⊕Xn(An)) = (X1 : tp(A1))⊕ · · · ⊕ (Xn : tp(An)), and
– tp(X(A1 → A2)) = tp(A1)→ tp(A2).

The key extension of GERM, however, is the presence of geometric domains for
geometric data types in A. The data type tp(A) assigned to a (base) attribute
A ∈ U is some base type, like INT , FLOAT , STRING, DATE , or TIME . Each
base type t is associated with a countable set of values dom(t) called the domain
of t. For the base types mentioned here the domains are chosen as usual. For an
attribute A ∈ U we let dom(A) = dom(tp(A)), and also call dom(A) the domain
of A. In GERM, we can use constructors to build complex data types t from base
types. In particular, we use (·) for record types, {·}, [·] and 〈·〉 for finite set, list
and multiset types, respectively, ⊕ for (disjoint) union types, and → for map
types. We may also use a trivial type 1l with domain dom(1l) = {⊥}. Generally,
we allow complex data types to be named and used in type definitions in the
same way as base types with the restriction that cycles are forbidden. Domains
associated with complex data types are then obtained in a similar way from the
values of the respective base types and ⊥.

Note that complex data types offer additional opportunities for data architects
but are not a must-use. Consider for example a geometric property shape whose
values are polygons. Polygons may be seen as lists of points. Points again may
be seen as pairs of real numbers (assuming a two-dimensional Euclidean plane).
If the data architect considers the internal structure of polygons to be conceptu-
ally irrelevant for the application under development then she can define a simple
attribute shape with tp(shape) = POLYGON . Otherwise, if the internal struc-
ture of polygons is conceptually relevant then she may use a complex attribute
shape([point]) with tp(point) = POINT instead. If in addition the internal struc-
ture of points is considered relevant, too, then she may even use a complex at-
tribute shape([point(x-coord, y-coord)]) with tp(x-coord) = tp(y-coord) = FLOAT .

Transforming GERM Schemas to GML 255

This indicates that points and their coordinates are conceptually relevant beyond
representing a data type.

Example 1. In GERM, data architects may define named complex data types
to be used for modelling geometric properties. Examples include dedicated
data types such as Point = (x : FLOAT , y : FLOAT) for points in the two-
dimensional plane, PolyLine = [Point], Polygon = [Point], Bezier = [Point], or
PolyBezier = [Bezier]. Note, that the examples PolyLine, Polygon, and Bezier
constitute types with identical surface representations. A polyline is defined de-
fined piecewise linearly, while a polygon is a region with a polyline border. A
Bézier curve is determined by a finite sequence of points in the plane, too. It
passes through the first and last control points and lies within the convex hull
of the control points. A polyBézier curve is defined piecewise by Bézier curves.
We will commonly refer to such data types as geometric data types, thus em-
phasising that they will serve as surface representations for particular geometric
properties.

The trivial type 1l can be used in combination with the union constructor to
define enumerated types, i.e., types with finite domains, such as Bool = (T :
1l)⊕ (F : 1l), Gender = (male : 1l)⊕ (female : 1l), or INTn = (1 : 1l)⊕· · ·⊕ (n : 1l)
for any positive integer n, which gives a domain with values 1, . . . , n.

The map constructor can be used to define array types, such as Patch =
(i : INTn, j : INTm) → Point representing Bézier patches. Further exam-
ples used for spatial modelling are vector field types of different dimensions,
such as Vectorfield1 = {Point} → FLOAT , which is useful for capturing sen-
sor data (e.g., water levels), and Vectorfield2 = {Point} → Point , which is
useful for modelling other measurements (e.g., wind force and direction) by
two-dimensional vectors. Finally, TimeSeries = (d : DATE , t : TIME) →
Vectorfield1 is useful for modelling a series of observed data over time, thus
capturing also temporal aspects of data. ��
Similar to Thalheim’s higher-order ER model, GERM allows the nesting of re-
lationships (that is, relationships may participate in other relationships) and
cluster components. We extend this idea further as follows. Let O be a countable
set of object type names. The set C of component expressions (over O) is the
smallest set containing all object type names O ∈ O, all list expressions [C],
all set expressions {C0}, all multiset expressions 〈C0〉, and all union expressions
C1 ⊕ · · · ⊕ Cn, whenever C,C0, C1, . . . , Cn ∈ C holds, but such that the Ci are
not union expressions.

A structured component is a pair ρ : C with a role name ρ and a component ex-
pression C ∈ C. Let l be a natural number. An object type O of level l consists of a
finite set comp(O) = {ρ1 : C1, . . . , ρn : Cn} of structured components with pair-
wise different role names ρ1, . . . , ρn, and a finite set attr(O) = {A1, . . . , Am} ⊆ A

of complex attributes. Each object type that occurs in any of the component ex-
pressions Ci is of level at most l− 1, and at least one of these object types must
have exactly the level l − 1 (unless comp(O) = ∅).

By this definition, O is of level 0 if and only if comp(O) = ∅ holds.
Therefore, object types of level 0 are called entity types, while object types

256 H. Ma

of level l > 0 are called relationship types. For brevity, we use the notation
O = (comp(O), attr(O), key(O)) to define an object type O. For simplicity, we
assume that the primary key of O consists of attributes and structured compo-
nents of O, that is, key(O) ⊆ comp(O) ∪ attr(O).

It is common a practice to visualise entity-relationship schemas as diagrams.
This approach has also been used in the presence of higher-level relationships
(that is, object types of level l ≥ 2), see [27]. We will adopt this approach to
our purposes here. The GERM diagram of a GERM schema S is a directed
graph with the object types of S as nodes, and with edges from a node O to a
node Q whenever Q appears in a structured component ρi : Ci ∈ comp(O). As
suggested in [27] disjoint unions (also called clusters) are indicated by attaching
a ⊕-symbol to the diamond on the edge to the relationship type. Moreover, for
our examples here we indicate sets by attaching a ⊗-symbol to the diamond on
the edge to the relationship type, see for example Figure 1.

Next, we adapt participation cardinality constraints defined in [27] to GERM.
Note that participation cardinality constrains are only defined on relationship
types, which are object types at level 1 and above.

Definition 1 (Participation cardinality constraint). Let O be a relation-
ship type in a GERM schema S, and let Xi be a component of O, say in the
form Oi or pi : Oi.

1. A participation cardinality constraint on a relationship type O is an expres-
sion of the form card(O,Xi) = (a, b) where a is a natural number, and b is
a natural number or ∞.

2. An instance I of the GERM schema S is said to satisfy the participation
cardinality constraint card(O,Xi) = (a, b) if and only if for all objects oi ∈
I(Oi) we have

a ≤ #{o ∈ I(O) | o(Xi) = oi} ≤ b,

that is, each object oi of type Oi participates in at least a and in at most b
relationships of type O. ��

We write I |= card(O,Xi) = (a, b) to denote that an instance I satisfies a given
cardinality constraint card(O,Xi) = (a, b).

Example 2. Let us consider a GERM schema for modelling whole farm plans
(WFP) as illustrated by its diagram in Figure 1. Among other it reflects geo-
graphic information related with the farms that are managed with whole farm
plans. The corresponding GERM database schema consists of the following ob-
ject types:

– Farm = ({ farm name: STRING, owner: STRING, contact: STRING,
boundary: PolyBezier}, { farm name})

– Paddock = ({ in: Farm }, { p code: STRING, boundary: PolyBezier,
usage: (cattle : 1l)⊕ (dairy : 1l)⊕ (hort : 1l)⊕ (sheep : 1l)⊕ · · · ⊕ (other : 1l)},
{ in, p code })

Transforming GERM Schemas to GML 257

Fig. 1. Example of a GERM diagram for whole farm plan modelling

– Fence = ({ in: Farm, border: {Paddock}}, { shape: PolyLine},
{ in, shape })

– River = ({ vicinity: Farm }, { river name: STRING, left: PolyBezier,
right: PolyBezier}, { vicinity, river name })

– LUC = ({ in: Farm }, { luc no: INT, year: Y EAR, boundary: PolyBezier,
unit(class: INT, sub class: (w : 1l) ⊕ (e : 1l) ⊕ (s : 1l) ⊕ (c : 1l),
capability: INT)}, { luc no })

Whole farm plans are developed on the basis of paddock maps that exits for
every farm. Each paddock belongs to a farm, is identified within the farm by its
p code, is legally defined by a boundary, and has a particular usage. We can use an
object type Paddock with structured component in : Farm and with attributes
p code, boundary, and usage to model paddocks. That is, comp(Paddock) =
{in : Farm} and attr(Paddock) = {p code, boundary, usage}. Herein, Farm is
an entity type and, thus, Paddock is a relationship type of level 1.

Furthermore, the following cardinality constraints have been defined on the
schema:

– card(Paddock, in : Farm) = (1, n),
– card(LUC, in : Farm) = (1, n). ��

3.2 GML

GML is an XML-based standard developed by the OpenGIS consortium (OGC)
that is used for representing and exchanging geographic information [22] on
the internet, including non-spatial and spatial properties of geographic features.
GML enables us to store non-spatial and spatial data in the same database, see
e.g. Oracle Spatial, DB2 Spatial, or PostgreSQL [16].

258 H. Ma

Similar to GERM, GML separates concepts from data types. Using GML, the
schema for an application’s geographic data is created as an XSD (called the
application schema [22]) that is specific for the application’s domain of interest.
GML distinguishes features from geometry objects, cf. [22]: A feature, which may
or may not have geometric aspects, is an application object that represents a
physical entity (such as a farm, a river, or a person), while a geometry object
defines a location or region instead of a physical entity, and hence is different
from a feature.

Note that there are still many geographic information systems (GIS) in use
that do not explicitly distinguish between features and geometry objects (as done
in GML and also in GERM), but regard them interchangeably as items on a map.
GML overcomes this issue, thus providing a clear guideline for data architects.
The GML standard itself defines a collection of geometry types that may be
used by data architects, and whose meaning is independent of the particular ap-
plications (thus enabling data sharing and integration). The GML schema for a
particular application (that is, the application schema) imports the general GML
standard and thus can use the defined geometry types. In the GML schema, the
feature types are defined, and these definitions may use the available geometry
types to represent geometric properties. This allows data architects to cope with
modelling tasks involving geometric properties in the same way as with modelling
tasks where no geometry comes into play. This is consistent with the foundations
of GERM. Recall that in a GERM schema, object types with geometric proper-
ties can be equipped with attributes that have geometric data types assigned to
them. Note that the explicit distinction between concepts and (geometry) data
types in GERM, enables a much simpler transformation of GERM schemas to
GML schemas, than for other conceptual models (e.g., OMT-G [11]).

GML supports various geometry types in addition to base data types in
XML, including Point, LineString, LinearRing, Box, Polygon, MultiPoint, Multi-
LineString, and MultiPolyn. In addition to these types (that were already avail-
able in GML 2.0), the current version of the GML standard (GML 3.0) supports
many new geometry types such Arc, Circle, CubicSpline, Ring, OrientableCurve,
MultiSurface, MultiCurve, MultiSurface, CompositeCurve, CompositeSurface, or
CompositeSolid.

Data types assigned to attributes reflecting geometric properties in GERM can
be transformed directly to the corresponding data types in GML. For example,
we can transform PolyLine in GERM to LineString in GML, and Bezier to
BezierType in GML.

4 Generating a GML Schema from a GERM Schema

In this section, we will first present mapping criteria that should be considered
while transforming a GERM schema to a GML schema. We will then present a
set of transformation rules that comply with the mapping criteria, followed with
a transformation algorithm.

Transforming GERM Schemas to GML 259

4.1 Transformation Criteria

Several transformation criteria have been discussed in the literature mainly for
transforming a conceptual schema to a target schema in XML. The most im-
portant is semantic preservation which requires that the transformation should
preserve the semantics contained in the input schema, so that no semantic infor-
mation contained in the conceptual schema is lost [11,18]. Secondly, absence of
redundancy is also required, that is, there should be no data redundancy in XML
documents that conform to the target schema, so that data consistency can be
ensured [18]. It is further recommended to use highly nested structure, so that
navigation along paths can be processed efficiently. Furthermore, reversibility of
design [18] is required to ensure that the input schema can be recomputed from
the target XML schema. There has been only very limited research concerning
the transformation between conceptual schemas for geographic applications and
XML/GML, cf. [6,11]. In this paper, we will adapt the transformation criteria
mentioned above when discussing the transformation from GERM to GML.

4.2 Transformation Rules

Now, we will present a set of transformation rules that are inspired by the trans-
formation criteria mentioned above. Throughout, let S be a GERM schema. The
GML schema to be constructed from S will be denoted by T . The transforma-
tion rules will serve to map the input schema S to the target schema T . To begin
with, let T be empty.

Rule 1 (Create root element). Create a new XML element R with an ap-
propriate element name and insert it into T as the root element.

<xs:element name="WFP">
<xs:complexType>

<xs:complexContent>
<xs:extension base="gml:AbstractFeatureCollectionType">

<xs:sequence>
<xs:element name="Farm">

…
<xs:attribute name="id" type="xs:int"/>
…

</xs:element>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:element>

Fig. 2. Example of creating root element and transforming entity types

In the sequel, let id be a valid attribute name in XML that does not occur in
the conceptual schema.

260 H. Ma

Rule 2 (Transform entity types). For an object type O of level 0 in S, create
a new XML element O and insert it into T as a child of the root element R.
Then, equip O with a new simple attribute id.

For example, to transform the WFP GERM Schema in Example 2 we use Rule 1
and Rule 2 to insert a root element WFP and to translate entity type Farm into
a child Farm of the root element WFP in the output GML schema, cf. Figure 2.

For relationship types, on the other hand, the general idea is to place them
as a child of one of its components. When a relationship type has more than
one component, we need to decide which component will serve as its parent
element in the target schema. The resulting GML schema should be efficiently
accessible by as many queries as possible. Therefore it is reasonable to choose
the component that is more often accessed together with the relationship type
under consideration. We propose to use Object Type Affinity to measure how
often the relationship type is accessed together with any of its components.

Definition 2 (Object Type Affinity). Consider a set of queries Qm = {qk :
k = 1, . . . ,m} with frequencies fk (k = 1, . . . ,m). For an object type Oi, let
use(qk, Oi) = 1 if it is accessed by query qk, and 0 otherwise. For two object
types Oi, Oj , we define their affinity aff(Oi, Oj) as the sum of frequencies of
all queries qk (k = 1, . . . ,m) accessing both Oi and Oj simultaneously:

aff(Oi, Oj) =

m∑

k=1

fk · use(qk, Oi) · use(qk, Oj)

Definition 3 (Owner Component). Let O be a relationship type with struc-
tured components Oi or ρi : Oi (i = 1, . . . , n). The owner component CO

owner is
the object type Oi (i = 1, . . . , n) that has maximal affinity with O, i.e.,

aff(O,CO
owner) = max

i=1..n
aff(O,Oi).

If a relationship type has one structured component, i.e. i = 1 then the structured
component is the owner component of the relationship type O, i.e.,

CO
owner = O1.

If there are two or more Oi that have the same maximal affinity with O, then
the owner component is chosen among them.

Rule 3 (Transform relationship types). For an object type O of level l ≥ 1
in S, create a new XML element O and insert it into T as a child of the XML
element corresponding to its owner component CO

owner. For every component C
of O other than the owner component, create a new XML element C′ and insert
it into T as a child of O. Then, equip O as well as each of its children C′ with
a new attribute id.

For example, consider the relationship type Paddock. It has only a single com-
ponent Farm, which is therefore its owner component. Hence, the relationship
type Paddock will be transformed into a child of the XML element Farm in
the GML schema, cf. Figure 3.

Transforming GERM Schemas to GML 261

<xs:element name="Farm">
<xs:complexType>
<xs:complexContent>
<xs:extension base="gml:AbstractFeatureType">
<xs:sequence>

<xs:element name="farm_name" type="xs:string"/>
<xs:element name="owner" type="xs:string"/>
<xs:element name="contact" type="xs:string"/>
<xs:element name="boundary" type="gml:BezierType"/>

<xs:element name="Paddock" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>

<xs:element name="p_code" type="xs:string"/>
<xs:element name="boundary" type="gml:BezierType"/>
<xs:element name="usage" type="xs:string"/>

</xs:sequence>
<xs:attribute name="id" type="xs:int"/>
</xs:complexType>

</xs:element>
…

</xs:sequence>
<xs:attribute name="id" type="xs:int"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
…

</xs:element>

Fig. 3. Example of transforming relationship types

Rule 4 (Transform participation cardinality constraints). For an ob-
ject type O of level l ≥ 1 in S, if there is a participation cardinality con-
straint card(O,CO

owner) = (a, b) defined on S then set minOccurs = “a” and
maxOccurs = “b” for the child O of CO

owner in T .

In the example above the participation cardinality constraint
card(Paddock, in : Farm) = (1, n) is transformed into minOccurs = “1”
(which can be omitted in the GML schema as it is the default value) and
maxOccurs = “unbounded” for the child Paddock of the element Farm (as
seen in Figure 3).

Rule 5 (Transform complex attributes). For a complex attribute A of an
object type O in S, create a new XML element A and insert it into T as a child
of the XML element O.

The data type assigned to the complex attribute in GERM is transformed into
the corresponding data type in GML.

For example, the data types Point, Polyline, Polygon, PolyBezier, and Circle
discussed above will be transformed to the complex geometry types PointType,
LineStringType, PolygonType, BezierType, and CircleType available by GML.

Next, we discuss the transformation of primary keys of the object types in the
conceptual schema. Consider an entity type O. The straightforward approach is
to define a key declaration on the root element R of T such that its key selector

262 H. Ma

picks the child O of R and such that its key fields pick the grandchildren of R
corresponding to the key attributes of O. Unfortunately, we face a limitation of
the XML Schema standard (and thus of GML, too), namely that key fields may
only pick items (XML elements or attributes) that are of simple data type. The
same limitation needs to be respected for object types of higher level. In our
example above, the object type Fence has a key attribute Shape that is not
simple. We call the primary key of an object type transformable if it contains
no attribute that is not simple. Transformable primary keys are easy to preserve
during the transformation from GERM to GML. If a primary key is not trans-
formable then one might consider some work-around, e.g., replace non-simple
key attributes by a suitable set of simple ones, or use a surrogate key instead.
Also, note that in the literature on XML more flexible definitions of key con-
straints have been discussed that allow also non-simple data types for the key
fields of an XML key [3]. For a recent discussion we refer to [9,10].

Rule 6 (Transform key constraints). For an object type O in S, insert a
key declaration defined on the root element R in T such that its key selector
picks the XML element corresponding to O in T and such that its single key
field picks the attribute id of O.

Furthermore, for an object type O of level l ≥ 1 in S, if its primary key
is transformable and does not contain the owner component of O, insert a key
declaration defined on the root element R in T such that its key selector picks
the XML element corresponding to O in T and such that its key fields pick
the key attributes of O and for each key component C the attribute id of the
corresponding child C ′ of O in T .

Furthermore, for an object type O of level l ≥ 1 in S, if its primary key
is transformable and contains the owner component CO

owner of O, insert a key
declaration defined on the XML element corresponding to CO

owner in T such that
its key selector picks the XML element corresponding to O in T and such that
its key fields pick the key attributes of O and for each key component C of O
(other than CO

owner) the attribute id of the corresponding child C′ of O in T .
Finally, we aim to preserve referential integrity when transforming the GERM
schema S to GML. Due to the tree structure of GML, we need to make foreign
key constraints explicit in the target schema T .
Rule 7 (Assure referential integrity). For an object type O of level l ≥ 1
in S, insert a keyref declaration defined on the XML element O in T for each
component C of O (other than the owner component CO

owner) such that its key
selector picks the child C′ of O in T , its single key field picks the attribute id
of C′, and such that it references the respective key declaration inserted for the
XML element C in T .

4.3 Mapping Procedure

Based on the transformation rules above, the entire mapping of the GERM
schema S (input schema) to a GML schema T (target schema) will be conducted
with the following algorithm.

Transforming GERM Schemas to GML 263

Algorithm 1 (GERM-to-GML Mapping Algorithm)
Input: S /* a GERM schema

h /* highest level of object types in S
Σ /* a set of participation cardinality constraints on S

Output: T /* a GML schema

Begin
use Rule 1 to generate the root element of T ;

for each object type O ∈ S of level 0
use Rule 2 to transform O ;
for each attribute A ∈ attr(O)

use Rule 5 to transform A ;
endfor

use Rule 6 to transform the primary key of O ;
endfor

for l := 1 to h
for each object type O ∈ S of level l

use Rule 3 to transform O ;
use Rule 4 to transform the cardinality constraint defined on O ;
for each attribute A ∈ attr(O)

use Rule 5 to transform A ;
endfor

use Rule 6 to transform the primary key of O ;
use Rule 7 to assure referential integrity for O ;
endfor

endfor

endfor

End

Example 3. When transforming the GERM schema in our Example 2 using the
proposed algorithm we obtain the GML schema depicted in Figure 4. ��

264 H. Ma

Fig. 4. Example of a GML schema for whole farm plans

Transforming GERM Schemas to GML 265

Fig. 4. (continued)

266 H. Ma

5 Conclusion

In this paper we discuss the transformation from geometrically enhanced ER
model (GERM) to GML. The transformation from GERM schemas to applica-
tion schemas in GML presented above is inspired by the general transformation
criteria discussed in the literature. Firstly, it preserves semantic information. All
object types and their attributes are transformed into elements and subelements.
Integrity constrains (such as primary keys, referential integrity, and cardinality
constraints) are preserved as far as possible. (For a discussion of the general lim-
itations, see [17].) It is easy to check that the transformation does not create new
redundancy. Every object type from the GERM schema is mapped to a unique
element hosting all its attributes in the GML schema. The hierarchical structure
of the GERM schema is kept as far as possible during the level-wise processing of
the transformation algorithm. In fact, relationship types are always nested under
their owner component, which has been identified using query frequency informa-
tion. This approach improves query performance as paths in the GML schema can
be exploited as often as possible, thus avoiding expensive join computations.

In earlier work, we have identified GERM as a useful conceptual modelling
language for designing geographic applications. In this paper, we have extended
our work on GERM by discussing rule-based mappings of GERM schemas to
GML which is widely used as an implementation-level format for representing
geographic information and sharing across the Internet. We have successfully ap-
plied our approach to obtain GML application schemas for whole farm planning
in the context of the SLUI initiative.

References

1. AgResearch. Farm plan prototype for SLUI, retrievable online from the New
Zealand Association of Resource Management (2005),
http://www.nzarm.org.nz/KinrossWholeFarmPlan_A4_200dpi_secure.pdf

2. Al-Kamha, R., Embley, D.W., Liddle, S.W.: Foundational data modeling and
schema transformations for XML data engineering. In: UNISCON. LNBIP, vol. 5,
pp. 25–36. Springer, Heidelberg (2008)

3. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.: Keys for XML. Computer
Networks 39(5), 473–487 (2002)

4. Fornari, M.R., Iochpe, C.: Mapping of conceptual object oriented models to gml.
In: International Conference on IADIS WWW/Internet, pp. 444–451 (2002)

5. Franceschet, M., Gubiani, D., Montanari, A., Piazza, C.: From Entity Relation-
ship to XML Schema: A Graph-Theoretic Approach. In: Bellahsène, Z., Hunt, E.,
Rys, M., Unland, R. (eds.) XSym 2009. LNCS, vol. 5679, pp. 165–179. Springer,
Heidelberg (2009)

6. Franceschet, M., Montanari, A., Gubiani, D.: Modeling and validating spatio-
temporal conceptual schemas in XML schema. In: International Conference on
Database and Expert Systems Application – DEXA, pp. 25–29. IEEE (2007)

7. Frank, A.U.: Map Algebra Extended with Functors for Temporal Data. In: Akoka,
J., Liddle, S.W., Song, I.-Y., Bertolotto, M., Comyn-Wattiau, I., van den Heuvel,
W.-J., Kolp, M., Trujillo, J., Kop, C., Mayr, H.C. (eds.) ER Workshops 2005.
LNCS, vol. 3770, pp. 194–207. Springer, Heidelberg (2005)

http://www.nzarm.org.nz/KinrossWholeFarmPlan_A4_200dpi_secure.pdf

Transforming GERM Schemas to GML 267

8. Hadzilacos, T., Tryfona, N.: An extended entity-relationship model for geographic
applications. SIGMOD Record 26(3), 24–29 (1997)

9. Hartmann, S., Köhler, H., Link, S., Trinh, T., Wang, J.: On the Notion of an XML
Key. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2008. LNCS, vol. 4925, pp.
103–112. Springer, Heidelberg (2008)

10. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Transactions on Database Systems 34(2) (2009)

11. Hora, A.C., Davis Jr., C.A., Moro, M.M.: Generating XML/GML schemas from
geographic conceptual schemas. In: Foundations of Data Management, Alberto
Mendelzon International Workshop – AMW (2010)

12. Hull, R., King, R.: Semantic database modeling: Survey, applications, and research
issues. ACM Computing Surveys 19(3), 201–260 (1987)

13. Ishikawa, Y., Kitagawa, H.: Source Description-Based Approach for the Modeling
of Spatial Information Integration. In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.)
ER 2001. LNCS, vol. 2224, pp. 41–55. Springer, Heidelberg (2001)

14. Kleiner, C., Lipeck, U.W.: Automatic generation of XML DTDs from conceptual
database schemas. In: GI Jahrestagung, pp. 396–405 (2001)

15. Krumbein, T., Kudrass, T.: Rule-based generation of XML schemas from UML
class diagrams. In: Berliner XML Tage, pp. 213–227 (2003)

16. Li, Y., Lu, J., Guan, J., Fan, M., Haggag, A., Yahagi, T.: GML topology data stor-
age schema design. Journal of Advanced Computational Intelligence and Intelligent
Informatics 11(6), 701–708 (2007)

17. Link, S., Trinh, T.: Know your limits: Enhanced XML modeling with cardinality
constraints. In: Conceptual Modeling – ER Tutorials. CRPIT, vol. 83, pp. 19–30.
Australian Computer Society (2007)

18. Liu, C., Li, J.: Designing Quality XML Schemas from E-R Diagrams. In: Yu, J.X.,
Kitsuregawa, M., Leong, H.-V. (eds.) WAIM 2006. LNCS, vol. 4016, pp. 508–519.
Springer, Heidelberg (2006)

19. Ma, H.: A geometrically enhanced conceptual model and query language. Journal
of Universal Computer Science 16(20), 2986–3015 (2010)

20. Ma, H., Schewe, K.-D., Thalheim, B.: Geometrically Enhanced Conceptual Mod-
elling. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira, J.P.M.
(eds.) ER 2009. LNCS, vol. 5829, pp. 219–233. Springer, Heidelberg (2009)

21. Mackay, A.: Specifications of whole farm plans as a tool for affecting land use
change to reduce risk to extreme climatic events. AgResearch (2007)

22. OpenGIS Consortium. OGC Standards and Specifications
23. Pigozzo, P., Quintarelli, E.: An algorithm for generating XML schemas from ER

schemas. In: Advanced Database Systems, Italian Symposium – SEBD, pp. 192–
199 (2005)

24. Price, R., Tryfona, N., Jensen, C.S.: Modeling Topological Constraints in Spatial
Part-Whole Relationships. In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001.
LNCS, vol. 2224, pp. 27–40. Springer, Heidelberg (2001)

25. Shekhar, S., Coyle, M., Liu, D.-R., Goyal, B., Sarkar, S.: Data models in geographic
information systems. Communications of the ACM 40(4), 103–111 (1997)

26. Shekhar, S., Vatsavai, R.R., Chawla, S., Burk, T.E.: Spatial Pictogram Enhanced
Conceptual Data Models and Their Translation to Logical Data Models. In:
Agouris, P., Stefanidis, A. (eds.) ISD 1999. LNCS, vol. 1737, pp. 77–104. Springer,
Heidelberg (1999)

27. Thalheim, B.: Entity Relationship Modeling - Foundations of Database Technology.
Springer, Heidelberg (2000)

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 268–290, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Extensional Logic of Hyperintensions

Marie Duží

VSB-Technical University Ostrava, Czech Republic
marie.duzi@vsb.cz

Abstract. In this paper I describe an extensional logic of hyperintensions, viz.
Tichý’s Transparent Intensional Logic (TIL). TIL preserves transparency and
compositionality in all kinds of context, and validates quantifying into all
contexts, including intensional and hyperintensional ones. The availability of an
extensional logic of hyperintensions defies the received view that an intensional
(let alone hyperintensional) logic is one that fails to validate transparency,
compositionality, and quantifying-in. The main features of our logic are that the
senses and denotations of (non-indexical) terms and expressions remain
invariant across contexts and that our ramified type theory enables
quantification over any logical objects of any order. The syntax of TIL is the
typed lambda calculus; its semantics is based on a procedural redefinition of,
inter alia, functional abstraction and application. The only two non-standard
features are a hyperintension (called Trivialization) that presents other
hyperintensions and a four-place substitution function (called Sub) defined over
hyperintensions.

Keywords: Quantifying-in, extensional/intensional/hyperintensional context,
transparency, ramified type theory, transparent intensional logic, extensional
logic of hyperintensions.

1 Introduction

In this paper I introduce basic fundamentals of an extensional logic of hyperintensions
developed within procedural semantics of Transparent Intensional Logic (TIL). Only
an extensional logic will validate extensional principles like the rule of existential
generalization, hence only an extensional logic of hyperintensions will stand a chance
of validating quantifying-in. The cornerstone of TIL approach is that we avail
ourselves of rich ontology organised into an infinite bi-dimensional hierarchy of
types. We assign to terms and expressions occurring in hyperintensional contexts the
very same meaning that we assign to those very same terms and expressions when
occurring in intensional and extensional contexts. As a result of this top-down
approach, the extensional logical rules apply indiscriminately to all contexts. The
upside of our top-down approach is that referential transparency and compositionality
of meaning are preserved throughout, together with semantic innocence, since we
have no recourse to reference shift. At no point do we invoke contextualist epicycles
to somehow create a second semantics for ‘non-extensional’ contexts. The perceived

 Extensional Logic of Hyperintensions 269

downside would be that we revise the prevalent extensionalist semantic theory of
terms and expressions, in that we universalize Frege’s semantics earmarked for Sinn-
sensitive contexts to all contexts. Be that as it may, it is strength of our solution that it
is emphatically not tailor-made specifically for validating extensional principles.
Instead it is just yet another application of a large-scale background theory and our
solutions are principled and not ad hoc.

The rest of the paper is organised as follows. In Section 2 I briefly summarise the
history of the development of logical semantics from Frege via so-called syntactic and
model-theoretic turn up to procedural or algorithmic turn in semantics. Section 3
introduces the core of TIL so that to describe logical machinery needed in the
main Section 4 where basic principles of extensional logic of hyperintensions are
introduced.

2 Historical Background

The second half of the last century can be characterized as a linguistic turn in
semantics. We were developing systems of particular logics which are characterized
by a language with a precisely defined syntax and a model set-theoretic semantics.
The main goal of building such a system is to find a subset of sentences of the
language, axioms of the theory, which characterize a given area under scrutiny and
apply proper rules of inference in order to mechanically derive consequences of the
axioms. If the system has a model, then it is consistent, and all we are interested in is
manipulating symbols. Therefore, linguistic or syntactic turn.

Says David Kaplan:

During the Golden Age of Pure Semantics we were developing a nice homogenous
theory, with language, meanings, and entities of the world each properly segregated
and related one to another in rather smooth and comfortable ways. This development
probably came to its peak in Carnap’s Meaning and Necessity (1947). Each
designator has both an intension and an extension. Sentences have truth-values as
extensions and propositions as intensions, predicates have classes as extensions and
properties as intensions, terms have individuals as extensions and individual
concepts as intensions …. The intension of a compound is a function of the
intensions of the parts and similarly the extension (except when intensional
operators appear). There is great beauty and power in this theory. But there remained
some nagging doubts: proper names, demonstratives, and quantification into
intensional contexts. (1990, pp. 13-14)

The mainstream in this direction was Possible World Semantics (PWS). Kripke
characterizes this semantics as follows:

We define a proposition (…) as a mapping whose domain is K [a logical space of
possible worlds] and whose range is the set {T, F}. (Intuitively, a proposition is
something that can be true or false in each world; and (…) we identify propositions
that are strictly equivalent, i.e. have the same truth-value in each world. (…) Notice
that each proposition determines a unique set of worlds (the set of all worlds mapped
into T), and that conversely each set of worlds determines a proposition (its
‘characteristic function’). Thus a proposition could just as well have been defined
simply as a subset of K. (1963, §5.3)

270 M. Duží

Possible-world intensions are extensionally individuated:

∀fg (∀w (fw = gw) ⊃ f = g)

Thus Possible-world semantics is an extensional logic of intensions and the model-
theoretic (hence set-theoretic) theory of modalities. Yet its individuation of meaning
is too crude, up to equivalence. Notoriously well-known problem that is a test for an
expressive power of a given semantic theory is the analysis of belief sentences.
Carnap in (1947) says that modal sentences like “It is necessary that P” are
intensional with respect to the clause P. However, sentences about belief like “John
believes that P” are neither intensional nor extensional with respect to P. Carnap does
not accept the proposal of C.I. Lewis (1918) to solve the problem by means of
intensions, extensions and comprehension (that is including impossible possible
things). He objects against Meinong’s classification of things as impossible, possible
and actual, possible and non-actual, because existence is not a property of things but
of intensions.1

In order to solve the problem of belief sentences, Carnap proposed the method of
intensional isomorphism and defined inductively the relation of intensional
isomorphism on the set of sentences. Roughly, two sentences S and P are
intensionally isomorphic if they are L-equivalent and each designator (either simple
or composed) that is a constituent of S is L-equivalent to the respective designator of
P. Thus sentences S and P have the same intensional structure if they are composed in
the same way from designators with the same intensions.

Carnap did not accept sentencialism and tried to define a stronger relation between
expressions that might rightly calibrate the identity of meaning (i.e. synonymy) than
L-equivalence. He applied his notion of an intensional structure in the analysis of
sentences about belief and the paradox of analysis. In my opinion, all these Carnap’s
tenets and philosophical desiderata are plausible and it might seem that he really
succeeded in defining the subject of beliefs, knowledge, convictions, etc. Moreover,
his definition is independent of the language and syntactic structure in which this
subject is encoded. So far so good; yet Carnap’s method has been criticized in
particular by Alonzo Church (1954). Church’s argument is based on two principles.
First, it is Carnap’s principle of tolerance (which itself is, of course, desirable), and
second, which is less desirable, this principle makes it possible to introduce into a
language syntactically simple expressions as definitional abbreviations of
semantically complex expressions (for instance, in English ‘fortnight’ standing for ‘a
period of fourteen days’).

Thus we can introduce into a language primitive symbols P and Q in this way:

P is the set of natural numbers that are less than the number 3.
Q is the set of natural numbers n for which there are natural numbers x, y,
z such that xn + yn = zn.

1 See Corazon, R.: http://www.formalontology.com/pdf/meinonga.pdf; parts

of these paragraphs draw on material published in Jespersen (2010).

 Extensional Logic of Hyperintensions 271

But then P and Q are L-equivalent (because they denote the same set of numbers)
and also intensionally isomorphic because they have no other constituent designators
but themselves. Yet it is easy to believe that ∃n (Qn ∧ ¬Pn) without believing that
∃n (Pn ∧ ¬Pn).2 Church proposes a synonymous isomorphism: all the mutually
corresponding designators must be not only L-equivalent but also synonymous, where
the synonymy of syntactically simple designators must be postulated as a semantic
base of a language. We can postulate any convention for introducing these
synonymous abbreviations, but as soon as we postulate the meaning of a constant it
becomes valid and cannot be changed by another convention.

Going back to the history we encounter Frege who was (to the best of my
knowledge) the first who were developing formal semantics. In (1892) Frege
introduced the well-known semantic schema assigning to expressions their sense
(Sinn) and denotation (Bedeutung). Wishing to save compositionality, Frege made the
semantics of an expression depend on the linguistic context in which it is embedded.
According to Frege an expression names its Bedeutung (extension) in ordinary
contexts and Sinn (intension) in oblique contexts.3 The price is very high, indeed. No
expression can denote an object, unless a particular kind of context is provided. Yet
such a solution is far from being natural. There are cases of real ambiguity, witness
homonymous expressions. Which of the denotations is relevant in such cases (e.g., ‘is
a bank’) can be detected by a particular context (cf. “A bank was robbed” vs. “A
woman walks along the banks of the Dnepr”), but would anybody say that ‘The
author of Waverley’ were another such case of homonymy? Hardly; unless, of course,
their intuitions had been warped by Fregean contextualism. Furthermore, expressions
can be embedded within other expressions to various degrees; consider the sentence

“Charles knows that Tom believes that the author of Waverley is a poet.”

The expression ‘The author of Waverley’ should now denote the ‘normal’ sense of the
‘normal sense’ of itself. Adding still further layers of embedding sets off an infinite
hierarchy of senses, which is to say that ‘The author of Waverley’ has the potential of
being infinitely ambiguous. This seems plain wrong, and is first and foremost an
awkward artefact of Fregean semantics.4 For these reasons Carnap also criticised the
‘naming method’ (now we would say the denotational semantics), because then
necessarily we multiply the names ad infinitum, and we end up with the antinomy of
naming. For Carnap extension is not a matter of logical semantics because it is a matter
of factual knowledge. Prior for the meaning is an intension that uniquely determines the
extension (if any), but not vice versa, and is independent of contingent facts.

There are many other objections against the set-theoretical denotational semantics.
The arguments could be summarised as follows. First, one and the same denotation
can be produced by infinitely many “senses”. Second, in the “flat” (set-theoretic)
denotation there is no trace of particular constituents of the meaning (sense) of an

2 For the proof of Fermat’s theorem is difficult to discover (written in 1954).
3 There is another defect in Frege’s semantics; extension of a sentence is its truth-value. Yet in

case of empirical sentences, the truth-value depends on contingent facts, which is not a
matter of logical semantics. See also Klement (2002).

4 See also Duží & Materna (2010), or Duží, Jespersen & Materna (2010, §1.5).

272 M. Duží

expression. Third, knowing the meaning of an expression amounts for understanding
it. And we do understand many expressions without knowing the respective object
denoted by the expression. And we do understand even those expressions that do not
denote anything, and thus according to the denotational set-theoretic semantics they
are meaningless. For instance, mathematicians had to understand ‘the greatest prime’
prior to proving that there is no such number. They understood the ‘instruction’ what
to do prior to proving that this is a blind alley yielding nothing. And finally, in case of
empirical expressions which always have a denotation (PWS intension), possible-
world-semantics tells us that knowing the meaning amounts for knowing this infinite
uncountable mapping from possible worlds and times to the set of objects of a
respective type. But then we would be empirically omniscient! No human being with
limited capacities can know such an actual infinity.

Thus since the late 60-s of the last century many logicians strived for
hyperintensional semantics and structured meanings.5 The structured character of
meaning was urged by David Lewis in (1972), where non-structured intensions are
generated by finite, ordered trees. This idea of ‘tree-like’ meanings obviously
influenced George Bealer’s idea of ‘intensions of the second kind’ in his (1982). The
idea of structured meanings was propagated also by M.J. Cresswell in (1975) and
(1985). He defines structured meanings as ordered n-tuples. That this is far from
being a satisfactory solution is shown in Tichý (1994) and Jespersen (2003). In brief,
these tuples are again set-theoretic entities structured at most from a mereological
point of view, by having elements or parts (though one balks at calling elements
‘parts’, since sets, including tuples, are not complexes). Besides, tuples are of the
wrong making to serve as truth-bearers and objects of attitudes, since a tuple cannot
be true or be known, hoped, etc., to be true. Simply, tuples are ‘flat’ from the
procedural or algorithmic point of view. The way of combining particular parts
together is missing here.

In 1994 Moschovakis comes with an idea of meaning as algorithm. The meaning of a
term A is “an (abstract, idealized, not necessarily implementable) algorithm which
computes the denotation of A” (2006, p. 27; see also 1994).6 Moschovakis outlines his
conception thus:

The starting point … [is] the insight that a correct understanding of
programming languages should explain the relation between a program and the
algorithm it expresses, so that the basic interpretation scheme for a
programming language is of the form

program P algorithm(P) den(P).
It is not hard to work out the mathematical theory of a suitably abstract notion
of algorithm which makes this work; and once this is done, then it is hard to
miss the similarity of the above schema with the basic Fregean scheme for the
interpretation of a natural language,

term A meaning(A) den(A).

5 See also Fox and Lappin (2001).
6 Moschovakis’ notion of algorithm borders on being too permissive, since algorithms are

normally understood to be effective. (See Cleland (2002) for discussion.)

 Extensional Logic of Hyperintensions 273

This suggested at least a formal analogy between algorithms and meanings
which seemed worth investigating, and proved after some work to be more than
formal: when we view natural language with a programmer’s eye, it seems
almost obvious that we can represent the meaning of a term A by the algorithm
which is expressed by A and which computes its denotation. (2006, p. 42)

Yet much earlier, in (1968) and (1969) Pavel Tichý formulated the idea of
procedural semantics. Thus, for instance, a sentence encodes an instruction how
in any possible world at any time to execute the abstract procedure expressed by
the sentence as its meaning, i.e., to evaluate the truth-conditions of the sentence.
He developed a logical framework known today as Transparent Intensional
Logic (TIL). In modern jargon, TIL belongs to the paradigm of structured
meaning. However, Tichý does not reduce structure to set-theoretic sequences, as
do Kaplan and Cresswell. Nor does Tichý fail to explain how the sense of a
molecular term is determined by the senses of its atoms and their syntactic
arrangement, as Moschovakis objects to ‘structural’ approaches in (2006, p. 27).

3 Foundations of TIL

From the formal point of view, TIL is a hyperintensional, partial typed λ-calculus.7 A
main feature of the λ-calculus is its ability to systematically distinguish between
functions and functional values. An additional feature of TIL is its ability to
systematically distinguish between functions and modes of presentation of functions
and modes of presentation of functional values. The TIL operation known as Closure
is the very procedure of presenting or forming or obtaining or constructing a function;
the TIL operation known as Composition is the very procedure of constructing the
value (if any) of a function at an argument. Compositions and Closures are both
multiple-step procedures, or constructions, that operate on input provided by two one-
step constructions, which figure as sub-procedures of Compositions and Closures,
namely variables and so-called Trivializations. Characters such as ‘x’, ‘y’ ‘z’ are
words denoting variables, which construct the respective values that an assignment
function has accorded to them. The linguistic counterpart of a Trivialization is a
constant term always picking out the same object. An analogy from programming
languages might be helpful. The Trivialization of an object X, whatever X may be, and
its use are comparable to a fixed pointer to X and the dereference of the pointer. In
order to operate on X, X needs to be grabbed first. Trivialization is such a one-step
grabbing mechanism. Similarly, in order to talk about China (in non-demonstrative
and non-indexical English discourse), we need to name China, most simply by using
the constant ‘China’. Trivialization is important in what follows, because in order to
substitute one sub-construction for another inside a construction it is crucial to be able
to grab those three individual constructions.

The logical core of TIL is its notion of construction and its type hierarchy, which
divides into a ramified type theory and a simple type theory. The ramified type
hierarchy organizes all higher-order objects, which are all constructions, as well as all

7 For details on TIL see in particular Tichý (1988, 2004) and Duží et al (2010).

274 M. Duží

functions with domain or range in constructions. The simple type hierarchy organizes
first-order objects, which are non-constructions like extensions (individuals, numbers,
sets, etc.), possible-world intensions (functions from possible worlds) and their
arguments and values, including those values whose values are themselves intensions
(like Einstein’s favourite proposition). The relevant definitions decompose into three
parts. Firstly, simple types of order 1 are defined by Definition 1. Secondly,
constructions of order n, and thirdly, types of order n + 1.

Definition 1 (types of order 1). Let B be a base, where a base is a collection of pair-
wise disjoint, non-empty sets. Then:

(i) Every member of B is an elementary type of order 1 over B.
(ii) Let α, β1, ..., βm (m > 0) be types of order 1 over B. Then the collection

(α β1 ... βm) of all m-ary partial mappings from β1 × ... × βm into α is a functional
type of order 1 over B.

(iii) Nothing is a type of order 1 over B unless it so follows from (i) and (ii).

Remark. For the purposes of natural-language analysis, we are currently assuming the
following base of ground types, which is part of the ontological commitments of TIL:

ο: the set of truth-values {T, F};
ι: the set of individuals (constant universe of discourse);
τ: the set of real numbers (doubling as temporal continuum);
ω: the set of logically possible worlds (logical space).

Definition 2 (construction)

(i) The variable x is a construction that constructs an object O of the respective
type dependently on a valuation v: x v-constructs O.

(ii) Trivialization: Where X is an object whatsoever (an extension, an intension or a
construction), 0X is the construction Trivialization. It constructs X without any
change.

(iii) The Composition [X Y1…Ym] is the following construction. If X v-constructs a
function f of type (α β1…βm), and Y1, …, Ym v-construct entities B1, …, Bm of
types β1, …, βm, respectively, then the Composition [X Y1…Ym] v-constructs the
value (an entity, if any, of type α) of f on the tuple argument 〈B1, …, Bm〉.
Otherwise the Composition [X Y1…Ym] does not v-construct anything and so is
v-improper.

(iv) The Closure [λx1…xm Y] is the following construction. Let x1, x2, …, xm be pair-
wise distinct variables v-constructing entities of types β1, …, βm and Y a
construction v-constructing an α-entity. Then [λx1 … xm Y] is the construction
λ-Closure (or Closure). It v-constructs the following function f of the type (α
β1…βm). Let v(B1/x1,…,Bm/xm) be a valuation identical with v at least up to
assigning objects B1/β1, …, Bm/βm to variables x1, …, xm. If Y is v(B1/x1, …,
Bm/xm)-improper (see iii), then f is undefined on 〈B1, …, Bm〉. Otherwise the
value of f on 〈B1, …, Bm〉 is the α-entity v(B1/x1,…,Bm/xm)-constructed by Y.

 Extensional Logic of Hyperintensions 275

(v) The Single Execution 1X is the construction that either v-constructs the entity v-
constructed by X or, if X is not itself a construction or X is v-improper, 1X is v-
improper.

(vi) The Double Execution 2X is the following construction. Where X is any entity,
the Double Execution 2X is v-improper (yielding nothing relative to v) if X is
not itself a construction, or if X does not v-construct a construction, or if X v-
constructs a v-improper construction. Otherwise, let X v-construct a
construction Y and Y v-construct an entity Z: then 2X v-constructs Z.

(vii) Nothing is a construction, unless it so follows from (i) through (vi).

Definition 3 (ramified hierarchy of types)
T1 (types of order 1). See Definition 1.

Cn (constructions of order n)
i) Let x be a variable ranging over a type of order n. Then x is a construction of

order n over B.
ii) Let X be a member of a type of order n. Then 0X, 1X, 2X are constructions of

order n over B.
iii) Let X, X1,..., Xm (m > 0) be constructions of order n over B. Then [X X1... Xm] is a

construction of order n over B.
iv) Let x1,...xm, X (m > 0) be constructions of order n over B. Then [λx1...xm X] is a

construction of order n over B.
v) Nothing is a construction of order n over B unless it so follows from Cn (i)-(iv).

Tn+1 (types of order n + 1) Let ∗n be the collection of all constructions of order n over
B. Then
i) ∗n and every type of order n are types of order n + 1.
ii) If 0 < m and α, β1,...,βm are types of order n + 1 over B, then (α β1 ... βm) (see T1

ii)) is a type of order n + 1 over B.
iii) Nothing is a type of order n + 1 over B unless it so follows from (i) and (ii).

Examples of mathematical constructions (now we work over the base {ο, ν}, where ν
is the type of natural numbers; all the variables range over this type).

a) The function + is not a construction. It is a mapping of type (ννν), i.e., the set of
triples, the first two members of which are natural numbers, while the third
member is their sum. The simplest construction of this mapping is its
Trivialization 0+. (See Definition 2, ii)). This function + can be constructed by
infinitely many equivalent, yet distinct constructions; for instance, the following
Closures are equivalent by constructing the same mapping:
λxy [0+ x y], λyx [0+ x y], λxz [0+ x z], λxy [0+ [0− [0+ x y] y] y]. (See Definition 2,
iii), iv)).

b) The Composition [0+ 02 05] constructs the number 7, i.e., the value of the
function + (constructed by 0+) at the argument 〈2, 5〉 constructed by 02 and 05.
(See Definition 2, iii.)) Note that the numbers 2, 5 are not constituents of this
Composition, nor is the function +. Instead, the Trivialisations 0+, 02, 05 are the
constituents of the Composition [0+ 02 05].

276 M. Duží

c) The Composition [0+ x 01] v-constructs the successor of any number x; again, the
number 1 is not a constituent of this Composition. Instead, the Trivialisation 01 is
a constituent. The other two constituents are 0+, x.

d) The Closure λx [0+ x 01] constructs the successor function of type (νν). (See
Definition 2, iv.)) The successor function can be constructed by infinitely many
constructions, the simplest one of which is the Trivialisation of the function
Succ/(νν): 0Succ. Thus λx [0+ x 01] and 0Succ are equivalent by constructing the
same function. Yet the Trivialization 0Succ is not a finitary, executable
procedure. It is a one-step procedure producing an (infinite) mapping as its
product. On the other hand, the Closure λx [0+ x 01] is an easily executable
procedure. The instruction to execute this procedure can be decomposed into the
following steps: Take any number x and the number 1; apply the function + to
the couple of numbers obtained in the previous step; abstract from the number x.
The Composition of this closure with 05, i.e., [λx [0+ x 01] 05], constructs the
number 6. (See Definition 2, iii.))

e) The Composition [0: x 00], where :/(ννν) is the division function, does not v-
construct anything for any valuation of x; it is v-improper for any valuation v.
(See Definition 2, iii.)) We will say ‘improper’, for short.

f) The closure λx [0: x 00] is not improper, as it constructs something, even though
it is only a degenerate function, viz. one undefined at all its arguments. (See
Definition 2, iv.))

g) Compositions [0∃λx [0> x 05]], [0∀λx [0> x 05]] construct the truth-value T and F,
respectively, because the class of natural numbers greater than 5 constructed by
the Closure λx [0> x 05] is not empty, but is not the whole type ν.

h) If Iτ/(τ(οτ)) is a singularizer, then the following construction (the meaning of ‘the
greatest prime’) is improper:
[0Iτ λx [0∧ [0Prime x] [0∀λy [0⊃ [0Prime y] [0≥ x y]]]]], or for short,
[0I λx [[0Prime x] ∧ ∀y [[0Prime y] ⊃ [0≥ x y]]]].

Empirical languages incorporate an element of contingency that non-empirical ones
lack. Empirical expressions denote empirical conditions that may, or may not, be
satisfied at some empirical index of evaluation. Non-empirical languages have no
need for an additional category of expressions for empirical conditions. We model
these empirical conditions as possible-world intensions. Intensions are entities of type
(βω): mappings from possible worlds to an arbitrary type β. The type β is frequently
the type of the chronology of α-objects, i.e., a mapping of type (ατ). Thus α-
intensions are frequently functions of type ((ατ)ω), abbreviated as ‘ατω’. We shall
typically say that an index of evaluation is a world/time pair 〈w, t〉. Extensional
entities are entities of a type α where α ≠ (βω) for any type β.

Examples of frequently used intensions are: propositions of type οτω (denoted by
non-indexical sentences), properties of individuals of type (οι)τω (denoted
by predicates or nouns like ‘being happy’, ‘being a mathematician’), binary
relations-in-intension between individuals of type (οιι)τω (usually denoted by verbs
like ‘admire’, ‘kick’), individual offices or roles of type ιτω (denoted by definite
descriptions like ‘pope’, ‘the president of CR’, ‘the first man to run 100 m under 9 s’),

 Extensional Logic of Hyperintensions 277

binary relations-in-intension between individuals and hyperintensions of type (οι∗n)τω

(denoted by attitudinal verbs like ‘believe’, ‘know’, ‘calculate’, etc.).
The method of explicit intensionalization and temporalization encodes

constructions of possible-world intensions directly in the logical syntax. Where w
ranges over ω and t over τ, the following logical form essentially characterizes the
logical syntax of empirical language: λwλt […w….t…]. If the Composition
[…w….t…] v-constructs an entity of type α, then the Closure itself constructs a
function of type ((ατ)ω), or ατω for short, i.e. an α-intension.

Logical objects like truth-functions and quantifiers are extensional: ∧
(conjunction), ∨ (disjunction) and ⊃ (implication) are of type (οοο), and ¬ (negation)
of type (οο). Quantifiers ∀α, ∃α are type-theoretically polymorphous total functions of
type (ο(οα)), for an arbitrary type α, defined as follows. The universal quantifier ∀α
is a function that associates a class A of α-elements with T if A contains all elements
of the type α, otherwise with F. The existential quantifier ∃α is a function that
associates a class A of α-elements with T if A is a non-empty class, otherwise with F.

Notational conventions: Below all type indications will be provided outside the
formulae in order not to clutter the notation. Furthermore, ‘X/α’ means that an object
X is (a member) of type α. ‘X →v α’ means that the type of the object v-constructed
by X is α. We write ‘X → α’ if what is v-constructed does not depend on a valuation
v. Throughout, it holds that the variables w →v ω and t →v τ. If C →v ατω then the
frequently used Composition [[C w] t], which is the extensionalization of the α-
intension v-constructed by C, will be encoded as ‘Cwt’. When applying truth-
functions, identities =α/(οαα), arithmetic operations and relations >α, <α, we will
often use an infix notation without Trivialization and without indicating the type of a
function. Instead of ‘[0∃α λx B]’, ‘[0∀α λx B]’ (x →v α; B →v ο) we will often write
‘∃xB’, ‘∀xB’. Thus, for instance, [0∀τλx [0⊃ [0=τ x 00] [0∀τλy [0=τ [0+ x y] y]]]] will be
encoded as ∀x [[x = 00] ⊃ ∀y [[x + y] = y]].

The analysis of an expression consists in discovering the construction (meaning)
encoded by the expression. To this end we apply a method of analysis that consists of
three steps:

1) Type-theoretical analysis, i.e., assigning types to the objects that receive mention
in the analysed sentence.

2) Synthesis, i.e., combining the constructions of the objects ad (1) in order to
construct the proposition of type οτω denoted by the whole sentence.

3) Type-Theoretical checking.

To illustrate the method, let us analyse the sentence “Tom is seeking a vacant parking
place”.

Ad (1) types: Tom/ι; Seeking/(οι(οι)τω)τω: the relation-in-intension of an individual
to a property the instance of which the individual wants to find; Parking
(Place)/(οι)τω: a property of individuals; Vacant/((οι)τω(οι)τω): a property modifier.
The whole sentence denotes a proposition, i.e. an object of type οτω.

Ad (2). We aim at literal analysis of the sentence. Thus semantically simple
expressions are analysed as Trivializations of the objects they denote: 0Tom, 0Seek,

278 M. Duží

 0Parking, 0Vacant. Now we need to apply the relation Seeking to Tom and the
property of being a vacant parking place. This property is constructed by Composition
[0Vacant 0Parking]. However, the relation-in-intension is not a type-theoretically
proper object to be applied to an individual and a property; it must be extensionalised
first: [[0Seeking w] t] → (οι(οι)τω), or 0Seekingwt for short. The Composition
[0Seekingwt

0Tom [0Vacant 0Parking]] →v ο v-constructs the truth-value T or F
according as in a given world w and time t of evaluation Tom is seeking a vacant
parking or not. In order to construct the proposition denoted by the sentence, we must
now abstract over the values of w and t. Thus we have:

λwλt [0Seekingwt
0Tom [0Vacant 0Parking]] → οτω

Ad (3) Finally we perform the type-theoretical control in order to check whether
particular constituents are combined in compliance with type constraints.

λwλt [0Seekingwt

0Tom [0Vacant 0Parking]]
 ((οι)τω(οι)τω) (οι)τω

 ((οι(οι)τω) ι (οι)τω

 ο

 οτω

The role of Trivialization in agents’ communication can be described as follows.
Trivialized entities are the primitive concepts that an agent should have in its
ontology. If it is not so, the agent must ask its fellow-agents in order to learn a new
compound concept. Compound concepts are Closures or closed Compositions.

The empirical parameters w (the modal one) and t (the temporal one) serve as
instructions to execute an empirical search for an actual value of a given intension. To
this end an agent can consult its own knowledge base or ask the other agents for the
facts recorded in their knowledge bases, or even use its own ‘senses’ to obtain facts
from their environment.

To summarize, our neo-Fregean semantic schema, which applies to all contexts, is
this:

 Expression

 expresses

 denotes Construction

 constructs

Denotation

The most important relation in this schema is between an expression and its meaning
(a construction). We can investigate a priori what (if anything) a construction
constructs and what is entailed by it. Once a construction is explicitly given as a result
of logical analysis, the entity (if any) it constructs is already implicitly given, whereas

 Extensional Logic of Hyperintensions 279

it requires inquiry a posteriori to establish the reference of an empirical term at a
given world/time pair. As a limiting case, the logical analysis may reveal that the
construction fails to construct anything because it is improper. And if the construction
is not improper, the denotation can be either a first-order object (i.e. a non-
construction) or a lower-order construction. Intensional constructions (constructions
of objects of type (βω)) are always proper, since they always construct an intension
(including degenerate ones, which return no values at all or always the same value).
In linguistic terms, every word whose sense is an intensional construction has a
denotation, but will lack a reference at some or all 〈w, t〉 pairs, in case its denotation (a
partial function) fails to return a value. This applies to, inter alia, ‘The pope’, ‘The
first man to run 100 m under 9 s’, ‘The Evening Star’, or ‘John’s wife’.

Definition 4 (free and bound variables). Let C be a construction with at least one
occurrence of a variable ξ.

i) Let C be ξ. Then the occurrence of ξ in C is free.
ii) Let C be 0X. Then every occurrence of ξ in C is 0bound (‘Trivialization-bound’).
iii) Let C be [λx1...xn Y]. Any occurrence of ξ in Y that is one of xi, 1 ≤ i ≤ n, is λ-

bound in C unless it is 0bound in Y. Any occurrence of ξ in Y that is neither
0bound nor λ-bound in Y is free in C.

iv) Let C be [X X1...Xn]. Any occurrence of ξ that is free, 0bound, λ-bound in one of
X, X1,...,Xn is, respectively, free, 0bound, λ-bound in C.

v) Let C be 1X. Then any occurrence of ξ that is free, 0bound, λ-bound in X is,
respectively, free, 0bound, λ-bound in C.

vi) Let C be 2X. Then any occurrence of ξ that is free, λ-bound in a constituent of C
is, respectively, free, λ-bound in C. If an occurrence of ξ is 0bound in a
constituent 0D of C and this occurrence of D is a constituent of X’ v-constructed
by X, then if the occurrence of ξ is free, λ-bound in D it is free, λ-bound in C.
Otherwise, any other occurrence of ξ in C is 0bound in C.

vii) An occurrence of ξ is free, λ-bound, 0bound in C only due to (i)-(vi).
A construction with at least one occurrence of a free variable is an open

construction. A construction without any free variables is a closed construction.

Definition 5 (v-congruent and equivalent constructions) Let C, D/∗n → α be
constructions, and ≈v /(ο∗n∗n), ≈ /(ο∗n∗n) binary relations between constructions of
order n. Using infix notation without Trivialization, C ≈v D, C ≈ D, we define: C, D
are v-congruent, C ≈v D, iff either C and D v-construct the same α-entity, or both C
and D are v-improper; C, D are equivalent, C ≈ D, iff C, D are v-congruent for all
valuations v.

Corollaries. If C, D are identical, then C, D are equivalent, but not vice versa. If C, D
are equivalent, then C, D are v-congruent, but not vice versa.

280 M. Duží

If meanings of expressions E1, E2, that is the constructions expressed by them, are
merely v-congruent, we will say that E1, E2 are co-referential. If meanings of
expressions E1, E2 are equivalent, we will say that E1, E2 are co-denotational or
equivalent.

The next notion we need to define is that of synonymy. Our notion of synonymy is
defined in terms of procedural isomorphism. The term ‘procedural isomorphism’ is a
nod to Carnap’s intensional isomorphism and Church’s synonymous isomorphism.
Church’s Alternatives (0) and (1) leave room for additional Alternatives.8 One would
be Alternative (½), another Alternative (¾). The former includes α- and η-conversion
while the latter adds a restricted β-conversion. If we must choose, we would prefer
Alternative (¾) to soak up those differences between β-transformations that concern
only λ-bound variables and thus (at least appear to) lack natural-language
counterparts.

One reason for excluding unrestricted β-conversion is the well-known fact that β-
conversion is not an equivalent transformation in logics boasting partial functions,
such as TIL. Another reason is that occasionally even β-equivalent constructions have
different natural-language counterparts; witness the difference between attitude
reports de dicto vs. de re. Thus, the difference between “a believes that b is happy”
and “b is believed by a to be happy” is just the difference between β-equivalent
meanings. Where attitudes are construed as in possible-world semantics, as relations
to intensions (rather than hyperintensions), the former (de dicto) receives the analysis

λwλt [0Believewt
0a λwλt [0Happywt

0b]]

while the latter (de re) receives the analysis

λwλt [λx [0Believewt
0a λwλt [0Happywt x]] 0b]

Types: Happy/(οι)τω; x →v ι; a, b/ι; Believe/(οιοτω)τω.
The de dicto variant is the β-equivalent contractum of the de re variant. Both

variants are equivalent because they construct one and the same proposition, the two
sentences denoting the same truth-condition. Yet they denote this proposition in
different ways, thus they are not synonymous. The equivalent β-reduction leads here
to a loss of analytic information, namely loss of information about which of the two
ways, or constructions, has been used to construct this proposition.9 In this case the
loss seems to be harmless, though, because there is only one, unambiguous way to β-
expand the de dicto version into its equivalent de re variant.10

8 For Church’s Alternatives see Anderson (1998).
9 For the notion of analytic information, see Duží (2010) and Duží et al (2010, §5.4).
10 In general, de dicto and de re attitudes are not equivalent, but logically independent. Consider

“a believes that the pope is not the pope” and “a believes of the pope that he is not the pope”.
The former, de dicto, variant makes a deeply irrational and most likely is not a true
attribution, while the latter, de re, attribution is perfectly reasonable and most likely the right
one to make. In TIL the de dicto variant is not an equivalent β-contractum of the de re
variant due to the partiality of the office Pope/ιτω.

 Extensional Logic of Hyperintensions 281

However, unrestricted equivalent β-reduction sometimes yields a loss of analytic
information that cannot be restored by β-expansion. The well-known example is the
sentence “John loves his wife and so does Tom”. This sentence is ambiguous between
two readings, sloppy and strict. On its sloppy reading John and Tom share the
property of each loving their own wife (and both are exemplary husbands). On the
strict reading they share the property of loving John’s wife (and there are troubles on
the horizon). And these are two distinct properties. Thus there are two distinct
analyses of “John loves his wife”:

Strict: λwλt [λx [0Lovewt x [0Wife_ofwt
0John] 0John]

Sloppy: λwλt [λx [0Lovewt x [0Wife_ofwt x] 0John]

But an unrestricted β-reduction turns these two redexes into one and the same
contractum:

λwλt [0Lovewt
0John [0Wife_ofwt

0John]]

A piece of analytic information has been lost and using the contractum one does not
know which property should be applied to Tom.11

The restricted version of equivalent β-conversion we have in mind consists in
substituting free variables for λ-bound variables of the same type, and will be called
βr-conversion. For instance, we see little reason to differentiate semantically or
logically between “b is believed by a to be happy” and “b has the property of being
believed by a to be happy”.12 The latter sentence expresses

λwλt [λw’λt’ λx [0Believew’t’ a λwλt [0Happywt x]]wt b]

This is merely a βr-expanded form of

λwλt [λx [0Believewt a λwλt [0Happywt x]] b]

Thus we define:

Definition 5 (procedurally isomorphic constructions: Alternative (¾)). Let C, D be
constructions. Then C, D are α-equivalent iff they differ at most by deploying
different λ-bound variables. C, D are η-equivalent iff one arises from the other by η-
reduction or η-expansion. C, D are βr-equivalent iff one arises from the other by βr-
reduction or βr-expansion. C, D are procedurally isomorphic, denoted ‘0C ≈

0D’,
≈/(ο∗n∗n), iff there are closed constructions C1,…,Cm, m≥1, such that 0C = 0C1,

0D =
0Cm, and all Ci, Ci+1 (1 ≤ i < m) are either α-, η- or βr-equivalent.

11 For the solution of this problem see Duží & Jespersen (in submission).
12 This is not to say we see no reason at all not to differentiate. For instance, it could be argued

that one thing is to believe that a is happy and another is to believe that a has the property of
being happy, because the latter at least appears to presuppose that the believer have the
additional conceptual resources to master the notion of property. Thus a proper calibration of
procedural isomorphism is still an open problem and it can depend on the area under
scrutiny. More discussion on procedural isomorphism can be found in Jespersen (2010).

282 M. Duží

Hence we advocate for the restricted β-conversion; yet β-conversion is the
fundamental rule for computing the value of the function v-constructed by [λx Y] at an
argument v-constructed by a construction C. Its (unrestricted) version ‘by name’ is
this (where Y(C/x) is the result of correct substitution of a construction C for x in Y):

[[λx Y] C] |– Y(C/x)

Due to compositionality, if C is v-improper the Composition [[λx Y] C] is v-improper
as well. But if Y is itself a Closure then it is never v-improper.13 Thus it may happen
that the right-hand side is not equivalent to the left-hand side. For this reason we
restrict the rule to C being a variable which is never v-improper.

But we do need a general rule of the λ-calculus for computing the value of a
function. Fortunately, it turns out to be feasible to formulate a generally valid
computational rule. A distinction familiar from programming languages based on the
λ-calculus holds the key to the solution. The invalid rule above is moulded on the
programming technique of calling a sub-procedure C by name: the sub-procedure
itself is substituted for the ‘local variable’ x in the ‘procedure body’ Y. It is well-
known among programmers that this technique can have undesirable side-effects,
unlike the technique of calling a sub-procedure by value.14 The idea is simple: execute
the sub-procedure C first, and then – provided this execution does not fail – substitute
the construction of the result (‘pass by the value’) for x.15

The substitution method comes with two special functions.16 The polymorphous
function Sub of type (∗n∗n∗n∗n) operates on constructions as follows. When applied to
constructions C1, C2, C3, Sub returns as its value the construction D that is the result
of the correct (i.e. collision-less) substitution of C1 for C2 in C3. For instance, the
result of the Composition [0Sub 00John 0x 0[0Wife_ofwt x]] is the Composition
[0Wife_ofwt

0John]. The likewise polymorphous function Tr returns as its value the
Trivialization of its argument. Thus the result of [0Tr 0John] is 0John. If the variable x
ranges over ι, the Composition [0Tr x] v(John/x)-constructs 0John. Note one essential
distinction between the function Tr and the construction Trivialization. Whereas the
variable x is free in [0Tr x], the Trivialization 0x binds the variable x by constructing
just x independently of valuation.17

13 See Definition 2, iii) and iv).
14 A recent reference to the distinction between ‘call by name’ and ‘call by value’ is Pierce

(2002, pp. 56-57). See also, for instance, Hyde (1996, Ch. 11) or Plotkin (1975).
15 For conversion by name, see Claim 2.5 and the subsequent proof in Duží et al (2010, pp.267-

268); for conversion by value, see Claim 2.6 and the subsequent proof in (ibid., pp. 269-
270). For the general strategy (inspired by programming languages) of distinguishing
between succeeding, failing, and aborting with error, see also Van Eijck and Francez
(1995).

16 Sub is introduced in Tichý (1988, p. 75) and Tr at (ibid., p. 68).
17 Since TIL is a λ-calculus, all variable binding is λ-binding, except for Trivialization-binding.

One area where Trivialization-binding plays a key role is existential quantification into
hyperintensional contexts, where a quantifier is introduced with a view to binding a variable
that occurs bound by Trivialization, because the variable occurs inside a Trivialized context.
For discussion, see Duží et al (2010, §5.3). For improved solutions, see Duží & Jespersen
(2012).

 Extensional Logic of Hyperintensions 283

For simplicity’s sake, we introduce the TIL translation of the rule of β-conversion
by value in its simplified version for unary functions (generalization to n-ary
functions is obvious):

[[λx Y] C] |– 2[0Sub [0Tr C] 0x 0Y]

Note that the Composition on the right-hand side must undergo Double Execution.
Provided C is v-proper, it v-constructs an entity, say e. Then the result of the first step
(the substitution [0Sub [0Tr C] 0x 0Y]) is the construction Y(e/x). The resulting
construction must then be executed in order to obtain the value of the function v-
constructed by [λx Y] at the argument e. Hence, Double Execution. Otherwise, if C is
v-improper, the substitution fails to construct anything, because due to the
compositionality constraint the whole Composition [0Sub [0Tr C] 0x 0Y] is v-improper
and so is 2[0Sub [0Tr C] 0x 0Y] (see Definition 2, iii) and vi)). In this manner
compositionality is preserved and the above rule of β-conversion by value is always
valid even when C is v-improper.

Remark. In the project of a multi-agent system that our Laboratory of Intelligent
Systems dealt with in 2004-2008 we use the computational variant of TIL, the TIL-
Script functional programming language as the language of communication between
agents.18 In the TIL-Script language we apply only this computational rule of
conversion by value. The reason is this. Since the construction C can be v-improper,
we need to implement a lazy evaluation mechanism in order to evaluate C only when
needed. However, the properness of C can be checked only in the run time, because
valuation v would supply values dependently on states-of-affairs.

4 Rules for the Three Kinds of Context

At this point we have lined up everything we need in order to introduce the
extensional logic of hyperintensions. Yet some may protest that extensional logic of
hyperintensions sounds as an oxymoron like a roaring silence. For at least since the
milestones Quine (1956) and Kaplan (1968) the validity of extensional principles, in
particular of quantifying-in and existential generalization, has been fielded as a
logical criterion for distinguishing

(i) extensional/ transparent/‘relational’ contexts from
(ii) non-extensional/opaque/‘notional’ contexts,

the idea being that extensional (etc.) contexts are those that validate quantifying-in.19
And conversely, if a context resists quantifying-in, it is caught in violation of one or
more of the laws of extensional logic and as such eludes full logical analysis. What
we are saying is that also intensional and hyperintensional contexts may be quantified
into, but that the feasibility of doing so presupposes that it be done within an
extensional logic of hyperintensional contexts. Deploying a non-extensional logic of

18 Project No. 1ET101940420: "Logic and Artificial Intelligence for multi-agent systems";

supported by the program "Information Society" of the Czech Academy of Sciences. For
details see http://labis.vsb.cz/.

19 See Forbes (1996).

284 M. Duží

hyperintensions to quantify into hyperintensional contexts would, indeed, be a non-
starter, generating opacity and thereby making hyperintensional attitude contexts
logically intractable. However, whether one accepts quantifying into (hyper-)
intensional contexts or wants to restrict quantification to extensional contexts, like
“Mary is happy”, the logical question remains which contexts validate quantifying-in.

Tichý issues in (1986, p. 256; 2004, p. 654) a warning against a circular definition:

Q: When is a context extensional?

A: A context is extensional if it validates
(i) the rule of substitution of co-referential terms and
(ii) the rule of existential generalization.

Q: And when are (i), (ii) valid?

A: Those two rules are valid when applied to extensional contexts.

We steer clear of the circle by defining extensionality for
1. hyperintensions presenting functions,
2. functions (including possible-world intensions), and
3. functional values.

These three levels are squared off with three kinds of context:20
1. hyperintensional contexts, in which a construction is not used to present an object,

but is itself mentioned as functional argument (though a construction of one order
higher needs to be used to mention this lower-order construction);

2. intensional contexts, in which a construction is used to present a function without
presenting a particular value of the function (moreover, the construction does not
occur within another hyperintensional context);

3. extensional contexts, in which a construction is used to produce a particular value
of the function at a given argument (moreover, the construction does not occur
within another intensional or hyperintensional context).

Example. Let the types of entities be: Periodic/(ο(ττ)); Sin/(ττ); Solve/(ο(ι∗1))τω: the
relation-in-intension between an individual and a construction the product of which
the individual is seeking; π/τ ; Tom/ι.
• Extensional context: functional value is an object of predication (functional

argument):
“sin π = 0”

[[0Sin 0π] = 00]
• Intensional context: function-in-extension is an object of predication:

“Sine is a periodic function”
[0Periodic 0Sin]

• Hyperintensional context: construction (“function-in-intension”) is an object of
predication (a functional argument):

“Tom is solving the equation sin x = 0”
λwλt [0Solvewt

0Tom 0[[0Sin x] = 00]]]

20 For the definition see Duží et al (2010, § 2.6 and 2.7).

 Extensional Logic of Hyperintensions 285

Referring again to the project on multi-agent systems, we can illustrate the need for
operating on a hyperintensional level like this. Agents are “born” with a minimal
ontology in order to execute primitive actions like “stop”, “move forward”, “turn
left”, “turn right” in case of mobile agents, and they communicate with their fellow-
agents by messaging. Thus the agents must have the ability to learn by experience;
and they learn not only contingent facts (extending their knowledge base) but also
new concepts thus gradually extending their ontology. Since we define concepts as
closed constructions (in their normal form) agents must be able to operate on the
hyperintensional level of concepts (constructions).

Imagine, for instance, that an agent a receives a message that b is looking for a car
park with vacancies. However, a does not have in its ontology the concept of a car
park with vacancies. In order that the communication can proceed smoothly, a may
learn by asking the other agents that “A car park with vacancies is a car park some of
whose parking spaces are not occupied”. The content of a query message mentioning
the unknown concept and asking for such a definition (refinement of the unknown
concept) is

[0Unrecognized 0[0Vacant 0Car_Park]].

The reply message content is then

[0Refine 0[0Vacant 0Car_Park] =
 0[λwλt λx [[0Car_Parkwt x] ∧ ∃y [[0Space_ofwt y x] ∧ ¬[0Occupiedwt y]]]]].

Thus [0Vacant 0Car_Park] and the construction on right-hand side become ex
definitione equivalent (that is constructing one and the same property) and agent a
stores the new concept into its ontology.

A dual constraint of TIL has impact on the rules of inference. It is the constraint
dictated by properly partial functions, which are undefined for some or all of their
arguments, and improper constructions, which fail to produce a product.
Improperness stems from the procedure of applying a properly partial function f to an
argument a, such that f returns no value at a. The procedure of functional application
induces an extensional context. Thus when specifying the rules of quantifying-in, we
must check whether particular constituent constructions occurring extensionally are
improper. If none is, the particular rule of quantifying-in is valid.

The rules of improperness can be schematically summarized as follows. If a
Composition is used in an extensional context as a procedure of application a properly
partial function F/(βα) to an argument a/α and if F has no-value at a (value gap) then

[0F 0a] is v-improper

and so is any construction C occurring extensionally and containing [0F 0a] as a
constituent; partiality is strictly propagated up:

[… [… [0F 0a] …] …] is improper

until the context is raised up to hyper/intensional:
intensional: λx… [… [… [0F 0a] …] …] is proper
hyperintensional: 0[… [… [0F 0a] …] …] is proper

286 M. Duží

4.1 The Rules of Existential Generalization

a) extensional context. Let […[0F 0a]…] v-construct the truth-value T. Then the
following rule is truth-preserving:

 […[0F 0a]…] |-- ∃x […[0F x] …]; x →v α

Proof:
1. […[0F 0a]…] assumption
2. […[0F x] …] v(a/x)-constructs T
3. λx […[0F x]…] v-constructs a non-empty class
4. [0∃λx […[0F x]…]] EG, 3

Example: λwλt [0Wisewt
0Popewt] |= λwλt ∃x [0Wisewt x];

Types: Wise/(οι)τω; Pope/ιτω; x →v ι.

b) intensional context. Let […λy [… [0F 0a] …]] v-construct T. Then the following

rule is truth-preserving:

[…λy [… [0F 0a] …]] |-- ∃f […λy [… [f 0a] …]]; f →v (βα)

Proof:
1. […λy [… [0F 0a] …]] assumption
2. […λy [… [f 0a] …]] v(F/f)-constructs T
3. λf […λy [… [f 0a] …]] v-constructs a non-empty class
4. [0∃λf […λy [… [f 0a] …]]] EG, 3

Example: λwλt [0Believewt
0b λwλt [0Wisewt

0Popewt]] |=
λwλt ∃f [0Believewt

0b λwλt [0Wisewt fwt]];
Additional types: Believe/(οιοτω)τω: an intensional attitude to a proposition; f →v ιτω

Gloss: If b believes that the Pope is wise then there is an office such that b believes
that its holder is wise.

c) hyperintensional context. Let [… 0[… [0F 0a] …]] v-construct T. Then the

following rule is truth-preserving:

[… 0[… [0F 0a] …]] |-- ∃c 2[0Sub c 00F 0[… 0[… [0F 0a] …]]];
c →v ∗n;

2c →v (βα)
Proof:

1. [… 0[… [0F 0a] …]] assumption
2. 2[0Sub c 00F 0[… 0[… [0F 0a] …]]] v(0F/c)-constructs T
3. λc 2[0Sub c 00F 0[… 0[… [0F 0a] …]] v-constructs a non-empty class
4. [0∃λc 2[0Sub c 00F 0[… 0[… [0F 0a] …]]] EG, 3

The step 2 may be difficult to understand. Here is an additional explanation. The
Composition [0Sub c 00F 0[… 0[… [0F 0a] …]]] v(0F/c)-constructs the Composition
[… 0[… [0F 0a] …]]. In order to v-construct T, this Composition must be executed
again. Therefore, Double Execution.

 Extensional Logic of Hyperintensions 287

Example: λwλt [0Believe*wt
0b 0[λwλt [0Wisewt

0Popewt]] |=
λwλt ∃c [0Believe*wt

0b [0Sub c 00Pope 0[λwλt [0Wisewt
0Popewt]]]];

Additional types: Believe*/(οι∗n)τω: a hyperpropositional belief; c → ∗n;
2c →v ιτω

Gloss: If b (explicitly) believes* that the Pope is wise, then there is a concept of an
office such that b believes* that the holder of the office is wise.

Note: In this example the [0Sub c 00Pope 0[λwλt [0Wisewt
0Popewt]]] is not Double

executed, because b is related just to the Composition itself constructed by this
substitution.

Hyperpropositional attitudes must be used if the attributer is reproducing faithfully b’s
perspective. For instance, suppose that the office of Pope is identical with the office
of the Bishop of Rome. Then it may be the case that though b believes that the Pope is
wise, he may disbelieve that the Bishop of Rome is wise.

4.2 Leibniz’s Rule of Substitution in the Three Kinds of Context

a) In an extensional context substitution salva veritate of v-congruent constructions is
valid.

Example.
“The president of CR is the husband of Livia Klausova”

“The president of CR is an economist”
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

“The husband of Livia Klausova is an economist”
Proof:
1) λwλt [0President_ofwt

0CR]wt ≈v λwλt [0Husband_ofwt
0Livia]wt assumption

2) [0Economistwt λwλt [0President_ofwt
0CR]wt] assumption

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
3) [0Economistwt λwλt [0Husband_ofwt

0Livia]wt] Leibniz, 2)

Types. President_of/(ιι)τω; CR/ι; Husband_of/(ιι)τω; Livia/ι; Economist/(οι)τω;

b) In an intensional context substitution salva veritate of equivalent constructions is
valid.

Example.

“The president of CR is the highest representative of CR”
“Tom wants to become the president of CR”

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
“Tom wants to become the highest representative of CR’’

Proof:
1) λwλt [0President_ofwt

0CR] ≈ λwλt [0Highest_Rep_ofwt
0CR] assumption

2) [0Want_bewt
0Tom λwλt [0President_ofwt

0CR]] assumption
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

3) [0Want_bewt
0Tom λwλt [0Highest_Rep_ofwt

0CR]] Leibniz, 2)

288 M. Duží

Additional types. Highest_Rep_of/(ιι)τω; Want_be/(οιιτω)τω: the relation-in-intension
of an individual to an individual office; Tom/ι.

c) In a hyperintensional context substitution salva veritate of procedurally

isomorphic constructions is valid.
Example. Suppose that ‘azure’ and ‘sky-blue’ are synonymous.

“Tom believes* that Marie’s blouse is azure”

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
“Tom believes* that Marie’s blouse is sky-blue”

Proof:
1) [0Believe*wt

0Tom 0[λwλt [0Azurewt [
0Blouse_ofwt

0Marie]]]] assumption
2) 00Azure ≈

00Sky_Blue assumption
3) [0Believe*wt

0Tom 0[λwλt [0Azurewt [
0Blouse_ofwt

0Marie]]]] Leibniz

Some might object that this argument is invalid, because it is possible that Tom
believes that Marie’s blouse is azure without believing that Marie’s blouse is sky-
blue. We disagree and on this point we refer to Richard who says:

“… It is impossible for a (normal, rational) person to understand expressions
which have identical senses but not be aware that they have identical senses.”
(2001, pp. 546-7)

Hence the paradox of analysis is not a problem of hyperintensionality. Rather, it is a
matter of linguistic incompetence (failure to recognize pairs of synonyms) and not of
logical incompetence (failure to recognize pairs of procedurally isomorphic
hyperintensions).

5 Conclusion

Quantifying into hyperintensional contexts requires an extensional logic of
hyperintensions. Much non-trivial footwork is required to lay out such a large-scale
logical semantics. Once this is done, though, quantifying into hyperintensional and
intensional contexts turns out to be as trivially valid as quantifying into extensional
contexts. However quantifying into hyperintensional contexts introduces a technical
complication absent in quantifying into intensional and extensional contexts. In a
hyperintensional context a construction occurs mentioned (as an argument of another
function) rather than used (to construct a function). The complication is that, since
every constituent of a mentioned construction itself occurs mentioned, the quantifier
cannot bind any variables inside the hyperintensional context, thus rendering
quantifying-in impossible. The solution consists in applying a substitution technique
that makes the variables amenable to binding. Moreover, based on the substitution
method we introduced the generally valid computational rule of a partial lambda
calculus, viz. reduction ‘by value’.

 Extensional Logic of Hyperintensions 289

Once the three kinds of context, namely extensional, intensional and
hyperintensional are defined, the substitution of identicals is trivially valid. There is
no cogent reason for invalidity of Leibniz’s law. Only that we must substitute that
object which is the object of predication in a given context.

Acknowledgements. This research has been supported by the Grant Agency of the
Czech Republic, project No. 401/10/0792, “Temporal aspects of knowledge and
information” and also by the internal grant agency of VSB-TU Ostrava, project No.
SP/2010214 “Modelling, simulation and verification of software processes II”.

References

Anderson, C.A.: Alonzo Church’s contributions to philosophy and intensional logic. The
Bulletin of Symbolic Logic 4, 129–171 (1998)

Bealer, G.: Quality and Concept. Clarendon Press, Oxford (1982)
Carnap, R.: Meaning and Necessity. Chicago University Press, Chicago (1947)
Church, A.: Intensional isomorphism and identity of belief. Philosophical Studies 5, 65–73

(1954)
Church, A.: A revised formulation of the logic of sense and denotation. Alternative (1).

Noûs 27, 141–157 (1993)
Cleland, C.E.: On effective procedures. Minds and Machines 12, 159–179 (2002)
Cresswell, M.J.: Hyperintensional logic. Studia Logica 34, 25–38 (1975)
Cresswell, M.J.: Structured meanings. MIT Press, Cambridge (1985)
Duží, M.: The paradox of inference and the non-triviality of analytic information. Journal of

Philosophical Logic 39(5), 473–510 (2010)
Duží, M., Jespersen, B., Materna, P.: Procedural Semantics for Hyperintensional Logic.

Foundations and Applications of Trasnsparent Intensional Logic, 1st edn. Logic,
Epistemology, and the Unity of Science, vol. 17. Springer, Berlin (2010)

Duží, M., Jespersen, B.: Transparent quantification into hyperintensional contexts de re.
Logique and Analyse 220 (December 2012) (to appear)

Duží, M., Materna, P.: Can concepts be defined in terms of sets? Logic and Logical
Philosophy 19, 195–242 (2010)

van Eijck, J., Francez, N.: Verb-phrase ellipsis in dynamic semantics. In: Masuch, M., Polos, L.
(eds.) Applied Logic: How, What and Why?, pp. 29–60. Kluwer (1995)

Forbes, G.: Substitutivity and the coherence of quantifying in. The Philosophical Review 105,
337–371 (1996)

Fox, C., Lappin, S.: A framework for the hyperintensional semantics of natural language with
two implementations. Lecture Notes in Computational Linguistics 2009, 175–192 (2001)

Frege, G.: Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische Kritik 100,
25–50 (1892)

Hyde, R.: The Art of Assembly Language Programming (1996),
 http://www.arl.wustl.edu/~lockwood/class/cs306/books/artofasm/

toc.html (retrievable)
Jespersen, B.: Why the tuple theory of structured propositions isn’t a theory of structured

propositions. Philosophia 31, 171–183 (2003)
Jespersen, B.: How hyper are hyperpropositions? Language and Linguistics Compass 4, 96–106

(2010)
Kaplan, D.: Quantifying in. Synthese 19, 178–214 (1968)

290 M. Duží

Kaplan, D.: Opacity. In: Hahn, L. (ed.) The Philosophy of W.V. Quine, pp. 229–289. Open
Court, La Salle (1986)

Kaplan, D.: Dthat. In: Cole, P. (ed.) Syntax and Semantics, vol. 9, Academic Press, New York
(1990); reprinted in: Yourgrau (ed.) Demonstratives. Oxford University Press, Oxford

Klement, K.C.: Frege and the Logic of Sense and Reference. Routledge, New York (2002)
Kripke, S.: Semantical considerations on modal logic. Acta Pilosophica Fennica 16, 83–94

(1963)
Lewis, C.I.: A Survey of Symbolic Logic. University of California Press, Berkeley (1918)
Lewis, D.: General semantics. In: Davidson, D., Harman, G. (eds.) Semantics of Natural

Language, pp. 169–218. Reidel, Dordrecht (1972)
Moschovakis, Y.N.: Sense and denotation as algorithm and value. In: Väänänen, J., Oikkonen,

J. (eds.) Lecture Notes in Logic, vol. 2, pp. 210–249. Springer, Berlin (1994)
Moschovakis, Y.N.: A logical calculus of meaning and synonymy. Linguistics and

Philosophy 29, 27–89 (2006)
Pierce, C.B.: Types and Programming Languages. MIT Press, London (2002)
Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science 1,

125–159 (1975)
Quine, W.v.O.: Quantifiers and propositional attitudes. Journal of Philosophy 53, 177–186

(1956)
Richard, M.: Analysis, synonymy and sense. In: Anderson, C.A., Zeleny, M. (eds.) Logic,

Meaning and Computation: Essays in Memory of Alonzo Church. Synthese Library,
vol. 305, pp. 545–571. Kluwer, Dordrecht (2001)

Tichý, P.: Smysl a procedura. Filosofický časopis 16, 222–232 (1968); translated as ‘Sense and
procedure’ in Tichý, 77–92 (2004)

Tichý, P.: Intensions in terms of Turing machines. Studia Logica 26, 7–25 (1969); reprinted in
Tichý, 93–109 (2004)

Tichý, P.: The Foundations of Frege’s Logic. De Gruyter, Berlin (1988)
Tichý, P.: Collected Papers in Logic and Philosophy. In: Svoboda, V., Jespersen, B., Cheyne,

C. (eds.), Filosofia, Czech Academy of Sciences, and Dunedin: University of Otago Press,
Prague (2004)

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 291–315, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Culture Sensitive Aspects in Software Engineering

Hannu Jaakkola

Tampere University of Technology, Pori
P.O. Box 300, FI-28101 Pori, Finland

hannu.jaakkola@tut.fi

Abstract. The characteristics of software engineering (SE) are changing
rapidly. The following trends are easy to notice: the transfer from plan driven
development to agile development, the transfer towards distributed and
multicultural teams and organization structure, the increasing importance of
services related to software products or software itself, transfer towards cloud
implementation of information systems. Even as agile software development is
encouraging active interaction inside teams and between the developers and the
clients, distributed work is increasing its difficulty. The problems of distribution
itself can be solved by tools and techniques, e.g. by improved version and
configuration management, careful asset repository management, tools forcing
the production of unified specifications, and tools supporting communication in
a distributed development context. When software organizations are
multicultural, one additional dimension of difficulty appears. Even in a single
unit, differences in cultural background may cause problems, but the problems
become emphasized especially in the case of distributed work. The same
problem also appears in software related services: to an increasing extent the
service chain is distributed across cultural borders. Process models are used to
provide means for the better management of software engineering and services.
Predefined processes force the developers to follow the given guidelines
throughout the organization – regardless of the geographical location and
cultural background of the employees. This is also the expectation of managers.
A slightly more careful look at the real situation gives a different view: some
processes are more culture sensitive than others, and the practices are “tuned” to
follow the rules of the culture. This paper opens up the discussion on the
cultural aspects in connection with software engineering, taking into account
especially the role of national cultures.

Keywords: Software Engineering, Cross-Cultural, Multicultural, Software Life
Cycle Processes, Culture Sensitivity, Globalization, Globalized Software
Development, Cultural Analysis.

1 Introduction

In our global and open world even the ICT (Information and Communication
Technology) industry is becoming more global. The distribution of work has already
been a part of daily activities in the software industry for a long time – mainly driven

292 H. Jaakkola

by the networking of collaborative software companies and also as a consequence of
company acquisitions and mergers. Software engineering is team-oriented work, in
which the role of successful communication is essential. In software engineering two
basic forms of communication can be recognized: interaction between people and
documentation. Interaction between people is essential in teams responsible for one
development phase and documentation is a means to transfer knowledge between
development phases. This is actually the situation only in traditional software
engineering made by local teams in one development site. In distributed work even a
part of human interaction is replaced by rules and documentation.

In distributed work effective communication is more challenging. Two types of
problems appear: how to support team-level communication, and how to manage the
assets developed. The latter problem is usually solved by tools related to version,
configuration, and asset management. The first problem is more difficult to solve.
Paasivaara et al. (2010, p. 3-29) have reported the results of their study concerning
communication in distributed (global) software companies. The following reasons are
seen as the source of problems:

• lack of informal communication,
• misunderstandings in communication,
• cultural problems (both at national and organizational level),
• limited traveling (to avoid costs),
• lack of trust between the remote sites,
• time given to problem solving is too short,
• differences in processes and working practices between the remote sites,
• differences in tools and communication technology,
• time-zone differences.

Some of the problems listed above are related to the distribution of work, but some
also to cultural differences in different parts of the organization or also inside one
organizational unit. Although it is important to understand the communication
problems related to the distributed characteristics of the work, in this paper we will
concentrate on the cultural aspects only. Paasivaara et al. (ibid.) also give a set of
guidelines and good practices for avoiding problems:

• the use of frequent deliveries,
• reduction of temporal distance,
• reduction of the number of sites,
• reduction of the cultural distance,
• the use of dedicated team members and creation of single teams,
• need to organize face-to-face communication opportunities,
• agreeing (tested) communication practices and tools,
• organizing progress monitoring and visibility across sites.

Special emphasis is given to the appropriate use of communication tools.
A typical way to manage the complexity related to software engineering is the use

of the process-oriented approach to recognize and specify the different activities

 Culture Sensitive Aspects in Software Engineering 293

needed in software development. The principles derived from the process models are
implemented in the quality management system of the organizations. One commonly
used process model is based on the work of the International Standardization
Organization (ISO). The standard ISO/IEC 12207 (2008) separates system and
software specific process areas and divides them into seven process groups. The
processes relevant to a company are specified and further - in the case of Quality
Management System (QMS) certification - assessed according to the selected
assessment standard / guide. One of the standards developed for this purpose is ISO
15504 (2006). The purpose of the assessment is to prove that the capability level
requirements specified by the standard are reached. The maturity of an organization is
based on the capability profile of the processes.

The basic idea behind the process-oriented approach is that all parts of the
organization will follow the same rules and implement the operations in the same
way. In global software organizations the situation, however, is not so simple.
Jaakkola et al. (2011) have reported the results of interviews with some software
companies that have globalized their operations. The companies reported the
similarity of their processes over the organization. Closer scrutiny of their activities,
however, shows that to some extent the processes have been adapted to take into
account the differences in the cultural background of the employees. The human
related (leadership) and organizational activities are typically adapted to take into
account the local circumstances and pure engineering related work follows the non-
adapted flow of operations. In addition, the role of documentation increases when the
opportunity for human-to-human communication is either missing or done over a
network. To simplify the former: the more demanding the implementation of (face-to-
face) communication, the more focus must be given to the exact specification in the
form of documentation. Additionally, the role of architectures is rising in importance
– a predefined architecture and architectural style supports independence between
development teams. The role of architectures in software engineering is discussed e.g.
in (Jaakkola and Thalheim 2011; 2010; 2005).

This paper reports the findings of the STEP project (Steps in Multi-Cultural Software
Business Globalization; 2009-2011). The results are published, in addition to several
journal and conference papers, in the form of three M.Sc. theses. Karttunen (2010) has
developed an assessment model to be used in analyzing the culture sensitivity of service
processes recognized by the ITIL framework. ITIL - The Information Technology
Infrastructure Library - is a set of concepts and practices for Information Technology
Services Management (see. e.g. itSMF International, 2011). The thesis by Wesslin
(2010) introduces a model to be used in competence transfer between global sites of an
organization. The thesis by Statkaityte (2011) analyzes the culture sensitivity of
software processes. In addition, the thesis gives an overview of differences between
selected cultures, especially from the software engineering point of view.

This paper opens up the discussion on the role of national cultures in software
engineering work. It is based on the findings of the STEP project and introduces a
model to be used in the analysis of the culture sensitivity of software engineering
related processes. Section 2 provides a short introduction to the process structure
related to software engineering. Section 3 introduces commonly used frameworks

294 H. Jaakkola

used in analyzing cultural differences. Section 4 combines the two former approaches
first in the form of related studies and then by integrating cultural aspects in software
process models. Section 5 introduces a tool for analyzing the culture sensitivity of
processes. Section 6 concludes the paper.

2 Software Engineering Process Framework

2.1 Maturity of Organizations and Capability of Processes

The first formal description developed to manage the complexity of software
engineering was published by William Royce (1970). His waterfall life cycle model
has been the root of several variations and applications (see e.g. Pfleeger and Atlee,
2006). The basic idea to divide the life cycle of software into consecutive steps made
development work visible and provided milestones to follow the realization of the
development schedule. Although the waterfall model was a simple formalization of
life cycle processes and did not recognize the role of supporting activities, it has also
played a significant role in the development of the process models currently used,
which in addition to pure engineering processes, also identify and classify a set of
related activities. The Capability and Maturity Model combines process structure with
the measurement framework used to analyze the capability of (relevant) processes in
the organization.

The basic concept of the Capability and Maturity Model (CMM) was introduced
first by Philip Crosby (1979) as a part of his quality management framework. The
principle was applied in software development by Watts Humphrey (1989). His
Capability Maturity Model for Software has been further improved and developed,
first by applying it in different sectors of software related activities, and later by
integrating the separate models in CMMI (Capability Maturity Model Integration).
The current version is CMMI V 1.3 (SEI 2011).

Simultaneously to CMMI work, the International Standardization Organization
(ISO) started a project to develop an international standard for process improvement
in the software industry. The Software Process Improvement and Capability
Determination project (SPICE) was organized as a part of ISO/IEC JTC1/SC7
activities and the result was published as a series of ISO 15504-x standards; see e.g.
(ISO/IEC, 2005). Nowadays CMMI and ISO 15504 are more or less unified. The
original process-oriented approach of SPICE was also adopted in CMMI in the form
of a continuous (process-oriented) model to complete the original organization-
oriented staged model.

The concepts “maturity” and “capability” indicate sophistication and good quality.
In the context of the model maturity is connected to the organization and capability to
the processes. The terms are also connected to each other: a precondition for a high
maturity level organization is that its (relevant) processes also possess high capability.
Both the continuous and staged approaches implement the idea of continuous
improvement in an organization – either targeted in the selected processes or in the
organization. Although we will not go into detail concerning capability / maturity
analysis itself, a short overview of the topic is worth giving. The capacities are
characterized by a five (six)-step scale (simplified definitions):

 Culture Sensitive Aspects in Software Engineering 295

1. Not executed (only in the continuous model)
2. Initial (Executed): Processes are unpredictable, poorly controlled, and reactive.

They are (typically) undocumented and in a state of dynamic change, tending to be
driven in an ad hoc, uncontrolled and reactive manner by users or events. This
provides a chaotic or unstable environment for the processes.

3. Managed (Repeatable): The process is characteristic of projects and is usually
reactive. Processes at this level are repeatable, possibly with consistent results.

4. Defined: The process is characteristic of an organization and is usually proactive.
Sets of defined and documented standard processes are established and subject to
some degree of improvement over time.

5. Quantitatively managed: The process is measured and controlled using process
metrics and management.

6. Optimizing: The focus is on process improvement - continually improving process
performance through both incremental and innovative changes.

The quality improvement path (from a lower to a higher level) is specified by the
model. Where lower levels indicate flexibility and variance, the higher levels indicate
formal behavior and stiffness. In relation to the topic of this paper – the flexibility of
processes to take cultural differences into account – the approach is opposite.
However, our aim is to find a solution that on the one hand fills the needs of
capability / maturity assessment and on the other hand also allows culture awareness
in high capability processes and mature organizations.

2.2 Software Life Cycle Processes

The process model groups the activities that may be performed during the life cycle of
a software system. The process life cycle model (Fig. 1) applied in this paper is
adapted from the ISO/IEC 15504 (2005) process assessment standard (adapted from
ISO/IEC 12207 – 2004). The CMMI process model was rejected as an alternative
because of its conciseness and poorer suitability for process-oriented analysis. The
newer ISO/IEC process model (ISO/IEC 12207: 2008) was rejected because the
assessment standard is not yet harmonized and is still based on the old version of
ISO/IEC 12207. Primary Life Cycle Processes consist of processes that serve primary
interest groups during the life cycle of the software. A primary interest group is one
that initiates or performs the development, operation, or maintenance of software
products, e.g. the acquirer, the supplier, the developer, the operator, and the
maintainer. Supporting Life Cycle processes support another process as an integral
part, each with a distinct purpose. A supporting process contributes to the success and
quality of the software project. A supporting process is employed and executed, as
needed, by another process. Organizational Life Cycle Processes are employed by an
organization to establish and implement an underlying structure needed by associated
life cycle processes. The organizational processes are not usually directly connected
to specific projects and contracts, but good project practices derived from projects are
adopted to improve the organization.

296 H. Jaakkola

Fig. 1. Life Cycle Processes (ISO 15504-5:2005)

Each process in ISO 12207 (2004) is described in terms of the following attributes:

• The title describes the scope of the process;
• The purpose describes the goals of performing the process;
• The outcomes express the observable results;
• The activities (base practices) are a list of actions that are used to achieve the

outcomes;
• The tasks are requirements, recommendations, or permissible actions intended to

support the achievement of the outcomes.

 Culture Sensitive Aspects in Software Engineering 297

In addition, an essential part of the process description comprises the work products,
which have either the role of input or output (Fig. 2).

Fig. 2. The key elements of a process

Process metrics are used for two purposes: (1) to measure the properties of the
process to allow control as feedback to guide further steps and activities in the
process; (2) to give information about the capability of the process for process
assessment.

3 Frameworks for Cultural Analysis

The role of cultures in different contexts has been the topic of several studies. Two
quite widely used frameworks have been adopted for wide use. The framework of
Geert Hofstede consists of six cultural dimensions differing between cultures
(Hofstede 2005; 2010; 2011). The (relative) score value of each dimension considers
relations between people, definition of the self and others, acceptability of selected
management practices and organizational structure, values, orientation towards risks,
and time span in relation to work. The Lewis Model of Culture (Lewis 1999; Lewis
2011) focuses on communication and the interaction skills of people. The basic
profiles are linear active, multi-active, and reactive. National cultures are located in
the continuums of a triangle with the basic profiles in the corners. The cultures differ
from each other in values and core beliefs, concept of time, communication patterns,
listening habits, leadership style, self-image, motivation factors, manners and taboos,
and organizing their work.

Hofstede’s and Lewis’ models can be seen as a layered whole. The former
represents national culture based basic behavior and the latter the behavioral issues of
an individual. The models provide a macro-level framework for studying cultural
factors. However, in modeling, designing, and implementing cross-cultural
knowledge in software engineering, a more detailed contextual analysis is needed i.e.
application, situational, task- and user-specific analysis. A short overview of the
models is given below.

Process: activitiesInput Output

Metrics

Purpose
Goal

Resources

Outcomes

Control

298 H. Jaakkola

Hofstede’s framework of national cultures

Hofstede’s (Hofstede and Hofstede 2005; Hofstede et al., 2010) framework consists
of six dimensions having relative score values. Four of them belong to the original
model:
• Individualism / Collectivism (IDV) describes the extent to which a society

emphasizes the individual or the group. Individualistic societies encourage their
members to be independent and look out for themselves; collectivistic societies
emphasize the group’s responsibility for each individual.

• Power distance (PDI) describes the extent to which a society accepts that power
is distributed unequally. In high PDI societies individuals prefer little
consultation between superiors and subordinates and in low PDI societies
individuals prefer consultative styles of leadership.

• Masculinity/Femininity (MAS) refers to the values more likely to be held in a
society. Masculine societies are characterized by an emphasis on money and
things. Feminine cultures are characterized by concerns for relationships,
nurturing, and quality of life.

• Uncertainty avoidance (UAI) refers to the extent that individuals in a culture are
comfortable (or uncomfortable) with unstructured situations. High UAI societies
prefer stability, structure, and precise managerial direction, and in low UAI
societies people accept ambiguity, unstructured situations, and broad managerial
guidance to a greater extent.

The values of these four indices are available for all countries investigated by
Hofstede. In later studies two new indices were added – LTO first, and WVS in the
latest book of Hofstede et al. (2010).

• Long-term/Short-term orientation (LTO) refers to the extent to which a culture
programs its members to accept delayed gratification of their material, social, and
emotional needs. Business people in long-term oriented cultures are accustomed
to working toward building strong positions in their markets and do not expect
immediate results. In short-term oriented cultures, the “bottom line” (the results
of the past month, quarter, or year) is a major concern. Control systems focus on
it and managers are constantly judged by it.

• Well-being versus Survival (WVS) indicates the acceptance of indulgence
connected to enjoyable life and happiness. Restrained cultures emphasize
abstaining from indulgence and reserved behavior, whereas indulgent cultures are
permissive. A high WVS score is associated with the combination of high IDV
and low MAS.

Although all dimensions are generalizations and individuals may vary from their
society’s descriptors, the values are worth taking into account when organizing work
in a distributed multicultural context. A very generalized conclusion of the studies of
the author and his research group (Jaakkola 2009; Jaakkola and Heimbürger 2009;
Jaakkola et al. 2010; 2011) indicate that multicultural teams with a large difference in
index values are challenging to manage and that special emphasis must be given to
leadership practices and organizing the work.

 Culture Sensitive Aspects in Software Engineering 299

Lewis’ model of culture

The Lewis Model of Culture focuses on communication and interaction skills (Lewis
1999; 2011). Cultural behavior is not accidental, but the end product of millennia of
collected wisdom, filtered and passed down through hundreds of generations and
translated into hardened, core beliefs, values, notions, and persistent action patterns.
Fig. 3 points out the key structure behind the model.

Fig. 3. Lewis’ model of culture (original Lewis (2000); modified by Statkaityte, (2011) and the
author)

Cultures are classified in three distinctive categories: multi-active, linear-active,
and reactive. The corresponding classification in information gathering are data-
oriented, dialogue-oriented, and listeners. Data-oriented and dialogue-oriented are
more explicit terms for low-context and high-context cultures, and a third group,
”listening culture” has been added to describe reactive Asians, who embrace
information technology but are also effective networkers.

People from a multi-active culture are typically people-oriented, talkative, and
emphasize interpersonal relationships (Slavs, Africans, Latinos). People of this profile
talk most of the time and do several things at once, plans are outlines, they are
emotional, polite and display their feelings, they interrupt often and put feelings
before facts;, they are people-oriented, their truth is flexible; and they always have
good excuses/explanations?.

People from reactive cultures are typically introverted, respect-oriented, and
emphasize listening (Chinese, Koreans, Vietnamese). People in reactive cultures are
listeners and able to react to their partner’s actions, they look at general principles,

LINEAR
ACTIVE

REACTIVE

MULTI
ACTIVE

data-
oriented

dialogue
oriented

listeners

warm, emotional,
loquacious,

impulsive

courteous, amiable,
accommodating, compromiser,

good listener

cool, factual,
decisive planner

300 H. Jaakkola

they are indirect and conceal feelings, losing face is not acceptable and they never
confront, they are diplomatic (over truth), very people-oriented and never interrupt,
statements are promises for them.

People from linear-active cultures are typically task-oriented, highly organized,
and emphasize planning (Scandinavians, Australians, Americans). They talk as
needed, do one thing at a time, plan their activities step by step, they are polite but
direct and confront with logic, they dislike losing face, they are job-oriented and
prefer truth before diplomacy.

Cultural analysis of some countries

In our project a set of six globally operating software companies were investigated to
obtain knowledge and understanding of their globalization practices. The results are
briefly introduced in Section 4 of this paper. In this context we make a cultural
analysis of the target countries of the global activities using the framework models
above. The countries under discussion are Finland, Belarus, China, Czech Republic,
Hungary, India, Romania, Russia, and Sweden. A detailed report of the comparison is
available in (Jaakkola et al, 2011).

The globalization decision in most of the cases was based on the price of work –
purely on economic factors. Secondary goals were the availability of special skills or
nearness of new clients or new markets. Comparison of the labor price between
Finland (100) and some selected countries is introduced in Table 1.

Table 1. Price of work relative to Finland (100)

Belarus China Czech

Republic

Hungary India Romania Russia Sweden USA

30 40-50 50-60* 50-80* 30-35 30 30-40 120* 280**

The prices in the table are based on the data given by the case organization of our

study when available. The numbers marked with * is estimated by the author on public
statistics. The USA value (marked with **) represents the value in an expert
organization on the top of organization pyramid. To get full economic benefit on a
global site the indirect costs of the cheaper workforce should not exceed the cost of
local (Finnish) work. In this context we do not go into a deeper analysis of the
economic aspects of globalization.

According to the Hofstede model, the countries concerned get the index score as
listed in Table 2. As seen in the table, the differences between countries are
remarkable. The vicinity (nearness) of indices indicates a good fit from the
collaboration point of view and a big difference indicates the opposite situation. The
simplified conclusion is based on the expectation that people who understand the
culture of others are also more suitable for distributed collaboration. A detailed
comparison can be made by analyzing Table 1. The nearness of the scores compared
to Finland can be evaluated by counting how many (of the nine) countries are on the
same side of the world average as Finland. This comparison gives the following

results: PDI 3/9, IDV 4/9,
scores. It is also notable th
reasonably big. The interpre
that the scores are relative
cultural distance of two c
cultural properties (in this
Finland is bolded and under

Table 2. Sc

(Belarus is derived from

Power distance (PDI) dif

structure: In India, two m
hierarchy beats democracy
basic behavior. Individualis
in less individualistic cultu
Feministic cultures (low M
should be taken into accou
Uncertainty avoidance (UA
in Eastern cultures; giving
and low UAI cultures. Hi
processes supported by com

Fig. 4 shows the positio
seen in the figure, only Swe
Cheap labor countries, pop
cultural pattern that is ful
North European one of
management of the organiz
the personnel.

Culture Sensitive Aspects in Software Engineering

MAS 4/9, UAI 4/9. LTO does not have a full coverage
at the distance between minimum and maximum value
etation above is heavily simplified: it is important to no

e and not directly comparable based on their values. T
cultures would be defined as the difference of selec
 case index values). The biggest (cultural) difference
rlined in the table.

cores of Hofstede indices in selected countries

the profile of Russia; WVS scores are not available)

fferences in the table indicate differences in organizatio
managers are needed to manage one expert, in Ru
, etc. Differences in IDV indicate differences in peop
stic cultures are able to separate work and leisure time,
ures, the work society also follows into the leisure ti

MAS value) prefer family and leisure time to work. T
unt when motivation factors related to work are discuss
AI) is typical for cultures with a fear of losing face – typ

feedback and leading an organization is different in h
igh PDI cultures tend to work according to pre-defi

mplicated documentation (Jaakkola et al., 2011).
ons of selected countries according to the Lewis model.
eden is near Finland in the same continuum of the trian
pular targets in globalization (India and Russia), follow
lly based on different basic factors than the Nordic

Finnish. This creates challenges in organizing
zation and in embedding good leadership practices amo

301

e of
es is
tice
The
cted
e to

onal
ssia

ple’s
and
me.

This
sed.
ical

high
ined

. As
gle.
w a
and
the

ong

302 H. Jaakkola

Fig. 4. Selected countries classified according to the Lewis model (Lewis, 2011; modified)

Project managers and team members in linear-active cultures (like Finland)
generally demonstrate task orientation. They look for technical competence, place
facts before sentiment, logic before emotion; they are deal-orientated, focusing their
own attention and that of their staff/team/individuals on immediate achievements and
results. They are orderly, stick to agendas and inspire staff with their careful planning.
Multi-active project managers and team members are much more extrovert, rely on
their eloquence and ability to persuade and use human force as an inspirational factor.
They often complete human transactions emotionally, investing their time in
developing the contact to the limit. Such project managers and team members are
great networkers, working according to people-time rather than clock-time. Project
managers and team members in reactive cultures are equally people-oriented but
dominate with knowledge, patience, and quiet control. They display modesty and
courtesy, despite their accepted seniority. They create a harmonious atmosphere for
teamwork. Subtle body language replaces excessive words. They know their
companies well (having spent years working in various departments), giving them
balance and the ability to react to a network of pressures. They are also paternalistic
(Jaakkola and Heimbürger, 2010).

The discussion above would be shortly concluded by introducing the concept
cultural distance of countries. In using Hofstede’s model it means the difference in
score values between the countries and in Lewis’ model the distance in the triangle;
the Lewis’ model also indicates the importance to understand the driving forces in
behavioral pattern in the terms related to the corners of the triangle; the distance is
interpreted to bigger, if the countries are located in different sides (behind the
corner”) of the triangle.

LINEAR
ACTIVE REACTIVE

MULTI
ACTIVE

India

China

Hispanic America

Russia,

Hungary,

Czech Republic

Germany

Sweden Finland

 Culture Sensitive Aspects in Software Engineering 303

4 Culture Sensitivity in Software Engineering

4.1 Related Studies

There is a lack of objective studies of the success factors of globalization in the SE
industry. In connection with our research project, the following are recommended for
further reading. The article of Walsham (2002) provides a theoretical framework for
cross-cultural software production and use. The paper reports two case studies, one
from Jamaica and one from India. The framework is based on a structurational
analysis method, which is compared to Hofstede’s model and the findings of two
offshoring cases.

In their article, Siakas et al. (1999) deal with attitudes to software quality and Total
Quality Management (TQM) in the organization. The result is a framework that can
be applied for further analysis. It shows the differences in attitude to quality issues in
software engineering. The framework applied is Hofstede’s five-dimension model.

The same framework is also applied by Abraham (2009) in his conference paper
analyzing cultural differences as a part of software life cycle management. Different
practices and attitudes in software life cycle management and content of the life
cycles are reported. The main findings focus on contracting, organizing the life cycle
phases, attitude to working time, meeting practices, teamwork, feedback practices,
expectations in communication, and risk management.

The conference paper of Hawthorne and Perry (2005) opens up the discussion on
SE education to meet the needs of distributed and multicultural organizations.
Requirements for SE education are discussed; the role of the architecture and an
appropriate modular structure for software are highlighted to resolve the problems
encountered.

One of the reports providing very concrete results of SE outsourcing has been
published by Krishna and Walsham (2004). They report experiences in outsourced
software development in India, Japan and in some European countries by analyzing
real outsourcing cases. Differences in agreement culture, level of expected
documentation and in the mental mode of the cultures (attitude to bureaucracy,
authorities, the role of values and norms etc.) are recognized as sources of problems.
The problems arising inside cross-cultural teams are different from those arising
inside teams representing the same nationalities / cultures / language groups. The
beneficial use of “bridging teams” was also seen as important in unifying the
organizational culture in the long term.

The conference paper by Borchers (2003) analyzes software development in three
cultures, Japanese, Indian, and American. The analysis applies Hofstede’s model,
focusing on PDI, UAI, and IDV. The differences recognized are in attitudes to work,
the role of software architecture, division of work and product management.

A paper by Simcock (1998) reports a case of the cultural mix in SE design teams as
a part of a project included in a university-level IT curriculum. The teams represented
the cultural mix in the role of SE design teams. The members of the teams were
undergraduates studying IT. The main finding is that in teams, the cultural strengths
of some members support the weaknesses of others.

304 H. Jaakkola

The articles briefly reviewed above do not answer the question of how to take
cultural issues into account in software life cycle processes. However, they point out
factors that would be significant for detailed study in the analysis of cultural
sensitivity.

4.2 Steps in Multi-Cultural Software Business Globalization

In the introduction of this paper we referred to the STEP project (Steps in Multi-
Cultural Software Business Globalization; 2009-2011) and some of the results
produced were also listed. In addition to the theses (Karttunen, 2010; Wesslin, 2010;
Statkaityte, 2011), several conference and journal papers have been published. A
short synthesis of these is worth giving.

One paper (Jaakkola, 2009) introduced a five-factor model specifying five
viewpoints to globalization in the software industry: organizational issues (O),
frameworks of culture (C), direction of globalization (D), ownership (proprietor) of
the global organization (P), and the artifact produced (A). In addition, a literature
review – i.e. the results of available knowledge mining – is included in the paper.

The paper by Jaakkola and Heimbürger (2009) includes a deeper analysis of the
factors introduced in (Jaakkola, 2009); the approach selected is based on the
characteristics of the work. The concept of DCCI work (Distributed, Cross-cultural,
Collaborative, Intellectual) is introduced. The D, C, and P factors of the five-factor
model are discussed in detail.

Jaakkola et al.(2009) deals with the learning perspective of globalization.
Globalization is seen as a context and the global organization is analyzed as a learning
organization according to Nonaka’s SECI model. The results from the university
education point of view are deduced by finding answers to the question “How should
globalization be taken into account in adaptive university curriculum content?” The
term Context Aware Software Engineering (CASE) is used to cover the key results and
specify the approach in development work.

Another paper (Jaakkola, Heimbürger et al., 2010) continues the discussion on
organizational level adaptation in a multicultural context. At the beginning, the
essential terminology related to culture and globalization is discussed. A three-layer
model – Process (P), Knowledge context (K), Multicultural Context (M) – is used as a
framework to structure the complexity. The organization is seen as a learning
organization that must be able to adapt in different situations at all three levels
(PKM). The knowledge creation model is applied in selected case situations and
cultures. In addition, the different levels and forms of problems related to global
organization are discussed.

The theme “learning organization” is also discussed by Jaakkola et al. (2011) in
their journal paper. The globalization GRID – different organizational forms of
globalization - is revisited (see Jaakkola, 2009) as well as different dimensions of
culture. The main contribution is included in the analysis of six company cases
representing different forms of globalization. The main findings are categorized and
the globalization path is captured in the form of a Globalization Maturity Model
(GMM). The model introduces the maturity of the organization from the globalization
point of view taking various aspects into account.

 Culture Sensitive Aspects in Software Engineering 305

The productivity perspective in global software engineering (GSE) is analyzed by
Aramo-Immonen, Jaakkola et al. (2011). The economic consequences of globalization
are not well managed by companies; hidden costs and lower productivity are often
forgotten in calculations when the globalization decision is made. The paper analyzes
multicultural ICT companies from their productivity perspective through the lens of
cultural differences. The paper reports findings based on general cultural studies and
reported experiences (the same cases as in Jaakkola et al, 2011) that seem to affect
productivity in the software industry.

One of the most difficult problems in global organizations is trust creation. This
view of global software engineering is taken by Aramo-Immonen, Jaakkola et al.
(2011a). Trust building is also seen as one of the key problems in globally operated
organizations by Paasivaara et al. (2010). Their paper explores the trust-building
processes in global SE from a cultural perspective. Staff from five large multinational
SE companies were interviewed (the same as in the other papers introduced). In the
conceptual part of the article, firstly, the domain of SE is introduced, secondly, there
is a discussion on the concept of trust and trust-building processes, and thirdly,
cultural dimensions affecting trust-building processes are examined. The findings
from the case companies are discussed at the end of the paper.

A summary, mainly derived from (Jaakkola 2009; Jaakkola and Heimbürger 2009;
Jaakkola et al. 2011) the following aspects are worth of noticing:

• Salary benefits in some evaluations are expected to be a temporary phenomenon.
There is an expectation that salaries in lower-cost countries will rise faster than
those in high-cost countries; filling the gap will not take more than 10 years. The
experts’ (interviewees of this study) opinion is different – they expect it to take
more than one generation.

• The term “emerging culture” was used to indicate a country or culture in which
the gap between an attainable level and the current level of welfare is larger than
that in “mature cultures” and countries. The motivating factors in these country
categories are different.

• The trend in Finnish-owned overseas sites is moving from a Resource pool
towards a Competence Center, from fragmented responsibilities towards
comprehensive responsibilities, from separate responsibilities towards a role in
the global value chain. The current situation seems to support the hypothesis that
work division is based on front- and back-end processes, i.e. the client-oriented
part of the work is still being done in Finland, and the technical work according
to detailed specifications is being carried out at overseas sites. The trends
described are used as a basis for a globalization maturity model (GMM), which
indicates the state of globalization and activities expected to reach the next level
in maturity (analogous to the CMMI of software processes).

• Religion has an important role in the behavior of societies – religion is also one
of the factors indicating ranks in Hofstede’s indices.

• Decision-making in different cultures differs a lot. A high PDI indicates
hierarchical decision-making. In business activities this means that agreements
cannot be finalized in business meetings. There are also differences in the role of
the individual person and organization in business transactions – sometimes

306 H. Jaakkola

agreements are made between people, sometimes between organizations, and
sometimes as a combination.

• Joint features in the cases introduced are the role of universities, and the
importance of local ”consultation” to provide contacts to and knowledge of the
local administration. In some cases “strategic alliances” between the foreign
company and local organizations support success in globalization. Local HR
practices and recruiting channels are needed.

• Language problems seem to be the main source of misunderstanding. Special
attention to language problems should be given in countries with a strong cultural
identity, like Germany and France. Use of common tools and semi-formal
specifications support language-free mutual understanding.

• The role of bridgehead teams (teams piloting multicultural practices) is important
in cultural adaptation. Formal and informal forums for experience exchange are
also positive indicators of success.

These results are generalized from the interviews at the six case companies. The
companies represent different categories in our globalization GRID (Jaakkola, 2009)
and the results are expected to cover a reasonably wide variety of globalization
situations. Adding new companies does not seem to bring any significant new aspects
to the discussion.

4.3 Culture Sensitivity of Software Life Cycle Processes – Standardization
View

As discussed earlier (Section 2) in this paper, the purpose of process models adopted
to guide the organization’s software development is to unify the flow and content of
the activities implemented. Based on our findings in the multicultural and global
software engineering context, unification does not fit the needs of reality. There are
several culture-sensitive processes that must be adaptable and “fine-tuned” in the
context of usage. Typical processes of this kind include communication and people-
oriented activities. Critical points are also transmission points where control of an
asset is transferred from one part of the organization to another. Applications of
process models in organizations are based on standards – such as ISO/IEC 15504
(2005) and SEI (2011).

One of the first published proposals for adding culture sensitivity to software
engineering related process models was made by Biro et al. (2002). They propose a
third, cultural, dimension of CMMI/SPICE architecture, in addition to the process and
capability dimensions of the existing models (Fig. 5). The authors considered the fact
that, despite globalization, there is a considerable difference in local outlook and
expectations among global team members. Biro et al. explored the differences in
cultural value systems from the software process perspective. In order to characterize
different value systems, Hofstede’s work was used as a basis. The authors extended
the CMMI model with a third cultural dimension and argued that the extension is
valid because national culture influences the effectiveness of various practices.

 Culture Sensitive Aspects in Software Engineering 307

Fig. 5. CMMI extension (Biro et al. 2002)

The maturity levels proposed include:

• level 0 (closed): no differences in cultural value systems are allowed;
• level 1 (open): open enough to allow differences in cultural value systems;
• level 2 (model based): consideration of cultural differences is based on a

scientifically established model;
• level 3 (comprehensive): the cultural model is comprehensively applied to all

specific and generic practices;
• level 4 (tailored): applying the cultural model is based on quantitatively managed

business needs;
• level 5 (competency driven): the cultural model is refined, extended, or fully

changed on the basis of competency acquired through quantitatively managed
business needs.

As a reference, the same structure was also implemented by Jaakkola et al. (2011) in a
wider interpretation (different scopes).

Richardson et al. (2010) observed problems with CMMI and ISO/IEC 15504 in the
global environment, even though these process improvement models work well in
local environments. The authors identified twenty-five factors to be taken into
account when setting up virtual global teams. Furthermore, they developed a software
process area, called Global Teaming (GT), similar to the structure of CMMI, with
specific goals and sub-practices. These explicitly defined processes can be used as a
support mechanism for GSE implementation (Statkaityte, 2011).

Cultural factors are particularly important in software development because they
affect global virtual teams (Huang and Trauth, 2007). Processes in software
development are complexly interdependent and iterative. Software products are less
tangible, and knowledge involved in software development is very tacit and fast-
changing in nature. The uncertainty in the software development process requires a lot
of communication, both formal and informal (ad hoc). Many activities addressed in
software engineering processes are culturally sensitive, i.e. they are carried out by
individuals that come from different cultural backgrounds. Example activities that can

308 H. Jaakkola

be found in ISO/IEC 15504 (2005), such as joint activities between customer and
supplier, change requests, problem resolution, reporting errors, testing, code reviews,
audits, configuration management, team management, risk identification, giving
feedback, identifying responsibilities etc. can be carried out in different ways
depending on the cultural context. Software development processes involve not only
technical skills, but also soft skills through the human resources that perform those
processes. Denise (2011) proposes that the complex human interaction in software
engineering projects be expressed using the Triple C Model: Communication
(information exchange), Cooperation (inside the group), and Coordination
(efficiency). Statkaityte (2011) has integrated the model in a modified ISO/IEC 12207
(2008) process model (Fig. 6) to introduce the culture-sensitive features in software
engineering related processes.

Fig. 6. CCC model integrated in ISO/IEC 12207(2008) process model (Statkaityte, 2011)

Software development involves a lot of collaborating activities, which rely on the
effectiveness and quality of communication channels, because miscommunication
between client and vendor might cause the failure of the development initiative.
Additionally, social and inter-personal aspects among software team members play a
major role in software development. In other words communication in software
projects is about exchanging messages and negotiating; coordination is about
managing people, their activities and resources; cooperation is about working together
in a shared workspace. These activities are also the main source of problems in global
organizations.

 Culture Sensitive Aspects in Software Engineering 309

A process is a set of activities that transform inputs into outputs. Cultural
sensitivity in SE processes is understanding the ways in which process outcomes or
internal process functions change when an SE process is executed by people coming
from different cultural backgrounds. Software engineering standards define What
needs to be done or achieved, the interpretation of How it could be achieved depends
on the management layer and the people that execute the processes. This is where
they uniquely shape the outcomes of the processes due to their different ways of
thinking and doing things (Statkaityte 2011).

5 The CSAM Analysis Model

As a conclusion and practical result of our work a Cultural Sensitivity Assessment
Model (CSAM) is introduced. The ideas introduced in earlier sections of this paper
are built into the model. It can be used

• as a tool to improve the processes of an organization to take into account the
cultural aspects in the processes of the organization;

• as a framework to understand the importance of the cultural aspects related to the
processes (results of the analysis).

The method itself is simple: it integrates the process map of a software organization
with Hofstede’s cultural dimensions. Each process is assessed to take into account the
cultural aspects (see sub-section 4.3). The theoretical framework of the tool has been
explained in earlier sections of this paper.

Table 3. Results of culture sensitivity analysis of selected processes using the CSAM method

Table 3 illustrates the results of the sensitivity assessment made by Statkaityte

(2011). The analysis (in this example) is focused on the ENG process group of the
process map used by ISO/IEC 15504 (2005) (adapted from ISO/IEC 12207, 2004).

310 H. Jaakkola

The analysis method includes a questionnaire that introduces the concepts related to
the process structure of an organization, the capability levels of processes, and the
cultural dimensions measured. The interviewees are asked to give an expert opinion
on the culture sensitivity (rating 1-5) of the processes and the elements of culture
sensitivity using Hofstede’s dimensions. The results are interpreted by the reviewer
and illustrated in table format (as in Table 3). For example, in this evaluation
Requirements Elicitation is recognized as very culture-sensitive and the sensitivity is
related to all Hofstede’s dimensions. The outcomes of this process determine the
success or failure of the software project. The elicitation process requires a great deal
of communication between vendor and customer. This is also the process where
knowing the cultural differences between vendor and customer gives a competitive
advantage. The significance of Hofstede’s indices related to the process assessed is
marked by (x). The results would be even more informative if the strength
(importance) of the index could be categorized. An illustrative solution would be the
use of colors: red=very important, yellow=worth noting, green=some importance,
white=not worth taking into account.

A high Power Distance Index (PDI) contributes towards hierarchical and
bureaucratic forms of decision-making and communication processes. For instance, in
Thailand decision-making takes longer, as every stage has to be reported to
management for final decisions. The person’s position in the hierarchy might appear
to be more important than technical issues.

UAI deals with tolerance for ambiguity and uncertainty. Indians (low UAI) work
with the understanding that there will be frequent requirement changes. They also
accept ambiguous statements and implicit understanding of concepts. Japanese (high
UAI), on the other hand, being very structured and organized teams, finalize the
requirements only after a longer and thorough requirements analysis phase.

Individualism vs. collectivism (IDV) could be illustrated in customer-vendor
relationships. People from collectivistic cultures (India, China) want to build strong
social relationships. People that come from individualistic cultures (USA) might see it
as too much time spent on building unnecessary relationships, and collectivistic
people might think that individualistic people do not wish to settle with the group.

The Long-Term Orientation versus Short-Term Orientation (LTO) dimension is
about investing far into the future as opposed to the goal of achieving quick results.
One theoretical conflict that could arise is if the client is from a short-term oriented
culture and the vendor comes from a long-term oriented culture. Whereas the client
would like to see some results very fast, the vendor might feel that the deadlines are
too tight, because the vendor would like to take more time for understanding, agreeing
and prioritizing user requirements rather than starting the coding right away.

The results in Table 3 are based on the interviews in our case companies and
validated with them. The thesis of Statkaityte (2011) cover all process groups of the
process model framework. On a general level, the results are suggestive and based on
the heuristic / subjective opinions of the interviewer (when the results are interpreted)
and the interviewee (when interviewed). These could also be extended with
the elements from the related studies and other company cases. It is important that the
basic concepts are clear, well specified and understood. It is possible to include the

 Culture Sensitive Aspects in Software Engineering 311

analysis in a traditional process assessment, which is also based on assessment
questionnaires applied at different capability levels.

6 Conclusions and Further Work

6.1 Summary of the Results

The purpose of the paper is to introduce a means for a better understanding of the role
of cultural differences in multicultural software development work. A typical
approach in software companies is to follow carefully the processes defined by their
quality management system. The paradox is that the higher the maturity of the
organization, the more unified its processes throughout the organization. This
approach is effective in the case of homogenous organizations. In the case of
heterogeneous organizations problems may occur; one of the sources of the problems
may be the cultural differences between the employees.

Communication-related issues are seen as one of the most difficult to address in an
organization. In distributed organizations, face-to-face communication is difficult.
The level of difficulty increases as the geographical distance grows; quite often
additional elements are the different time zones and differences in cultural
background. A lot of problems may be avoided by using well selected and widely
adopted tools; there is no way to dissipate the cultural background, not even when the
person is moved from one global unit of the organization to the same location as other
team members. Culture is partially built in the genes, partially learned and partially
adopted and adapted by the individual (see the writings of Hofstede and Lewis
referred to in this paper in several contexts). In the case where the organization wants
to be effective and (1) to avoid the problems caused by cultural collisions and (2) turn
the cultural differences into a benefit, it must recognize the source of the problems.

Three sections after the introduction of this paper provide the cornerstones to the
last section: an introduction to the software life cycle process structure and to
frameworks of cultural analysis. Section 4 introduced the related work available in the
literature and a synthesis of the research work made by the author and his research
group on this topic. These results have been further “cultivated” to find an analysis
tool that is useful in analyzing the culture sensitivity of software processes in Section
5. The work is still ongoing and this paper is based on a conceptual introduction
rather than a presentation of crystallized and final results. Separate papers have
approached the same problem from different viewpoints; synthesis of these is a part of
our future work.

6.2 Future Work – An Alternative Approach

In our studies we have approached the problems related to the multicultural
organizations from case and organizational point of view. On messages built-in into
this paper is to notice the importance of communication between the members of the
teams. The source of problems is mainly in communication; in homogenous teams the
probability of misunderstanding is lower than in heterogeneous ones. Communication

312 H. Jaakkola

is based on concepts that are communicated by speaking, using written text, using
semiformal specifications, etc.

One interesting and easy approach to implementing a simple sensitivity analysis
related to software engineering processes is to use a lexical analysis of the process
descriptions. This would be used either as a rough analysis tool (easy to automate) or
to complete the interview-based results either as a pre-study or as a complementary
study. ISO/IEC 15504 (2005) specifies the process elements as explained in Section 2
of this paper: Purpose, Outcomes, Base Practices, Work Products. The purpose of
Requirements Elicitation process is defined as follows:

The Purpose of Requirements Elicitation is to gather, process, and track evolving customer
needs and requirements throughout the life of the product and/or service so as to establish a
requirements baseline that serves as the basis for defining the required work products.
Requirements Elicitation may be performed by the acquirer or the developer of the system.

The Outcomes are defined: As a result of successful implementation of Requirements
Elicitation:
1) continuing communication with the customer is established;
2) agreed customer requirements are defined and baselined;
3) a change mechanism is established to evaluate and incorporate changes to customer

requirements in the baselined requirements based on changing customer needs;
4) a mechanism is established for the continuous monitoring of customer needs;
5) a mechanism is established to ensure that the customers can easily determine the status

and disposition of their requests; and
6) enhancements arising from changing technology and customer needs are identified and

their impact managed.

Base practices that advance satisfaction of the outcomes are:
BP1- Obtain customer requirements and requests. Obtain and define customer requirements

and requests through direct and continuous solicitation of customer and user input.
BP2- Understand customer expectations. Ensure that both supplier and customer

understand each requirement in the same way. Review with customers their
requirements and requests to better understand their needs and expectations and to
check the feasibility and appropriateness of their requirements.

BP3- Agree on requirements. Obtain agreement across teams on the customer requirements,
obtaining the appropriate sign-offs by representatives of all teams and other parties
contractually bound to work to these requirements.

BP4- Establish customer requirements baseline. Formalize the customer requirements and
establish as a baseline for project use and monitoring against customer needs.

BP5- Manage customer requirements changes. Manage all changes made to the customer
requirements against the customer requirements baseline to ensure enhancements
resulting from changing technology and customer needs are identified and that those
who are affected by the changes are able to assess the impact and risks and initiate
appropriate change control and risk mitigation actions.

BP6- Establish a customer query mechanism. Provide a means by which the customer can
be aware of the status and disposition of their requirements changes.

 Culture Sensitive Aspects in Software Engineering 313

The text above includes the definition of the Requirements Elicitation process. The
underlined words refer to communication and team-oriented activities, in which the
role of human-to-human interaction is essential and also a typical source of problems.
The words in italics refer to the activities that are managed by predefined practices
and / or tools. The latter are not culture-sensitive components in the process.

This “method” is not systematically tested and the results are not. Like the results
of CSAM analysis, even these results may be interpreted to include a lot of subjective
elements. Its objectivity may be improved by including more context related
“intelligence” in the analysis – this would be also a task for further investigation.

References

1. Abraham, L.R.: Cultural Differences in Software Engineering. In: Proceedings of the
Second Annual Conference on India Software Engineering, Pune, India, pp. 95–100 (2009)

2. Aramo-Immonen, H., Jaakkola, H., Keto, H.: Multicultural software Development: The
Productivity Perspective. International Journal of Information Technology Project
Management (IJITPM) 2(1), 19–36 (2011)

3. Aramo-Immonen, H., Jaakkola, H., Linna, P.: Trust Creation in Multi-cultural
organisations. Journal of Global Information Technology Management (2011)

4. Biro, M., Messnarz, R., Davison, A.G.: The Impact of National Cultural Factors on the
Effectiveness of Process Improvement methods: The Third Dimension. ASQ 4(4) (2002),
http://asq.org/pub/sqp/past/vol4_issue4/biro.html

5. Borcheres, G.: The Software Engineering Impacts of Cultural Factors on Multi-cultural
Software Development Teams. In: Proceedings of the 25th International Conference on
Software Engineering (ICSE 2003), pp. 540–545. IEEE (2003)

6. Crosby, P.B.: Quality is Free. McGraw Hill, New York (1979)
7. Denise, L.: Collaboration vs. C-Three (Cooperation, Coordination, and Communication).

The Rensselaerville Institute 7,3 (2011),
http://www.ride.ri.gov/adulteducation/Documents/Tri%20part%2
01/Collaboration%20vs.%20the%203c%27s.pdf

8. Hawthorne, M.J., Perry, D.E.: Software Engineering Education in the Era of Outsourcing,
Distributed Development, and Open Source Software: Challenges and Opportunities. In:
Inverardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, pp. 166–185. Springer,
Heidelberg (2006)

9. Hofstede, G., Hofstede, G.J.: Cultures and Organizations - Software of the Mind:
Intercultural Cooperation and Its Importance for Survival, 1st edn. McGraw-Hill, New
York (2005)

10. Hofstede, G., Hofstede, G.J., Minkov, M.: Cultures and Organizations- Software of the
Mind: Intercultural Cooperation and Its Importance for Survival, 3rd edn. McGraw-Hill,
New York (2010)

11. Hofstede, G.: Cultural Dimensions. Geert Hofstede’sresource pages of cultures (2011),
http://www.geert-hofstede.com

12. Huang, H., Trauth, E.: Cultural Influences and Globally Distributed Information Systems
Development: Experiences from Chinese IT Professionals. ACM portal (2007),
http://portal.acm.org/citation.cfm?id=1235008

13. Humphrey, W.: Managing the Software Process. Addison Wesley (1989)

314 H. Jaakkola

14. ISO/IEC 12207/Amd2:2004: Systems and Software Engineering - Software life cycle
processes - Amendment 2 (2004)

15. ISO/IEC 12207: Systems and software engineering - Software life cycle processes. ISO
(2008)

16. ISO/IEC 15504-5: Information technology – Process Assessment – Part 5: An exemplar
Process Assessment Model. ISO (2005)

17. itSMFInternational:The IT Service Management Forum (2011),
http://www.itsmfi.org/

18. Jaakkola, H.: Towards a Globalized Software Industry. Acta Polytechnica Hungarica 6(5),
69–84 (2009)

19. Jaakkola, H., Heimbürger, A., Henno, J.: The Roles of Knowledge and Context in Context-
Aware Software Engineering - in Terms of Education and Communication. In: Cicin-Sain,
M., Prstacic, I.T., Sluganovic, I., Uroda, I. (eds.) MIPRO Conference, pp. 224–230.
MIPRO and IEEE, Opatija, Croatia (2009)

20. Jaakkola, H., Heimbürger, A.: Cross-Cultural Software Engineering. Informatologia 42(4),
256–264 (2009)

21. Jaakkola, H., Heimbürger, A., Linna, P.: Knowledge Oriented Software Engineering
Process in Multi-Cultural Context. Software Quality Journal 18(2), 299–319 (2010)

22. Jaakkola, H., Henno, J., Linna, P.: From Local to Global - Path towards Multicultural
Software Engineering. International Journal of Knowledge and Learning, IJKL (2011)

23. Jaakkola, H., Thalheim, B.: Software Quality and Life Cycles. In: Eder, J., Haav, H.-M.,
Kalja, A., Penjam, J. (eds.) Advances in Databases and Information Systems, ADBIS
2005, pp. 208–220. Tallinn University of Technology Press, Tallinn (2005)

24. Jaakkola, H., Thalheim, B.: Framework for high-quality software design and development:
a systematic approach. IET Software 4(2), 105–118 (2010)

25. Jaakkola, H., Thalheim, B.: Architecture-Driven Modelling Methodologies. In:
Heimbürger, A., Kiyoki, Y., Tokuda, T., Yoshida, N. (eds.) Information Modelling and
Knowledge Bases XXII, pp. 97–116. IOS Press, Amsterdam (2011)

26. Karttunen, E.: Producing Software Services in a Multi-cultural Environment. MSc Thesis,
Information Technology, Pori. Tampere, Tampere University of Technology, Tampere
(2010)

27. Krishna, S., Sahay, S., Walsham, G.: Managing Cross-Cultural Issues in Global Software
Outsourcing. Communications of the ACM 47(4), 62–66 (2004)

28. Lewis, R.D.: When Cultures Collide. Managing Successfully Across Cultures. Nicholas
Brealey Publishing, London (1999)

29. Lewis, R.D.: Cross-Culture – The Lewis Model. Richard Lewis Communications (2000),
http://faculty.fuqua.duke.edu/ciber/ice/Cross%20Culture%20Th
e%20Lewis%20Model.pdf

30. Lewis, R.D.: Cultureactive – The web based global cultural database. Resource pages of
Richard Lewis (2011), http://www.cultureactive.com

31. Paasivaara, M., Hiort af Ornäs, N., Hynninen, P., Lassenius, C., Niinimäki, T., Piri, A.:
Practical guide to managing distributed software development projects. Aalto University,
School of Science and Technology, Espoo (2010)

32. Pfleeger, S.L., Atlee, J.M.: Software Engineering: Theory and Practice, 3rd edn. Pearson
Education International (2006)

33. Richardson, I., Casey, V., Burton, J., McCaffery, F.: Global Software Engineering: A
Software Process Approach. In: Mistrik, I., Grundy, J., van der Hoek, A., Whitehead, J.
(eds.) Collaborative Software Engineering. Springer, Heidelberg (2010),
http://www.springerlink.com/content/k680115651r231w4/

 Culture Sensitive Aspects in Software Engineering 315

34. Royce, W.: Managing the Development of Large Software Systems. In: Proceedings of
IEEE WESCON, pp. 1–9 (August 1970),
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/wate
rfall.pdf

35. SEI - Software Engineering Institute: CMMI Version 1.3 Information Center (2011),
http://www.sei.cmu.edu/cmmi/tools/cmmiv1-3/

36. Siakas, K.V., Georgiadou, E., Sadler, C.: Software Quality Management from a Cross-
Cultural Viewpoint. Software Quality Journal 8(2), 85–95 (1999)

37. Simcock, A.L.: Does a Multicultural Mix Bring an Extra Dimension to Software
Engineering Design Teams? Global Journal of Engineering Education 2(3), 263–270
(1998)

38. Walsham, G.: Cross-Cultural Software Production and Use: A Structurational Analysis.
MIS Quarterly 26(4), 359–380 (2002)

39. Statkaityte, R.: Multicultural issues in software engineering processes. MSc Thesis,
Information Technology Pori. Tampere University of Technology, Tampere (2011)

40. Wesslin, V.: Globalization practices of software companies from cultural point of view.
MSc Thesis, Information Technology, Pori. Tampere University of Technology, Tampere
(2010)

A. Düsterhöft et al. (Eds.): Thalheim Festschrift, LNCS 7260, pp. 316–328, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Cross-Cultural Multimedia Computing
with Impression-Based Semantic Spaces

Yasushi Kiyoki, Shiori Sasaki, Nhung Nguyen Trang, and Nguyen Thi Ngoc Diep

Graduate School of Media and Governance, Keio University, SFC
5322 Endo, Fujisawa, Kanagawa, 252-0816, Japan

kiyoki@sfc.keio.ac.jp

www.mdbl.sfc.keio.ac.jp

Abstract. Over the past decade, the rapid progress of multimedia data
management technology has realized the large scale of media data transfer and
resource-accumulation in the world. The multimedia computing technology has
also been creating new information provision environments in the world-wide
scope. Innovative integrations of large scale multimedia data management and
computing technology will lead to a new information society.

In the design of multimedia systems, one of the most important issues is how
to search and analyze media data (images, music, movies and documents),
according to impressions and contexts. We have proposed and introduced a
"Kansei" and semantic associative search method based on our “Mathematical
Model of Meaning (MMM) [11], [13], [14]”. The concept of "Kansei" includes
several meanings on sensitive recognition, such as "impression", "human
senses", "feelings", "sensitivity", "psychological reaction" and "physiological
reaction". This model realizes "Kansei" processing and semantic associative
search for media data, according to user's impressions and contexts. This model
is applied to compute semantic correlations between keywords, images, music
and documents dynamically in a context-dependent way.

The main feature of this model is to realize semantic associative search in
the 2000 dimensional orthogonal semantic space with semantic projection
functions. This space is created for dynamically computing semantic
equivalence or similarity between keywords and media data.

We have constructed "Cross-Cultural Multimedia Computing Systems” for
sharing and analyzing different cultures with semantic associative functions
applied to “cultural & multimedia data,” as a new platform of cross-cultural
collaborative environments. This environment enables to create a remote,
interactive and real-time cultural and academic research exchange among
different countries and cultures.

1 Introduction

The field of “Kansei” information was originally introduced as the word “aesthetics”
by Baumgrarten in 1750. The aesthetics of Baumgrarten had been established and

 Cross-Cultural Multimedia Computing with Impression-Based Semantic Spaces 317

succeeded by Kant with his ideological aesthetics [4]. In the research field of
ubiquitous & multimedia systems, it is becoming important to deal with “Kansei”
information for defining and extracting media data according to impressions and senses
of individual users.

In the design of the “Kansei” information for media data, the important issues are
how to define and represent the metadata of media data and how to search media data
dynamically, according to impressions and media data contents. Creation and
manipulation methods of metadata for media data have been summarized in [4] and
[22].

As a semantic associative search method for multimedia database systems dealing
with “Kasei” information, we have proposed the Mathematical Model of Meaning
(MMM) [11, 13, 14]. The MMM is a basic model for realizing a semantic associative
search method with context recognition mechanisms for computing semantic distances
and correlations between different media data, information resources and words. One
of the important applications, we have presented a semantic associative search system
for images and music [8, 9, 10, 15, 17, 20, 21, 25]. The important feature of this model
is that the data objects in databases are mapped into an orthogonal semantic space and
extracted by a semantic associative search mechanism. This method realizes the
computational machinery for recognizing the meaning of a keyword according to a
context (context words) and obtaining the related data objects to the keyword in the
given context.

The MMM is applied to a semantic image and music search, as a fundamental
framework for representing the metadata and searching images and music. The main
feature of this model is that the semantic associative search is performed
unambiguously and dynamically in the orthogonal semantic space. This space is
created for computing semantic equivalence or similarity between user's impression
and image's metadata items which represent the features of image data. We point out
that context recognition is essentially needed for multimedia information retrieval. The
meaning of information is determined by the relation between contents and the context.
The machinery for realizing dynamic context recognition is essentially important for
multimedia information acquisition.

The advantages and original points of the MMM are as follows:

(1) The semantic associative media search based on semantic computation for words
is realized by a mathematical approach. This media search method surpasses the search
methods which use pattern matching for associative search. Users can use their own
words for representing impression and data contents for media retrieval, and do not
need to know how the metadata of media data of retrieval candidates are characterized
in databases.

(2) Dynamic context recognition is realized using a mathematical foundation. The
context recognition can be used for obtaining multimedia information by giving the
user's impression and the contents of the information as a context. A semantic space is

318 Y. Kiyoki et al.

created as a space for representing various contexts which correspond to its subspaces.
A context is recognized by the computation for selecting a subspace. In MMM, the
number of phases of contexts is almost infinite (currently 22000 in the general English
word space and 2180 in the color-image space, approximately). For semantic
associative computations of “Kansei” information in MMM, we have constructed
several actual semantic spaces, such as the general English-word space in 2115
dimensions, the color-image space in 183 dimensions based on [18], and music space
in 8 dimensions in the current implementations.

We have applied this method to several multimedia database applications, such as
image and music database search by impressionistic classification. We have introduced
these research results in [11], [15] and [17]. Through these studies, we have created a
new meta-level knowledge base environment by applying those methods to data
retrieval, data integration and data mining [12, 16].

In this paper, we present a new application of MMM to “Cross-Cultural Multimedia
System” realizing media data selection and exchange among different countries and
cultures.

2 An Overview of the Semantic Associative Search Method

In this section, the outline of our semantic associative search method based on the
mathematical model of meaning (MMM) is briefly reviewed. This model has been
presented in [11], [13] and [14] in detail.

The semantic associative search method in MMM is used to extract information
resources corresponding to the words, which represent the user's impression and data
contents. Each information resource is mapped in the orthogonal semantic space. This
space is referred to as "orthogonal metadata space" or "metadata space." The
mathematical model of meaning is used to create the orthogonal metadata space. The
mathematical model of meaning gives the machinery for extracting the associated
information according to the context.

In extracting appropriate information resources, context words that represent the
user's impression and data contents are given as the context. According to these context
words, a semantic subspace is selected dynamically. Then, the most related information
resource to the context is extracted in the semantic subspace. Metadata are classified
into three different types. The first metadata type is used to create an orthogonal
metadata space, as a search space for semantic associative search. This type of metadata
is referred to as "metadata for space creation."

The second type of metadata is used to express metadata of multimedia information
resources (image, music, text and video), which are the candidates for semantic
associative search. This type of metadata is referred to as "metadata for information
resources."

The third metadata type is used to express a context, which represents user's
imagination and impression in semantic associative search. This type of metadata is
referred to as "metadata for contexts."

 Cross-Cultural Multimedia Computing with Impression-Based Semantic Spaces 319

The basic functions and metadata structures in MMM are summarized as follows:

(1) A set of m words is given, and each word is characterized by n features. That is, an
m by n matrix is given as the data matrix with "metadata for space creation."
(2) The correlation matrix with respect to the n features is constructed from the data
matrix. Then, the eigenvalue decomposition of the correlation matrix is computed and
the eigenvectors are normalized. And, the orthogonal semantic space is created as the
span of the eigenvectors which correspond to nonzero eigenvalues.
(3) Images and context words are characterized by using the specific features (words)
and representing them as vectors.
(4) The multimedia information resources (image, music, text and video), and context
words are mapped into the orthogonal semantic space by computing the Fourier
expansion to their corresponding vectors.
(5) A set of all the projections from the orthogonal semantic space to the invariant
subspaces (eigen spaces) is defined. Each subspace represents a phase of meaning, and
it corresponds to a context or situation.
(6) A subspace of the orthogonal semantic space is selected according to the user's
impression, imagination, or the multimedia contents, which are given as a context
represented by a sequence of words.
(7) The most correlated multimedia information resource to the given context is
extracted in the selected subspace by selecting and applying one of the metrics defined
in the semantic space.

3 Cross-Cultural Computing System for Music

This section introduces a cross-cultural computing system for music, which is realized
by applying MMM to “cultural-music resources.” We have designed this system to
promote cross-cultural understanding and communication by using cultural music. The
system consists of music analysis, search and visualization functions, characterized by
three main features: (1) a culture-dependent semantic metadata extraction method,
which extracts both musical elements (e.g., key, pitch, tempo) and impression metadata
(e.g., sad, happy, dreamy) corresponding to properties of each musical-culture, (2) a
cross-cultural computing mechanism to represent differences and similarities among
various music-cultures, and (3) easy-to-use interfaces designed for helping users to join
the music database creation process. The significant feature of our cross-cultural
computing system is its multimedia database technology applying of “Kansei”
impressions, to compute the cultural differences. This system extracts features of
music-cultures and expresses cultural-dependent impressions by interpreting
cultural-music pieces in the semantic music-space, and makes it possible to compare
cultural difference and similarity in terms of impressions among various cultural music
resources.

The important objective of this cross-cultural computing system is to evoke
impressions and imaginations including the cultural diversity by representing various
impression-based responses to music resources from different cultures. There are two
main scenarios designed to allow users to attain impressions and imaginations: (1) how

320 Y. Kiyoki et al.

a music piece would be interpreted among different music-cultures and (2) how an
impression would be composed in different music-cultures. The system realizes
metadata extraction, search, visualization, and search functions which have been
designed in a culture-oriented way. Two music-domains, impressions (e.g., sad,
dreamy and happy) and musical elements (e.g., key, pitch and tempo) are utilized to
compare cultural-differences. In this system implementation, it is important how to deal
with semantic heterogeneity when impressions are variously expressed among different
music-cultures. This system provides a culture-dependent impression metadata
extraction method to tackle this challenge with participation of users.

Here, “culture” is defined as the collective knowledge which distinguishes the
members of one culture group (human group) from another group’s [7]. In addition,
we consider “cross-cultural computing” as the similarity and difference computation in
each domain belonged to common cultural determinants among several cultures. We
also define the term “impression” as the culture-dependent emotion-based response
which people of a culture react to any music piece (e.g., sad, dreamy and happy).

In the system implementation, we use traditional music as common cultural
determinant. Firstly, music is a powerful medium to express human emotion [2], and
some data show that many people are using traditional music as the main means to
discover a new culture [19]. In addition, Brown in [1] also asserts that music likely has
been a main contributor to reinforcing “groupishness” by offering the opportunities to
formalize and maintain group identity. That is, music in a given culture, called
music-culture, can become a vital part to formalize the “culture identity”.

3.1 System Architecture

The cross-cultural computing system for music consists of eight main functions, as
shown in Figure 1, and we have shown the system architecture in detail in [25]. Those
functions are grouped into five layers including multimedia databases, metadata
generation, search, visualization, and user interface. The overview of each function is
described as follows:

(F-1) Musical Element Analyzer extracts music metadata of six basic musical
elements (key, tempo, pitch, rhythm, harmony and melody) from music MIDI files.

(F-2) Culture-dependent Impression Metadata Extractor extracts weighted
impression words (e.g. sad, happy) of a music piece as metadata from
culture-dependent musical elements-impression E-I matrices, created by (F-3) and
(F-4), and the elements’ values computed in (F-1).

(F-3) Culture-dependent E-I Matrix Generator is a matrix creation function. This
function creates a specific matrix representing the relationship between musical
elements and impressions of a particular musical-culture by using music samples and
filtering functions (Nguyen, N. et al., 2010).

(F-4) Dynamic Culture-dependent E-I Matrix Generator is an extending part of
(F-3). This function is to automatically provide a prototype of an E-I matrix from a set
of culture-based music files and provide an easy-to-use interface allowing users to
amend this matrix.

 Cross-Cultural Multimedia Computing with Impression-Based Semantic Spaces 321

Fig. 1. System architecture of our culture-oriented music analysis system

(F-5) Cross-cultural Music Search calculates the correlations between impression,
expressed as a context-query given by keywords or music, and impressions of music
pieces in cultural music databases by applying MMM as the impression-based semantic
associative computing system with a cross-cultural music space. And then, this
function provides music ranking as a music-search result, according to correlations
between the context query and the impressions of music pieces.

(F-6) Musical Elements Visualizer provides the visualization of musical elements of
any music piece which is uploaded by users.

(F-7) Music-impression Difference Visualizer displays various impressions of
music pieces; these impressions are analyzed from the viewpoints of different
musical-cultures. Image data are also integrated to support users in understanding the
diverse impressions.

(F-8) Impression-definition Difference Visualizer shows the diversity of musical
properties (musical elements) to express a particular impression (e.g. sad, happy)
among different musical-cultures.

3.2 Impression-Based Metadata Extraction for a Cross-Cultural Music

Environment

In this subsection, we present a semantic metadata extraction method for a
cross-cultural music environment, the key technology in our system (Figure 3). Basic

322 Y. Kiyoki et al.

ideas for extracting cultural features in music are as follows: (1) we consider Western
classical music as a part of cross-cultural music environment, and (2) we create our
culture-dependent impression extraction method for a cross-cultural music
environment by extending an automatic music metadata extraction method for Western
classical music [10].

We apply the music-analysis method [10] to embark on our method for extracting
cultural music features. This method shown in Figure 2 extracts six musical elements of
each music piece (key, tempo, pitch, rhythm, harmony, melody) then converts them to
impression words (e.g. sad, happy) by using a lexico-media transformation matrix T
based on the music psychological research of Hevner [5, 6]. Hevner has proposed eight
categories of adjectives to represent music impressions (dignified, sad, dreamy, serene,
graceful, happy, exciting, and vigorous) and she also devised a correlation table
between these adjective groups and six musical elements. However, Hevner’s table is
suitable to only Western classical music. For creating a cross-cultural environment, as
shown in Figure 3, we have designed a culture-dependent metadata extraction as
follows: (1) we adopt the schema of Hevner’s table and set it as a unified schema to
create a table expressing musical elements-impressions relationship in database and (2)
we create our process to express specific musical elements–impressions in the E-I
transformation matrix T for each musical-culture by using music samples and filtering
functions [25]. Hereinafter, we call this matrix T as E-I matrix T.

Integration of impression elements and
vectorization

Extraction of impression elements (weighted
impression words groups)

Analysis of musical elements
for each music piece

note tone

Key (major/ minor)

Tempo (fast/ slow)

Pitch (high/ low)

Rhythm (firm/ flow)

Harmony (consonant/ dissonant)

Melody (ascending/ descending)

mdi = {vC1, vC2, vC3, vC4, vC5, vC6, vC7, vC8}

Impression Metadata Extractor

Music database for each domain

Fig. 2. The impression metadata extraction method in music

 Cross-Cultural Multimedia Computing with Impression-Based Semantic Spaces 323

Fig. 3. The cross-cultural music environment for extracting cultural-dependent impressions from
cultural-music resources

Our cross-cultural computing system for music is a novel platform to evoke users’
imaginations and impressions for the cultural diversity by presenting the variety of
emotional responses to music from different cultures. This system makes it possible to
realize universal impression analysis to various music-cultures sharing various
music-properties.

4 The 5D World Map System with Semantic and

Spatiotemporal Analyzers Applied to Cross-Cultural

Multimedia Computing

In this section, we introduce the architecture of a multi-visualized and dynamic
knowledge representation system “5D World Map System [20,21],” applied to
cross-cultural multimedia computing. The basic space of this system consists of a
temporal (1st dimension), spatial (2nd, 3rd and 4th dimensions) and semantic dimensions
(5th dimension, representing a large-scale and multiple-dimensional semantic space that
is based on the Mathematical Model of Meaning (MMM)). This space memorizes and
recalls various multimedia information resources with temporal, spatial and semantic
correlation computing functions, and realizes a 5D World Map for dynamically
creating temporal-spatial and semantic multiple views applied for various
“cross-cultural multimedia information resources.”

324 Y. Kiyoki et al.

We apply the dynamic evaluation and mapping functions of multiple views of
temporal-spatial metrics, and integrate the results of semantic evaluation to analyze
cross-cultural multimedia information resources. MMM is applied as a semantic
associative search method [11,13] for realizing the concept that "semantics" and
“impressions” of cultural multimedia information resources, according to the
"context". The main feature of this system is to create world-wide and global maps and
views of cultural features expressed in cultural multimedia information resources
(image, music, text and video) dynamically, according to user's viewpoints. Spatially,
temporally, semantically and impressionably evaluated and analyzed cultural
multimedia information resources are mapped onto a 5D time-series
multi-geographical space. The basic concept of the 5D World Map System is shown in
Figure 4.

Fig. 4. 5D World Map System for world-wide viewing of Cultural and multimedia information
resources

The 5D World Map system applied to cross-cultural multimedia computing
visualizes world-wide and global relations among different areas and times in cultural
aspects, by using dynamic mapping functions with temporal, spatial, semantic and
impression-based computations.

Figure 5 (a) shows an image query processing environment with images for
calculating correlations in colors between an impression-based query and images.
Impression-based and highly-related images to the query are selected and allocated
onto the global map with the spatial information for visualizing global aspects of
spatially dependent features among different cultures.

 Cross-Cultural Multimedia Computing with Impression-Based Semantic Spaces 325

Fig. 5. 5D World Map System applied to visualization of world-wide and global relations among
different areas and times in cultural aspects

Figure 5 (b) shows global comparisons among different areas in the context of color
combinations. In this figure, the highly related images to the given context are
mapped to the 5D world map as the thumbnail images, and various aspects among
different areas can be globally visualized with some specific context.

326 Y. Kiyoki et al.

5 Conclusion

The rapid progress of multimedia technology has realized the large scale of media data
transfer and resource-accumulation in the world [11, 22, 23, 24]. Cross-cultural
communication becomes important issues in global societies and communities
connected in the world-wide scope. The innovative integration of large scale
multimedia data management and cross-cultural computing will lead to new
cross-cultural environments in our society. This paper has presented and summarized
several new approaches to cross-cultural multimedia computing with multimedia
system architectures and spatial, temporal, semantic and impression-based multimedia
data analysis.

As our future work, we will extend our cross-cultural multimedia computing system
to new international and collaborative research environments for realizing mutual
understanding and knowledge sharing among different cultures.

Acknowledgments. We would like to express great thanks to Prof. Bernhard Thalheim
(Christian-Albrechts-University Kiel) for his suggestive advices and our fruitful
collaboration, continuing more than ten years, on the idea of cross-cultural computing
among European and Asian countries.

References

[1] Brown, N.: Evolutionary models of music: From sexual selection to group to group
selection. In: Perspectives in Ethology, pp. 231–281. Plenum Publishers, New York (2000)

[2] Cross, I.: Music, cognition, culture and evolution. Annals of the New York Academy of
Sciences 930, 28–42 (2001)

[3] Goethe, W.J.: Theory of Colours, Trans. Charles Lock Eastlake, Cambridge. The M.I.T.
Press, Massachusetts (1982)

[4] Harada, A. (ed.): Report of modeling the evaluation structure of KANSEI. Univ. of
Tsukuba (1997)

[5] Hevner, K.: Expression in Music: A Discussion of Experimental Studies and Theories.
Psychological Review 42, 186–204 (1935)

[6] Hevner, K.: Experimental Studies of the Elements of Expression in Music. American
Journal of Psychology 48, 246–268 (1936)

[7] Hofstede, G.H., Hofstede, G.J.: Cultures and Organizations: Software of the Mind.
McGraw-Hill Professional (2005)

[8] Ijichi, A., Kiyoki, Y.: A Kansei Metadata Generation Method for Music Data Dealing with
Dramatic Interpretation. In: Information Modelling and Knowledge Bases, vol. XVI, pp.
170–182. IOS Press (May 2005)

[9] Imai, S., Kurabayashi, S., Kiyoki, Y.: A Music Retrieval System Supporting Intuitive
Visualization by the Color Sense of Tonality. In: Proceedings of the 24th IASTED
International Multi-Conference Databases and Applications (DBA 2006), pp. 153–159
(Feburary 2006)

 Cross-Cultural Multimedia Computing with Impression-Based Semantic Spaces 327

[10] Kitagawa, T., Kiyoki, Y.: Fundamental Framework for Media Data Retrieval Systems
using Media-lexico Transformation Operator in the case of musical MIDI data. In:
Information Modeling and Knowledge Bases, vol. XII. IOS Press (2001)

[11] Kiyoki, Y., Kitagawa, T., Hayama, T.: A Metadatabase System for Semantic Image Search
by a Mathematical Model of Meaning. ACM SIGMOD Record 23(4), 34–41 (1994)

[12] Kiyoki, Y., Kitagawa, T.: A Semantic Sssociative Search Method for Knowledge
Acquisition. In: Information Modelling and Knowledge Bases, vol. VI, pp. 121–130. IOS
Press (1995)

[13] Kiyoki, Y., Kitagawa, T., Hitomi, Y.: A Fundamental Framework for Realizing Semantic
Interoperability in a Multidatabase Environment. International Journal of Integrated
Computer-Aided Engineering (Special Issue on Multidatabase and Interoperable
Systems) 2(1), 3–20 (1995)

[14] Kiyoki, Y., Kitagawa, T., Hayama, T.: A Metadatabase System for Semantic Image Search
by a Mathematical Model of Meaning. In: Sheth, A., Klas, W. (eds.) Multimedia Data
Management – using Metadata to Integrate and Apply Digital Media, ch. 7, McGrawHill
(March 1998)

[15] Kiyoki, Y.: A Semantic Associative Search Method for WWW Information Resources. In:
Proceedings of 1st International Conference on Web Information Systems Engineering
(2000) (invited paper)

[16] Kiyoki, Y., Ishihara, S.: A Semantic Search Space Integration Method for Meta-level
Knowledge Acquisition from Heterogeneous Databases. In: Information Modelling and
Knowledge Bases, vol. XIV, pp. 86–103. IOS Press (May 2002)

[17] Kiyoki, Y., Chen, X.: A Semantic Associative Computation Method for Automatic
Decorative Multimedia Creation with ”Kansei” Information. In: The Sixth Asia-Pacific
Conference on Conceptual Modelling (APCCM 2009), 9 pages (January 2009) (invited paper)

[18] Kobayashi, S.: Color Image Scale (The Nippon Color & Design Research Institute ed.,
translated by Louella Matsunaga, Kodansha International, 1992)

[19] Le, M.H.: The role of Music in Second Language Learning: A Vietnamese Perspective.
For Presentation at Combined 1999 Conference of the Australian Association for Research
in Education and the New Zealand Association for Research in Education (1999)

[20] Nguyen, T.N.D., Sasaki, S., Kiyoki, Y.: 5D World PicMap: Imagination-based Image
Search System with Spatiotemporal Analyzers. In: Proceedings of IADIS e-Society 2011
Conference, Avila, Spain, 8 pages (March 2011)

[21] Sasaki, S., Takahashi, Y, Y., Kiyoki, Y.: The 4D World Map System with Semantic and
Spatiotemporal Analyzers. In: Information Modelling and Knowledge Bases, vol. XXI, 18
pages. IOS Press (2010)

[22] Sheth, A., Klas, W. (eds.): Multimedia Data Management - Using Metadata to Integrate
and Apply Digital Media. MacGraw-Hill (March 1998)

[23] Thalheim, B.: Entity-relationship modeling – Foundations of database technology.
Springer, Berlin (2000)

[24] Thalheim, B.: Application Development Based on Database Components. In: Information
Modelling and Knowledge Bases, vol. 16, pp. 28–45. IOS Press (2004)

[25] Trang, N.N., Sasaki, S., Kiyoki, Y.: A Cross-Cultual Music Museum System With
Impression-Based Analyzing Functions. In: Proceedings of IADIS e-Society 2011
Conference, Avila, Spain, 8 pages (March 2011)

328 Y. Kiyoki et al.

[26] Dissanayake, E.: Antecedents of the temporal arts in early mother-infant interaction. In:
The Origins of Music, pp. 389–410. MIT Press, Cambridge (2000)

[27] King, W.R.: A Research Agenda for the Relationships between Culture and Knowledge
Management. Knowledge and Process Management 14, 226–236 (2007)

[28] Tosa, N., Matsuoka, S., Thomas, H.: Cultural Computing: SENetic Computer. In: ACM
SIGGRAPH 2004 Emerging Technologies, Los Angeles, California, p. 11 (2004)

[29] Rauterberg, M.: From Personal to Cultural Computing: how to assess a cultural
experience. In: uDayIV - Information Butzbar Machen, Pasbst Sience Publ. (2006)

[30] Nakatsu, R., Rauterberg, M., Salem, B.: Forms and theories of communication: from
multimedia to Kansei Mediation. Multimedia Systems 11, 304–312 (2006)

[31] Heimbürger, A., Sasaki, S., Yoshida, N., Venäläinen, T., Linna, P., Welzer, T.:
Cross-Cultural Collaborative Systems: Towards Cultural Computing. In: Information
Modelling and Knowledge Bases, vol. XXI, pp. 403–417 (May 2010)

[32] Nguyen, N., Sasaki, S., Uraki, A., Kiyoki, Y.: A Semantic Metadata Extraction for
Cross-cultural Music Environments by using Culture-based Music Samples and Filtering
Functions. In: Proceedings of International Conference on Computer, Electrical, and
Systems Science, and Engineering (ICCESSE 2010), May 26-28 (2010)

[33] Holsti, O., North, R.: Comparative Data from Content Analysis: Perception of History and
Economic Variables in the 1914 Crisis. In: Merritt, R.L., Rokkan, S. (eds.) Comparing
Nations: The Use of Quantitative Data in Cross-National Research, pp. 169–190 (1966)

[34] Zinnes, D.: A comparison of Hostile Behavior of Decision-Makers in Simulated historical
Data. World Politics 18, 474–502 (1966)

[35] Batini, C., et al.: A Comparative analysis of methodologies for database schema
integration. ACM Computing Surveys 18(4), 324–364 (1986)

[36] Egenhofer, M.J., et al.: Metric Details for Natural-Language Spatial Relations. ACM
Trans. Information Systems 16(4), 295–321 (1998)

[37] Egenhofer, M.J.: Spatial SQL: A Query and Presentation Language. IEEE Transactions on
Knowledge and Data Engineering 6(1), 86–95 (1994)

[38] Guting, R.H.: An Introduction to Spatial Database Systems. VLDB Journal 3, 357–399
(1994)

[39] Litwin, W.: An overview of the multidatabase system MRDSM. In: Proceedings of the
1985 ACM Annual Conference on The Range of Computing, pp. 524–533 (1985)

[40] Litwin, W., et al.: Interoperability of multiple autonomous databases. ACM Computing
Surveys (CSUR) 22(3), 267–293 (1990)

[41] Yoshida, N., Kiyoki, Y.: An associative search method based on symbolic filtering and
semantic ordering. In: Proceedings of the 7th IFIP 2.6 Working Conference on Database
Semantics, pp. 215–237 (1997)

[42] Hosokawa, Y., Kiyoki, Y.: Functional and parallel query processing and query
optimization for multidatabase systems. In: Proc. the 17 th IASTED International
Conference on Applied Informatics, pp. 101–106 (1999)

[43] Ishibashi, N., Kiyoki, Y.: Meta-Chronicle: A Spatial and Temporal Multidatabase System
and its Application to Histories. In: Proceedings of IEEE International Symposium on
Applications and the Internet (SAINT 2004) - the International Workshop on Cyberspace
Technologies and Societies (IWCTS 2004), pp. 515–522 (2004)

Author Index

Biskup, Joachim 19
Börger, Egon 52

Casamayor, Juan Carlos 231
Celma, Matilde 231
Clyde, Stephen W. 151

Delcambre, Lois 173
Diep, Nguyen Thi Ngoc 316
Düsterhöft, Antje 1
Duž́ı, Marie 268

Embley, David W. 151

Ferrarotti, Flavio 85

Grosso, Alejandro L. 116

Hartmann, Sven 85
Hegner, Stephen J. 101

Jaakkola, Hannu 291

Källberg, David 36
Kappel, Gerti 197
Katona, Gyula O.H. 29
Kiyoki, Yasushi 316
Klettke, Meike 1
Köhler, Henning 85

Langer, Philip 197
Leonenko, Nikolaj 36
Levin, Ana M. 231

Liddle, Stephen W. 151
Link, Sebastian 85

Ma, Hui 251
Maier, David 173
Makowsky, Johann A. 73
Mota, Laura 231
Murthy, Sudarshan 173

Olivé, Antoni 216

Paredaens, Jan 7
Pastor, M. Ángeles 231
Pastor, Oscar 231

Ravve, Elena V. 73
Retschitzegger, Werner 197

Sancho, Maria-Ribera 216
Sasaki, Shiori 316
Schewe, Klaus-Dieter 1
Schwinger, Wieland 197
Seleznjev, Oleg 36
Sølvberg, Arne 190

Trang, Nhung Nguyen 316
Turull Torres, José M. 116

Villegas, Antonio 216
Vincent, Millist W. 85

Wang, Qing 136
Wimmer, Manuel 197
Woodfield, Scott N. 151

	Title Page
	Preface
	Table of Contents
	Dedication to a Theory of Modelling
	What about Constraints in RDF?
	Dear Bernhard
	The RDF-Model
	Equality Generating and Triple Generating Constraints
	RDFS
	Functional Constraints
	Forbidding Constraints
	Enumerable Constraints
	Conclusion
	References

	Some Remarks on Relational Database Schemes Having Few Minimal Keys
	Introduction
	Basic Notations and Results
	Schemes Having One Minimal Key
	Schemes Having Two Minimal Keys
	Schemes Having Three Minimal Keys
	Conclusion
	References

	Random Databases with Correlated Data
	Introduction
	The Exact Forms of the Theorem
	Remarks, Future Work
	References

	Statistical Inference for R´enyi Entropy Functionals
	Introduction
	Main Results
	Discrete Distributions
	Continuous Distributions

	Applications and Numerical Experiments
	Approximate Matching in Stochastic Databases
	Image Matching Using Entropy Similarity Measures
	Entropy Maximizing Distributions
	Numerical Experiments

	Proofs
	References

	The Subject-Oriented Approach to Software Design and the Abstract State Machines Method
	Introduction
	Common Features of S-BPM and the ASM Method
	Ground Model Concern
	Refinement Concern
	Subject-Orientation Concern

	Differences between S-BPM and the ASM Method
	Notion of State and State Change
	Refinement Concept
	Verification Concern

	Evaluation of S-BPM
	The Evaluation Criteria
	Applying the Criteria to S-BPM

	References

	BCNF via Attribute Splitting
	Introduction
	BCNF Reviewed
	Functional Dependencies and Normal Forms
	Decompositions of Relation Schemes
	Redundancy
	Anomalies
	Unpredictable Insertions
	Storage Saving
	Characterizing BCNF
	Hidden Bijections

	Attribute Splitting
	Motivating Example
	AB-Splitting

	Conclusion
	References

	Foundations for a Fourth Normal Form over SQL-Like Databases
	Introduction
	Related Work
	Some of β's Related Work on Database Constraints
	SQL Table Definitions
	Axiomatic and Algorithmic Characterization
	Logical Characterization: Equivalence to S-3 Implication
	The Fourth Normal Form for SQL Table Definitions
	Semantic Justification of 4NF
	Challenges with Database Normalization
	Conclusion
	References

	Independent Update Reflections on Interdependent Database Views
	Introduction
	Schemata and Views in a General Framework
	Basic Theory of Independent Update Strategies
	Conclusions and Further Directions
	References

	SOF : A Semantic Restriction over Second-Order Logic and Its Polynomial-Time Hierarchy
	Introduction
	Preliminaries
	Element Types

	SOF: A Semantic Restriction of SO
	SOw Is Strictly Included in SOF
	A Variation of Relational Machine
	NPF=$\sum_1^{1,F}$

	Oracle Machines and a Polynomial-Time Hierarchy
	SOF Captures the PHF Polynomial-Time Hierarchy

	Conclusion
	References

	Abstract State Machines for Data-Parallel Computing
	Introduction
	Storage Choices
	Parallel Abstract State Machines
	States
	Updates
	Rules

	Always-Consistency
	Transactional Data Consistency
	Conclusion
	References

	OSM-Logic: A Fact-Oriented, Time-Dependent Formalization of Object-oriented Systems Modeling
	Introduction
	OSM-Logic Language Definition
	Interpretations
	OSM-to-OSM-Logic Conversion Algorithm
	Converting OBM Components
	Converting OIM Components

	Concluding Remarks
	References
	Appendix

	Cloaking Data to Ease View Creation, Query Expression, and Query Execution
	Introduction
	Solution Overview
	Solution Details
	Formal Model
	Architectural Reference Model
	Key Operational Aspects

	Evaluation
	Superimposed and Bi-level Information
	Bi-level Querying
	Implementation and Observations

	Related Work
	Summary
	References

	On Models of Concepts and Data
	Introduction
	Contemporary Data Modeling – The ER Model
	Mismatch between Modeling in the Data and Usage Domains
	Modeling in the People Domain: The Concept of Reflexivity
	Concept and Data
	Conclusion
	References

	Model Transformation By-Example: A Survey of the First Wave
	Introduction
	MDE in a Nutshell
	Modeling Language Engineering
	Transformation Engineering

	MTBE for Endogenous Transformations
	Process
	Example
	Existing Approaches

	MTBE for Exogenous Transformations
	Process
	Example
	Existing Approaches

	Lessons Learned and Future Challenges
	Resume
	References

	On Computing the Importance of Associations in Large Conceptual Schemas
	Introduction
	Basic Concepts and Notations
	Reifications
	Methods for Computing the Importance
	Occurrence Counting
	Link Analysis
	Betweenness Centrality

	Experimental Evaluation
	Time Analysis
	Correlation between Methods
	Impact of the Reifications

	Conclusions and Further Work
	References

	Conceptual Modeling of Human Genome: Integration Challenges
	Introduction
	Related Work
	A Conceptual Schema for the Human Genome
	Structural View
	Transcription View
	Variation View
	Pathway View
	Data Source and Bibliography Reference View

	Conclusions
	References

	Transforming Geometrically Enhanced Conceptual Model Schemas to GML
	Introduction
	Related Work
	GERM and GML
	GERM
	GML

	Generating a GML Schema from a GERM Schema
	Transformation Criteria
	Transformation Rules
	Mapping Procedure

	Conclusion
	References

	Extensional Logic of Hyperintensions
	Introduction
	Historical Background
	Foundations of TIL
	Rules for the Three Kinds of Context
	The Rules of Existential Generalization
	Leibniz’s Rule of Substitution in the Three Kinds of Context

	Conclusion
	References

	Culture Sensitive Aspects in Software Engineering
	Introduction
	Software Engineering Process Framework
	Maturity of Organizations and Capability of Processes
	Software Life Cycle Processes

	Frameworks for Cultural Analysis
	Culture Sensitivity in Software Engineering
	Related Studies
	Steps in Multi-Cultural Software Business Globalization
	Culture Sensitivity of Software Life Cycle Processes – Standardization View

	The CSAM Analysis Model
	Conclusions and Further Work
	Summary of the Results
	Future Work – An Alternative Approach

	References

	Cross-Cultural Multimedia Computing with Impression-Based Semantic Spaces
	Introduction
	An Overview of the Semantic Associative Search Method
	Cross-Cultural Computing System for Music
	System Architecture
	Impression-Based Metadata Extraction for a Cross-Cultural Music Environment

	The 5D World Map System with Semantic and Spatiotemporal Analyzers Applied to Cross-Cultural Multimedia Computing
	Conclusion
	References

	Author Index

