
An Enhanced Semantic-based Cache Replacement
Algorithm for Web Systems

1st Xuan Tung Hoang
Faculty of Information Technology

VNU University of Engineering and Technology
Hanoi, Vietnam

tunghx@vnu.edu.vn

2nd Ngoc Dung Bui
Faculty of Information Technology

University of Transport and Communications
Hanoi, Vietnam

dnbui@utc.edu.vn

Abstract—As Web traffics is increasing on the Internet, caching
solutions for Web systems are becoming more important since
they can greatly expand system scalability. An important part of a
caching solution is cache replacement policy, which is responsible
for selecting victim items that should be removed in order to
make space for new objects. Typical replacement policies used
in practice only take advantage of temporal reference locality by
removing the least recently/frequently requested items from the
cache. Although those policies work well in memory or filesystem
cache, they are inefficient for Web systems since they do not
exploit semantic relationship between Web items. This paper
presents a semantic-aware caching policy that can be used in Web
systems to enhance scalability. The proposed caching mechanism
defines semantic distance from a web page to a set of pivot
pages and use the semantic distances as a metric for choosing
victims. Also, it use a function-based metric that combines access
frequency and cache item size for tie-breaking. Our simulations
show that out enhancements outperform traditional methods in
terms of hit rate, which can be useful for websites with many
small and similar-in-size web objects.

Index Terms—web cache, replacement algorithm, semantic-
aware, semantic distance, web performance

I. INTRODUCTION

In recent years, web-based systems have become an es-
sential tool for interaction among people and for providing
a wide range of Internet-based services, including shopping,
banking, entertainment, etc. As a consequence, the volume of
transported Internet traffic has been increasing rapidly. Such
growth has made the network prone to congestion and has
increased the load on servers, resulting in an increase in the
access times of web documents. Web caching provides an
efficient solution to reduce server load by bringing documents
closer to clients. As summarized in [1], caching function
can be deployed at various points in the Internet: within the
client browser, at or near the server (reverse proxy) to reduce
the server load, or at a proxy server. A proxy server is a
computer that is often placed near a gateway to the Internet
and that provides a shared cache to a set of clients. Client
requests arrive at the proxy regardless of the Web servers
that host the required documents. The proxy either serves
these requests using previously cached responses or obtains
the required documents from the original Web servers on
behalf of the clients. It optionally stores the responses in its

cache for future use. Hence, the goals of proxy caching are
twofold: first, proxy caching reduces the access latency for
a document; second, it reduces the amount of external traffic
that is transported over the wide-area network (primarily from
servers to clients), which also reduces the users perceived
latency. A proxy cache may have limited storage in which
it stores popular documents that users tend to request more
frequently than other documents.

Caching policies for traditional memory systems do not
necessarily perform well when applied to Web proxy cache
servers for the following reasons:

• In memory systems, caches deal mostly with fixed-size
pages, so the size of the page does not play any role
in the replacement policy. In contrast, web documents
are of variable size, and document size can affect the
performance of the policy.

• The cost of retrieving missed web documents from their
original servers depends on several factors, including the
distance between the proxy and the original servers, the
size of the document, and the bandwidth between the
proxy and the original servers. Such dependence does
not exist in traditional memory systems.

• Web documents are frequently updated, which means that
it is very important to consider the document expiration
date at replacement instances. In memory systems, pages
are not generally associated with expiration dates.

• The popularity of web documents generally follows a
Zipf-like law (i.e., the relative access frequency for a
document is inversely proportional to the rank of that
document). This essentially says that popular WWW
documents are very popular and a few popular documents
account for a high percentage of the overall traffic.
Accordingly, document popularity needs to be considered
in any Web caching policy to optimize a desired perfor-
mance metric. A Zipf-like law has not been noticed in
memory systems.

The design of an efficient cache replacement algorithm is
crucial for caching mechanisms [2]. Since cache’s storage has
limited size, an intelligent mechanism is required to manage
the Web cache content efficiently. It is expected that the
cache content only keeps frequently accessed Web items, and978-1-5386-9313-1/19/$31.00 ©2019 IEEE

rarely accessed items should be evicted from the cache as
soon as possible. The traditional caching replacement policies
(e.g. [3]–[5]) are not efficient in the Web caching since they
consider a single factor (such as least-recently-used factor)
and ignore other factors that have impact on the efficiency of
the Web caching. In these caching policies, cache pollution
may happen, in which a large portion of cache content are
occupied by objects that are requested rarely. Combination of
various factors into one using a formula that balances their
importance, to a certain extend, can reduce cache pollution
and improve performance of traditional caching replacement
policies. However, as point out in [5], the importance of
a factor varies in different environments and applications.
This creates difficulties in finding optimal combinations of
cache factors for all situations. Also, since Web objects are
semantically related (e.g.: Web pages are referenced among
each other via HTML links), cache performance can improve
greatly if semantic information is efficiently used.

This research contributes to the studies of cache replace-
ment algorithm, especially for web caching. We propose an
approach that uses (i) semantic-related techniques and (ii)
function-based cache values that are calculated from access
frequencies and cached items’ sizes. Our approach is designed
to reduce cache pollution, and thus, can improve cache hit rate
in comparison with existing caching approaches. By improving
higher cache hit rates, our proposed caching scheme is suitable
for online news or online music websites whose contents
contain many small and relatively equal web items.

The rest of this paper is structured as follows. In section
II, we provide some related works on caching policy and
web caching, especially semantic-aware algorithms. In section
III, we proposed our algorithm. We present the performance
evaluation in section 4. Finally, we conclude this paper in
section 5.

II. RELATED WORK

Due to the importance of cache replacement algorithms for
web caching systems, a huge amount of work in the area can
be found in literature. According to [6], these algorithms can
be grouped in two categories: key-based algorithms, function-
based algorithm. Also, recent research attempts show that
semantic information of Web items can be used for cache re-
placement policies. Thus, cache replacement schemes can also
be classified into semantic-based and semantic-less algorithms.

A. Key-based Algorithms

Most popular group of replacement policies are key-based.
In these policies, keys are used in the decision-making for
choosing victims in a prioritized fashion. A key is a simple
parameter associated with each cache entry, such as age, size,
or access frequency. A primary key is used to decide which
item to evict from the cache in case of cache saturation.
Additional keys may be used for tie-breaking in case ties
happen during the selection process. Table I shows some
regularly used keys in caching policy.

TABLE I
COMMONLY USED PARAMETERS (KEYS) IN CACHE REPLACEMENT

POLICIES

Factor Parameter Rationale

Recency Last access
time

Web traffic exhibits strong
temporal locality.

Frequency Number of
previous
accesses

Frequently accessed doc-
uments are likely to be
accessed in the near fu-
ture

Cost Average
fetching
(download)
delay

Caching documents with
high fetching (download)
delay can reduce the av-
erage access latency.

Size Object size Caching small documents
can increase the hit ratio.

Classical replacement policies, such as the LRU and the
least frequently used (LFU) policies, fall under this category.
LRU evicts the least recently accessed document first, on
the basis that the traffic exhibits temporal locality. In other
words, the further in time a document has last been requested,
the less likely it will be requested in the near future. LFU
evicts the least frequently accessed document first, on the basis
that a popular document tends to have a long-term popularity
profile. Other key-based policies (e.g., SIZE [6] and LOG2-
SIZE [7]) consider document size as the primary key (large
documents are evicted first), assuming that users are less likely
to re-access large documents because of the high access delay
associated with such documents. SIZE considers the document
size as the only key, while LOG2-SIZE breaks ties according
to blog2(DocumentSize)c, using the last access time as a
secondary key. Note that LOG2-SIZE is less sensitive than
SIZE to small variations in document size (e.g. blog21024c =
blog22040c = 10). The LRU- threshold and the LRU-MIN
[7] policies are variations of the LRU policy. LRU-threshold
works the same way as LRU except that documents that are
larger than a given threshold are never cached. This policy tries
to prevent the replacement of several small documents with a
large document by enforcing a maximum size on all cached
documents. Moreover, it implicitly assumes that a user tends
not to re-access documents greater than a certain size. This
is particularly true for users with low-bandwidth connections.
LRU-MIN gives preference to small-size documents to stay in
the cache. This policy tries to minimize the number of replaced
documents, but in a way that is less discriminating against
large documents. In other words, large documents can stay in
the cache when replacement is required as long as they are
smaller than the incoming one. If an incoming document with
size S does not fit in the cache, the policy considers documents
whose sizes are no less than S for eviction using the LRU
policy. If there is no document with such size, the process
is repeated for documents whose sizes are at least S

2 , then
documents whose sizes are at least S

4 , and so on. Effectively,

LRU-MIN uses blog2(DocumentSize)c as its primary key
and the time since last access as the secondary key, in the
sense that the cache is partitioned into several size ranges
and document removal starts from the group with the largest
size range. The difference between LOG2-SIZE and LRU-
MIN is that cache partitioning in LRU-MIN depends on the
incoming document size and LOG2-SIZE tends to discard
larger documents more often than LRUMIN. Hyper-G [6] is an
extension of the LFU policy, where ties are broken according
to the last access time. Note that under the LFU policy, ties
are very likely to happen.

The Least Frequent Recently Used (LFRU) [8] cache re-
placement scheme combines the benefits of LFU and LRU
schemes. In LFRU, the cache is divided into two partitions
called privileged and unprivileged partitions. The privileged
partition can be defined as a protected partition. If content
is highly popular it is pushed into privileged partition. If
it is require replacing content from privileged partition, the
replacement is done as follows: LFRU evicts content from
unprivileged partition, push content from privileged partition
to unprivileged partition, and finally insert new content in
privileged partition. In the above procedure, the LRU is used
for the privileged partitions and approximated LFU (ALFU)
scheme is used for the unprivileged partition; hence together is
called LFRU. The basic idea is to filter out the locally popular
contents with ALFU scheme and push the popular contents to
one of the privileged partition.

B. Function-based Algorithms

Similar to key-based algorithms, function-based algorithms
also rank cache objects but using a synthetic key. A synthetic
key is a quantity associated with each cache entry and is
calculated by combining multiple keys using a cost function.
Usually, the keys have different weights in the cost function
so that keys can be combined in the most balanced way.
All function-based policies aim at retaining the most valuable
documents in the caches, but may differ in the way they define
the cost function. Weights given to different keys are based
on their relative importance and the optimized performance
metric. Since the relative importance of these keys can vary
from one web stream of requests to another or even within
the same stream, some policies adjust the weights dynamically
to achieve the best performance. The GreedyDual algorithms
[9] constitute a broad class of algorithms that include a gen-
eralization of LRU (GreedyDual-LRU). GreedyDual-LRU is
concerned with the case in which different costs are associated
with fetching documents from their servers. Several function-
based policies are designed based on GreedyDual-LRU. They
include the Greedy Dual Size (GDS) [10], the Popularity-
Aware Greedy DualSize (PGDS) [11], and the Greedy Dual*
(GD*) [12] policies.

Other function-based policies are based on classical algo-
rithms (e.g., LRU). These policies include the Size-adjusted
LRU (SLRU) policy [13]. The basic idea of Size-adjusted LRU
(SLRU) is to orders the object by ratio of cost to size and
choose objects with the best cost-to-size ratio. Least Relative

Value (LRV) [14] assigns a value V (p) for each document
p. Initially, V (p) is set to Cp×Pr(p)

G(p) , where Pr(p) is the
probability that document p will be accessed again in the
future starting from the current replacement time and G(p) is a
quantity that reflects the gain obtained from evicting document
p from the cache (G(p) is related to the size S(p)). As a result
of this choice, the value of any document is weighted by its
access probability, meaning that a valuable document (from
the cache point of view) that is unlikely to be re-accessed is
actually not valuable.

C. Semantic-aware Algorithms

SEMALRU [15] algorithm introduces a cache replacement
policy based on document semantics, i.e. based on the content
of the document. It is referred to as Semantic and Least
Recently Used (SEMALRU). This algorithm assumes that
for a period of time, the user seeks objects that are related
to a given subject, or semantically close. This leads to a
mechanism that least related objects to a new entry with
respect to the semantics are preferred for eviction. In other
worlds, SEMALRU tends to keeps objects which are closely
related to specific user interests and discard documents which
might be of less interest to users. The semantic closeness
in SEMALRU is quantified by a parameter called semantic
distance. This parameter is computed for every object in
the cache. The documents with highest semantic distances
is marked for eviction from cache. It is claimed that this
semantic-based algorithm outperforms LRU.

There are several problems related to SEMALRU. First, the
authors did not define an efficient way to calculate semantic
distance of two pages. It assumes that semantic distances are
calculated from webpage contents. Since scanning webpage
contents to calculate similarity is rather expensive, computing
the semantic distance for every object in cache consumes
significant amount of computation, and thus, prevents the
mechanism to scale.

Fig. 1. Distance between objects

Lately in [2], Negrao et al proposed a semantic-aware cache
replacement algorithm, called SACS, with the idea of adding
a spatial dimension to the cache replacement process. Their
solution is motivated by the observation that users typically

browse the Web by successively following the links on the web
pages they visit. This reference relationship between pages via
links in webpage content is a kind of semantic relations. SACS
measures such semantic relations between pages by calculating
the distance between pages in terms of the number of links
necessary to navigate from one page to another.

Figure 1 shows a simple example of a web site and the cor-
responding distances between its pages. Let us denote d(x, y)
semantic distance between page x and page y. In this example,
we have distance d(“menu.html′′, “index.html′′) = 1, and
d(“about.html′′, “index.html′′) = 2.

At any moment, SACS keeps a list of recently accessed
pages as pivots. For example, pages that are accessed within
last α seconds. The distance D(xj) assigned to a page xj
is distance to the closest pivot p in the pivot set P . When
replacement takes place, pages with smaller D(xj) are less
probable to be evicted. It implies that pages far from the most
recently accessed pages are candidates for removal. And the
closer a page is to recently accessed pages, the less likely it
is to be evicted.

Although SACS provides good caching performance to Web
systems, it has several drawbacks. Firstly, at the beginning
when no pages are in cache, pivot-base cache eviction does
not function properly. Also the caching eviction performance
is biased by what pages are populated in the cache first.
Secondly, choosing pivots only by their recency may not be
sufficient. It could be better if pivots are selected according to
both their freshness and access frequencies. Finally, choosing
all pivots that are accessed within the last α seconds could
lead to high number of pivots for busy sites. A large number
of pivots could degrade calculation of distances.

III. THE PROPOSED SCHEME

Our proposed algorithm, called Function-based Semantic-
aware caching Alogrithm (or FSA), adopts the same concept
of semantic distance as one used in SACS. In FSA, a pivot
set P = {pi|piis a page in cache} is selected. During normal
operations of the caching algorithm, a distance value D(xj)
to pivot set P is calculated for each page xj in the cache.
Specifically, D(xj) = minpi∈P d(xj , pi), where d(xj , pi)
indicates distance between page xj and pivot pi, which is the
number of steps taken to navigate to xj from pi via reference
links in page contents. Also cache entries are sorted according
to their pivot distance value. Such a sorted list of cache entries
facilitates finding eviction candidates when the cache needs
more space for accommodating new Web pages.

A. Pivot Selection

Although FSA is the same as SACS in using navigating
distance to pivot set for ranking cached pages, key differences
that help improving FSA performance are the mechanisms
used for refining pivot set
? Initial Pivot: At the beginning, when there are no pages

in the cache memory, a set of important pages are proactively
chosen as pivots and put into the cache. Special pages of a
site such as homepage, about page, category pages, etc. can

be selected for such pages. By selecting initial pivots, cold-
start situation happen in SACS is avoided. Also, initial pivots
help cache administrators in better fine-tuning access pattern
of users to the site by prioritizing some special pages that they
want to promote.
? Pivot Value: After the cache memory is populated with
pages and objects, unlike SACS does, FSA does not select all
pages that are accessed within the last α seconds for pivoting.
Instead, only a subset of those pages are picked according to
a quantity called Pivot Value (PV), which is calculated as

PVi = Ni × Fi

Here, Ni is order of page, which is defined as the number of
links that can be accessed directly via the page i, and Fi is
access frequency of that page. The higher PVi value means
the higher probability page i is chosen as a pivot. By building
pivots from PV values, our pivot selection algorithm is
superior to SACS in the following aspects. Firstly, it considers
not only the recency or freshness of cached items but also
access frequencies and content of cached items. Intuitively,
a page that have many links to other pages and have high
access frequency should be more preferred to be in cache and
thus is a good candidate for picking as a pivot. Secondly, our
mechanism of choosing pivot pages can keep the size of pivot
pages small without degrading its quality since only a limited
number of top pages are remained in cache.

B. Tie-breaking

In eviction phase, where pages are chosen to be removed
from cache, tie can happen when eviction candidates have
equal distances to pivots. Such cases happen frequently and
require an additional cache value assign to each page to break
tie. We proposed Cache Value CV that are calculated for
candidate victims as a tie-breaking criteria:

CVi =
Fi

C + Si

where, Fi is access frequency of victim i, Si is size of i, and
C is a constant that regulates the importance between access
frequency and cache item size. Between two victims with the
same distance to pivots, one that have higher CV value wins
and remains in the cache. The other is evicted from cache to
provide space for new caching items. By calculating CV as
above, pages or other web objects that are frequently accessed
and have small sizes are preferred to be in cache. The large
value of C makes object size Si less important than access
frequency Fi

C. Complexity Considerations

In order to efficiently maintain up-to-date pivot sets as well
as distance values and cache values for cached entries, FSA
works in a reactive fashion as follows. When a request arrives
to the cache, if it is a cache hit, access frequency of the
corresponding cache item is updated and pivot set update could
be triggered if necessary. If it is a cache miss, a request is made
to upstream server which results in a new Web object to be

put into the cache. In this case, only distance value and cache
value of the newly added object need to be calculated. After
the new entry has distance value and cache value updated and
it is stored in cache at its correct ordered position, eviction
of cache entries could happen in case the cache is saturated.
Such a reactive algorithm helps amortizing computation cost
into request handling cycles and the cache data structure can
be built incrementally. Particularly, for a cache hit request
that does not change pivot set, computation cost is O(1)
(independent of total cache population) since a single cache
entry need to update pivot value. For a cache miss request,
the cost is proportional to the size of pivot set since distance
values to each item of the pivot set to find the minimum value.

The worst scenario happens only when there is a cache hit
that changes pivot set. In that case, all items in the cache need
to update their own distance values to a new pivot set. Note
that when this situation happens, only a single entry in pivot
set is changed. This leads to computation cost of O(N), where
N is the total cache population.

Although changing in pivot set are costly and can degrade
caching performance, it happens at much lower rate in com-
parison to SACS. Pages that are selected as pivots should
have high pivot values, which depends on the order Ni of
the page and its access frequency Fi instead of cache recency.
This makes pivot set of FSA much stable than that of SACS.
Choosing a good initial pivots can also improve efficiency of
the caching mechanism even after the proxy cache server is
started.

IV. PERFORMANCE EVALUATION

Our performance evaluation is performed using the access
log of the FIFA World Cup 1998 web site [16]. The logs
contain information about approximately 1.35 billion user
requests made over a period of around 3 months, starting one
month before the beginning of the world cup and finishing
a few weeks after the end of this event. Each log entry
contains information about a single user request, including the
identification of the user that made the request (abstracted as
a unique numeric identifier for privacy reasons), the id of the
requested object (also a unique identifier), the timestamp of
the request, the number of bytes of the requested object and
the HTTP code of the response sent to user. We choose FIFA
World Cup 1998 log trace dataset because it provides us all the
information required to evaluate our algorithm and available
for research purposes.

Our cache simulator is fully implemented using Java. Al-
though it does not handle actual users HTTP request, its
functionality is to measure hit ratio and byte ratio of the cache
policy used. Hit rate measures the percentage of requests that
are serviced from the cache (i.e., requests for pages that are
cached). Byte hit rate measures the amount of data (in bytes)
served from the cache as a percentage of the total number of
bytes requested. These metrics are among the most commonly
used to evaluate caching, and allow us to analyze the ability
of our caching system.

��

��

��

��

��

��

��

��

���

� � � � �� ��

�
���
��
���

�
��
�

�����������������

���
���
��
���

Fig. 2. Hit ratios on 1998-May-1

��

��

��

��

��

��

��

��

� � � � �� ��

�
���
��
���

�
��
�

�����������������

���
���
��
���

Fig. 3. Hit ratios on 1998-July-26

More specifically, we build a server simulator that serves
the HTTP requests in the access log data. Instead of returning
response with payload data, the simulator returns nothing but
a Boolean variable which indicate if the object is available in
the cache. By that, the simulator is aware of the miss/hit status
of each request, hence measure our metrics: hit ratio and byte
ratio. On top of the simulator, we implement four different
policies includes: LRU, LFU, SA (or SACS) and our policy
FSA. We intend to compare our algorithm with traditional
LRU and LFU, which are good overall algorithm commonly
used in practice. We also compare with the original SACS
algorithm to see if our improvement enhances the proficiency
of the cache in our scenarios. The configuration parameters for
our simulations are given in table II. We run the simulation
of two different days: 1998-May-1 and 1998-July-26 which
are respectively the very first day and last day of the league.
Log file for each day contains around 1 million requests made
to the website. For each caching algorithm we implemented,
we recorded hit ratios and byte hit ratios and represented in
the same plot for comparison purposes. In our simulations, hit
ratio and byte hit ratios are defined as the fraction between
the number of objects/bytes served from cache and the total
number of objects/bytes requested

As we can see from plots in figures 2, 3, 4, and 5, FSA
outperforms LRU, LFU and SA in term of hit ratio in both
scenarios. It shows the efficiency of our proposed mechanisms

��

��

��

��

��

��

��

��

��

��

� � � � �� ��

�
�
��

�
�
���
��
���

�
��
�

�����������������

���
���
��
���

Fig. 5. Byte hit ratios on 1998-July-26

TABLE II
CONFIGURATION PARAMETERS FOR ALGORITHMS AND SIMULATIONS

Parameter Value
Total data size ∼ 100MB

Cache size from 2% to 12%
of total data size

Number of web objects ∼ 6500

Period for pivot selection
(α)

2s

Pivot size limit 5

Constant C in cache value
calculation

100

��

��

��

��

��

��

��

� � � � �� ��

�
�
��

�
�
���
��
���

�
��
�

�����������������

���
���
��
���

Fig. 4. Byte hit ratios on 1998-May-1

to previous mechanisms. However, when we consider byte hit
ratios, it seems FSA does not bring differences in performance
in comparisons to other algorithms. It is because FSA takes
object size into account and favors small objects over large
objects. As a result, there are more cache hits with small

objects than large objects. This leads to very little improvement
in terms of byte hit ratios.

V. CONCLUSION

In this paper, we have proposed an algorithm that combines
a function-based and semantic-aware approaches in caching
algorithm for Web systems. Our algorithm, called FSA, adopts
the idea of web object distance from SACS and combine them
with several parameters including recency, access frequency
and object size in cache replacement cost function. FSA also
provides some parameters that can be set by cache administra-
tors in order to tune the cache system in different use cases.
In our evaluation scenarios, FSA has the best performance
in terms of hit ratio compared to existing algorithms. It also
shows relative good result in terms of byte hit ratio.

REFERENCES

[1] W. Ali, S. M. Shamsuddin, A. S. Ismail, A survey of web caching and
prefetching, Int. J. Advance. Soft Comput. Appl 3 (1) (2011) 18–44.

[2] A. P. Negrão, C. Roque, P. Ferreira, L. Veiga, An adaptive semantics-
aware replacement algorithm for web caching, Journal of Internet
Services and Applications 6 (1) (2015) 4.

[3] T. Koskela, J. Heikkonen, K. Kaski, Web cache optimization with
nonlinear model using object features, Computer Networks 43 (6) (2003)
805–817.

[4] J. Cobb, H. ElAarag, Web proxy cache replacement scheme based
on back-propagation neural network, Journal of Systems and Software
81 (9) (2008) 1539–1558.

[5] R. Ayani, Y. M. Teo, Y. S. Ng, Cache pollution in web proxy servers,
in: Parallel and Distributed Processing Symposium, 2003. Proceedings.
International, IEEE, 2003, pp. 7–pp.

[6] A. Balamash, M. Krunz, An overview of web caching replacement
algorithms, IEEE Communications Surveys & Tutorials 6 (2).

[7] M. Abrams, C. R. Standridge, G. Abdulla, E. A. Fox, S. Williams,
Removal policies in network caches for world-wide web documents,
SIGCOMM Comput. Commun. Rev. 26 (4) (1996) 293–305.

[8] M. Bilal, S.-G. Kang, A cache management scheme for efficient content
eviction and replication in cache networks, IEEE Access 5 (2017) 1692–
1701.

[9] N. Young, Thek-server dual and loose competitiveness for paging,
Algorithmica 11 (6) (1994) 525–541.

[10] P. Cao, S. Irani, Cost-aware www proxy caching algorithms., in: Usenix
symposium on internet technologies and systems, Vol. 12, 1997, pp.
193–206.

[11] S. Jin, A. Bestavros, Popularity-aware greedy dual-size web proxy
caching algorithms, in: Distributed computing systems, 2000. Proceed-
ings. 20th international conference on, IEEE, 2000, pp. 254–261.

[12] S. Jin, A. Bestavros, Greedydual* web caching algorithm: Exploiting
the two sources of temporal locality in web request streams, Comput.
Commun. 24 (2) (2001) 174–183.

[13] C. Aggarwal, J. L. Wolf, P. S. Yu, Caching on the world wide web,
IEEE Transactions on Knowledge and data Engineering 11 (1) (1999)
94–107.

[14] L. Rizzo, L. Vicisano, Replacement policies for a proxy cache,
IEEE/ACM Transactions on networking 8 (2) (2000) 158–170.

[15] K. Geetha, N. A. Gounden, S. Monikandan, Semalru: An implementation
of modified web cache replacement algorithm, in: Nature & Biologically
Inspired Computing, 2009. NaBIC 2009. World Congress on, IEEE,
2009, pp. 1406–1410.

[16] Worldcup 98.
URL http://ita.ee.lbl.gov/html/contrib/WorldCup.html

