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Abstract—Accurate localization of epileptogenic zone is highly
meaningful for epilepsy diagnosis and treatment in general
and removal of the epileptogenic region in epilepsy surgery
in particular. In this paper, we present a robust method for
electroencephalography (EEG) source localization based on a new
multiway temporal–spatial–spectral (TSS) analysis for epileptic
spikes via graph signal processing and multiway blind source
separation. Instead of using the temporal behavior of the EEG
distributed sources, we first apply the graph wavelet transform
to the spatial variable for epilepsy tensor construction in order
to exploit latent information of the spatial domain. We then
apply the tensorial multiway blind source separation method
for estimating the sources and hence localizing them. Numerical
experiments on both synthetic and real data are carried out to
evaluate the effectiveness of the TSS analysis and to compare it
with two state-of-the-art types of analysis: space–time–frequency
(STF) and space–time–wave–vector (STWV). Experimental re-
sults show that the proposed method is promising for epileptic
source estimation and localization.

Index Terms—Electroencephalography (EEG), source localiza-
tion, epileptic spikes, multiway blind source separation, tensor
decomposition, graph signal processing.

I. INTRODUCTION

Epilepsy is a chronic disorder of the nervous system in
the brain due to abnormal, excessive discharges of nerve
cells. There are approximately 50 million people diagnosed of
epilepsy and 2.4 million people detected signs of the disorder
each year in the world. This makes epilepsy is one of the most
common neurological disorders [1].

Electroencephalography (EEG) is one of the most accessible
tools for epilepsy diagnosis and treatment. It records electrical
activities in the brain by measuring voltage fluctuations of
neurons. From EEG recordings of patients with epilepsy,
neurologists can detect specific epileptic biomarkers (such
as seizures, spikes and sharp waves) and the epileptogenic
region deep in the brain that initiates these epileptic EEG
sources. Accurate localization of epileptogenic zone is highly
meaningful for epilepsy diagnosis and treatment in general
and removal of the epileptogenic region in epilepsy surgery in
particular. An automatic system for EEG source localization
is thus desirable.

Given EEG signals recorded at the scalp, the localization
of EEG sources of interest deep in the brain is known as
an underdetermined ill-posed inverse problem where we may
want to estimate and localize the electrical activities of interest

from only the temporal–spatial measurements. In the last
decades, there have been a number of studies on EEG source
localization. The reader is invited to view good surveys in [2]–
[4]. Well-known methods for EEG source localization include:
minimum norm, variations of low resolution electromagnetic
tomography (LORETA), recursive multiple signal classifica-
tion (MUSIC) and independent component analysis (ICA), to
name a few. These conventional methods, however, require
strong assumptions on the source distribution, and yield either
blur or too sparse estimates. To overcome these drawbacks,
multiway (i.e. tensor) based analysis provide good alternatives.

Tensor representation and decomposition have become a
useful approach for multiway data analysis [5] and EEG
signals in particular [6]. In the context of (focal) epilepsy,
there are two main types of multiway representation for EEG
signals, including space–time–frequency (STF) and space–
time–wave–vector (STWV) [3], [7]. The STF representation is
to transform EEG signals recorded at each electrode into the
frequency domain using time–frequency tools such as win-
dowed Fourier transform and continuous wavelet transform.
The STF-based analysis has been applied for seizure oneset
localization [8], epileptic seizure modeling [9] and epileptic
spike detection [10]. The STWV representation is to transform
EEG signals at each time instance into the spatial–frequency
domain, i.e., applying a 3D windowed Fourier transform to the
spatial variable instead of the temporal variable as in the STF-
based analysis [11]. The STWV-based analysis helps localize
extended EEG sources in the brain. However, these two types
of analysis do have some drawbacks. The former would not
permit the separation of multiple sources simultaneously when
correlated signals are within more than one component. The
latter requires strong assumptions on the distributed sources
such as the smoothness and sparsity in the spatial distribution,
which may not be met in practice [7]. These drawbacks inspire
us to look for a more robust type of multiway analysis.

Recently, graph signal processing (GSP), seen as intersec-
tion of graph theory and computational harmonic analysis,
has emerged as a new tool for efficiently analyzing structural
data in general [12] and brain signals in particular [13], [14].
Given the ambiently measured temporal–spatial EEG data,
we can construct graph signals on the brain network that
naturally enables correlation analysis among different brain
regions over the time. Therefore, the use of GSP can reveal



latent information of the brain signals and hence aid to detect
activities of interest. This motivates us, in this paper, to look
for a GSP-based model for multiway analysis of EEG signals
and thus facilitate epileptogenic zone localization. This model
for EEG data to be proposed in Section III-A was preliminarily
reported in [15] and is here given with more details and further
applied to the problem of EEG source localization.

II. EEG DATA MODEL

Assuming a source space with K dipole signals in the brain
is measured by N nodes of an EEG electrode array during T
time samples. According to [3], a generative model for EEG
data X ∈ RN×T can be expressed as follows:

X = GS + N, (1)

where S ∈ RK×T is the source matrix, G ∈ RN×K is the
lead field matrix that models the propagation of the signals,
and N ∈ RN×T presents artifacts and noise.

For source estimation, we may want to separate extended
sources from background activities, thus the data model of (1)
can be rewritten as

X =

K∑
k=1

∑
ik∈Ωk

giksTik︸ ︷︷ ︸
Xs

+
∑

j /∈{Ωk}Kk=1

gjs
T
j︸ ︷︷ ︸

Xb

+N, (2)

where Ωk denotes the set of dipoles of the k-th extended
source, gk is the lead field vector at the k-th dipole, and sk
is the k-th row signal vector of S. It is noted that signals
from dipoles belonging to the same source are supposed to be
“equal”, since the activities of interest from an EEG source
are highly synchronized in general [3]. Therefore, the EEG
data model X in (2) can be approximated as

X ≈
K∑
k=1

hks
T
k + Xb + N = HS + Xb + N, (3)

where the spatial mixing vector hk is defined by the sum of
the lead field vectors gik in Ωk, that is,

hk =
∑
ik∈Ωk

gik = Gck, (4)

with ck is the indicator vector,

ck[r] =

{
1 if r ∈ Ωk,

0 otherwise.
(5)

The main objective of EEG source localization is to estimate
the unknown source matrix, S, and the source position matrix,
C = [c1 c2 . . . cK ], from the EEG data, X.

III. PROPOSED METHOD OF EEG SOURCE LOCALIZATION

Generally, a scheme for source localization consists of three
main stages: (i) data representation, (ii) blind source separation
and (iii) source localization. In this work, we adapt the scheme
for EEG source localization in the context of epilepsy, as
described next.

A. EEG Tensor Representation via Graph Signal Processing

Given the ambiently measured temporal–spatial EEG data,
X ∈ RN×T , we now construct graph signals to represent the
time-evolving EEG brain graph/network.

At each time sample t, considering an EEG graph G =
{V, E}, where V = {1, 2, . . . , N} is the set of N vertices
presenting N nodes of the EEG electrode array, and E is the
set of edges presenting the connection among the vertices.
In graph theory, associated with G are two special matrices:
the adjacency matrix, A(t) ∈ RN×N , and the normalized
Laplacian matrix, L(t) ∈ RN×N .

An element A(t)[i, j] of A(t) is nonnegative and represents
the edge weight of vertices i and j. In this work, for estimating
the edge weights, we apply a synchronization measure based
on correlation coefficient [16], which is defined as follows:

A(t)[i, j] =
1

T

(xi(t)− x̄i(t))(xj(t)− x̄j(t))

σxi(t)σxj(t)
, (6)

where xi(t) is the row vector of X that represents the signal
recorded at the i-th vertex of the EEG graph, x̄i(t) and σxi

(t)
are the mean and variance of xi(t) respectively. The Laplacian
matrix is defined as

L(t) = I−D(t)−1/2A(t)D(t)−1/2, (7)

where I is the identity matrix and D(t) is the degree matrix
of A(t).

In GSP, a graph signal f(t) ∈ RN×1 is constructed from X
as the t-th column vector of X. Taking eigenvalue decompo-
sition (EVD) of the Laplacian matrix L(t), we obtain

L(t)
EVD
= F(t)Σ(t)F∗(t). (8)

The eigenvalues of L(t) carry the notion of “graph frequency”
and the eigenvector matrix F(t) is responsible for the graph
Fourier transform (GFT) [12].

Therefore, the wavelet coefficients of f(t) in spectral graph
domain is given by

Wf(t)[a, s] = 〈f(t),ψa,s(t)〉, (9)

where the wavelet ψa,s(t) is defined as [17]:

ψa,s(t)[n] =

N∑
i=1

g(sλi)F
∗(t)[a, i]F(t)[n, i], (10)

with g(·) being the wavelet generating kernel.
Finally, we propose a temporal-spatial-spectral representa-

tion of EEG data by mapping the wavelet coefficients to a
three-way tensor, as follows:

X (t, a, s) =

N∑
i=1

g(sλi)F
∗(t)[a, i]F(t)[n, i]f(t)[i]. (11)

For a closer look at graph wavelet transform (GWT) and a
fast implementation, we refer the readers to [17] for further
information.



B. Source Estimation by Multiway Blind Source Separation

Let us consider the unconstrained Tucker model for decom-
posing the tensor X , as given by

X Tucker
= F ×1 U1 ×2 U2 ×3 U3, (12)

where F ∈ RK×K×K is the core tensor, U1,U2 and U3 are
the orthogonal loading factors.

For an EEG tensor, Tucker decomposition may not be of
interest because the loading factors Ui do not carry important
information about the EEG sources. We may want to obtain
meaningful factors Ûi, instead. Since Ui and Ûi share the
same subspace, the relationship between Ui and Ûi can be
expressed in the following way:

Ûi = UiPiQi, (13)

where Pi the permutation matrix and Qi is the scaling matrix.
We now propose to adapt multiway blind source separation

(MBSS) [18] in order to extract the loading factors of the
tensor X and hence obtain the EEG sources.

A simple and flexible approach is to exploit separately
each mode-i unfolding matrix of X . From (12), the mode-
i unfolding matrix of X , denoted by X(i), can be given by

X(i) = UiBi
T , (14)

where Bi = F(i)(⊗j 6=iUj)
T and provides a specific Kro-

necker structure, Fi is the mode-i unfolding matrix of the
core tensor F .

Thanks to the uniqueness of BSS models, it is easy to obtain
a more meaningful factor Ûi by taking

Ûi = Ψi(X
(i)) = Ψi(UiB

T
i ) = UiPiDi, (15)

where Ψi(·) denotes a specific BSS algorithm.
Then, different sources with specific physical meaning can

be extracted from different modes of the EEG tensors whose
decomposed factors respectively characterize the temporal,
spatial and spectral domains of the EEG signals. Particularly,
the MBSS method gives us the following:

X MBSS
= F̂ ×1 Utemporal ×2 Uspatial ×3 Uspectral,

X(1) = UtemporalF̂
(1)(U3 ⊗U2)T ,

(16)

where F̂ is a new core tensor and F̂(1) is its mode-i unfold-
ing matrix. The new temporal characteristics Utemporal of X
already provides a good approximate Ŝ of the source matrix S.

C. EEG Source Localization using LORETA

Once the three-way tensor X has been decomposed into
multiple components with different EEG sources using the
MBSS, localization of the sources can then be implemented,
by first estimating the mixing matrix H and then computing
the source position matrix C. We propose to do so in our
method of TSS-based analysis.

It is noted that the spatial and spectral variables (in terms
of channels and graph wavelet scales) are interdependent,
e.g. both are characterized for the spatial domain. Thus,

performing MBSS on an EEG tensor does not result in a
bilinear model in the graph spectrum and space. Consequently,
the spatial factor obtained by MBSS may result in incorrect
EEG source localization.

A simple approach to approximate H from the data, X, and
the estimated sources, Ŝ, is such that

Ĥ = XŜ†, (17)

where (·)† denotes the Moore–Penrose pseudo-inverse opera-
tor [3]. Since the number of sources is generally smaller than
the number of time samples, i.e. K � T , the pseudo-inverse
matrix of Ŝ can be computed efficiently.

In order to estimate the positions of the sources, we can
solve the following optimization [7]:

arg min
ci

‖ĥi − Ĝci‖22 + λ‖LZci‖22, i ∈ {1, . . . ,K}, (18)

where ĥi is the i-th column of Ĥ, Ĝ = [ĝ1, . . . , ĝK ] is the
numerical lead field matrix which can be calculated by using
the FieldTrip toolbox1, L is the Laplacian matrix defined above
in (7), and Z is a diagonal matrix with Z[i, i] = ‖ĝi‖−1

2 .
In particular, the first term of (18) is referred to as the
fit between the surface vector recovered from the estimated
source and the measurement, while the second term is an `2-
norm regularization about smooth source distributions.

Thanks to the cortical LORETA algorithm [3], the close-
form solution of (18) is given by

ci = (ZLTLZ)−1ĜT
(
Ĝ(ZLTLZ)−1Ĝ + λI

)−1
ĥi, (19)

for i = 1, 2 . . . ,K. Finally, a threshold value can be set for
the dipole amplitude to obtain the source location where a
node belongs to the distributed source if its strength exceeds
the value.

IV. EXPERIMENTS

In order to evaluate the effectiveness of the proposed TSS-
based analysis for EEG source localization, both synthetic
and real EEG datasets are used in the study. The TSS-
based analysis is compared with the state-of-the-art STF-based
analysis and STWV-based analysis.

A. EEG Datasets

1) Synthetic Data: We used the Brainstorm software2 to
generate the synthetic EEG data. For consistency with the
real EEG data, to be described later, the synthetic data were
generated for 19 electrodes, a sampling frequency fs = 256
Hz, epochs of the same length of 100 time samples (or 400 ms.
The EEG source space was referred to as the inner cortical
surface. The lead field matrix G ∈ R19×19626 was auto-
matically calculated by Brainstorm, where the grid contains
19626 triangles.

In order to generate the distributed sources, the neuronal
population-based model was used to generate epileptic spike-
like signals Xe as well as background activities Xb in the

1http://www.fieldtriptoolbox.org
2https://neuroimage.usc.edu/brainstorm
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Fig. 1: Simulated epileptic spikes
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Fig. 2: Real epileptic spikes from three patients with epilepsy
in our EEG dataset.

brain [19], see Figure 1. The white noise matrix N was
generated from the Gaussian distribution N (0, σ).

2) Real Data: The EEG data from patients already diag-
nosed of epilepsy were recorded by using the international
standard 10-20 system with 19 electrodes and a sampling
frequency of 256 Hz. Epileptic spikes were manually identified
by a neurologist from Vietnam National Children’s Hospital.
Standard filters for pre-processing EEG signals were used: a
lowpass filter with the cutoff frequency of 70 Hz, a highpass
filter with the cutoff frequency of 0.5 Hz, and a notched filter
to notch the frequency of 50 Hz for removing the electricity
grid frequency. Figure 2 illustrates some real epileptic spikes
in our EEG dataset.

B. EEG Tensor Representation

We constructed the temporal–spectral–spatial epileptic ten-
sors as follows. First, for each epileptic spike, a data sample
is presented by an EEG segment of 100 points around the
location of the spike. As such, we have 100 graph signals
{f}100

i=1, fi ∈ R19×1 representing the time-evolving EEG graph
in the epileptic epoch. Then, the GWT was applied to derive
the vertex-frequency representation of each graph signal. Here,
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Fig. 3: Wavelet kernel g(sλ) for different values of the wavelet
scale s.

(a) s = 100 (b) s = 70

(c) s = 30 (d) s = 10

Fig. 4: Graph wavelets residing in the 7-th (P3) vertex of the
EEG graph.

we obtained 100 graph wavelet coefficient matrices of size
19 × Nscale presenting EEG graph spectral features and the
number of wavelet scales was selected at Nscale = 100. Finally,
we concatenated the 100 coefficient matrices into a three-way
tensor X ∈ R100×19×100.

In order to generate spectral graph wavelets, we used the
Mexican hat kernel, i.e. g(sλ) = sλe−sλ, where λ denotes the
eigenvalue of the Laplacian matrix L. Figure 3 illustrates the
wavelet kernel with different values of the wavelet scale s and
Figure 4 shows the resulting spectral graph wavelets centered
at the P3 vertex on the EEG graph.

C. EEG Source Estimation using MBSS

Two epileptic EEG segments from the same patient were
used to provide the evidence of applying MBSS for EEG
source estimation. We can observe from the first EEG segment
in Figure 5(a) that the first component S1 in the spatial
mode of the EEG tensor was centered at occipital lobe in
the brain. The component S1 suggested that a brain activity
can be generated deep in the brain and near electrodes O1

and O2. Let us take a closer look at its signature, F1, in
the spectral graph domain. We can detect that the activity



took place in low spectral wavelet scales indicating that it has
a low frequency content. In contrast, the second component
S2 exhibited a very high frequency activity. It was also
centered at the frontal lobe in the brain. Therefore, it may
be the signature of another activity. Similarly, for the second
EEG segment, MBSS helped us separate the two different
components, see Figure 5(b). Specifically, we can see that the
two first components S1 that were obtained from the two EEG
segments have similar signatures in all the three domains. It
would therefore recommend that this activity is due to epilepsy
and the spatial factor can help localize its epileptogenic zone.
Besides, the second component S2 from segment 2 can be
referred to as a background activity.

D. EEG Source Localization

Figure 6 shows the source localization results using three
different methods of multiway analysis: our proposed method
(TSS), and the state-of-the-art ones (STF, STWV) on the
synthetic EEG data with two distributed sources, 19 electrodes,
100 time samples and the signal-to-noise ratio of SNR = 5 dB.
In particular, the two sources were centered at the P3 and F4
vertex respectively, see Figure 6a for the ground truth. For a
fair comparison, MBSS was used for EEG source separation
and LORETA for EEG source localization across the three
different methods of analysis.

We can see from Figure 6 that our TSS-based analysis
(Figure 6b) yielded the best localization result in terms of
the number of correctly detected dipoles and the sparsity of
estimated sources. The STF-based analysis failed to localize
the two sources simultaneously. The STWV-based analysis did
accurately localize the two sources, but with a detected surface
area larger than that by the TSS-based analysis.

V. CONCLUSIONS

In this work, we have introduced a new multiway analysis
for EEG data which can enhance the ability to separate and
localize extended sources in the EEG data. By exploiting
the brain structure, we first generated graph signals from the
temporal–spatial EEG measurement and then converted the
signals into the spectral graph domain using the GWT, which
is a GSP tool. We then constructed a new temporal–spatial–
spectral tensor representation for the measurement. From that,
we applied MBSS to extract meaningful loading factors of the
three-way EEG tensors and hence separate the EEG sources.
In order to locate the source positions, the cortical LORETA
algorithm was used. Experimental results indicated that the
proposed multiway TSS analysis using GSP and tensorial
MBSS allowed us to not only extract features from multiple
domains of the EEG data but also to be able to localize
the epileptic spikes. The proposed TSS-based analysis also
yielded a more robust result of EEG source localization than
the results obtained by the state-of-the-art types of analysis,
STF and STWV.
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Fig. 5: Tensorial multiway blind source separation (MBSS) on two EEG segments of the same patient.
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Fig. 6: A performance comparison of EEG source localization methods: TSS vs state-of-the-arts (STF, STWV).


