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Abstract  

In this work, we present a novel QRS complex detection approach in noisy exercise ECG signals 
based on a continuous wavelet transform (CWT) for a single-lead ECG signal. First, the adaptive filtering 
algorithm is employed to remove the additive artifacts from the signals. The ECG signals are then 
transformed by a CWT at a suitable scale. Finally, the QRS complex is detected in processed signals. The 
performance of the proposed algorithm is evaluated on the MIT-BIH Noise Stress Test Database. The 
recordings in this dataset are specially selected and characterized by baseline wander, muscle artifacts, 
and electrode motion artifacts as noise sources. Obtained results show that the proposed method reached 
the most satisfactory performance compared with several other QRS complex detection algorithms. 
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I. Introduction 

The Electrocardiogram (ECG) is simply a 
recording of the electrical activity of the 
heart by electrodes placed on the surface of 
the body. Changes in the voltage measured 
by the electrodes are due to the action 
potentials of irritating heart cells that cause 
cell contractions. The resulting ECG heart 
cycle is represented by a series of waves 
whose morphology and occurrence time 
contain information utilized to diagnose 
cardiovascular diseases. However, the 
challenge when diagnosing heart diseases 
with ECG signals is that these signals vary 
considerably between different people. 
Besides, different patients might have 

various morphologies for the same condition. 
Also, two different diseases may have 
similarities in the properties of an ECG 
signal. These issues cause several difficulties 
for heart disease diagnosis [1][2]. To 
determine the abnormalities of the heartbeat, 
each beat of the ECG signal must be 
analyzed. The QRS complex is the essential 
waveform within the ECG signal since its 
shape provides much information about the 
current condition of the heart. 

Within the last decade, many new 
approaches have been proposed to improve 
the accuracy of the QRS complex detector. 
The well-known Pan and Tompkins 
approach, which is based on the slope, 
amplitude, and width of the ECG signal [3]. 
After filtering the signal, smoothing the 
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waveform, and emphasizing the QRS 
complex slope and width, the two threshold 
sets are applied to locate the true positive R 
peaks. An improved version of the Pan and 
Tompkins method is introduced in [4], where 
the process of calculating the threshold is 
optimized through analyzing three estimators 
(mean, median, and an iterative peak level). 
In [5], the authors proposed the real-time 
QRS complex detection approach consisting 
of four phases. First, the unwanted noises are 
removed from the ECG signals by using a 
band-pass filter. A five-point first-order 
differentiation, absolute and backward 
searching operation, was then utilized to 
improve the QRS complex. For an accurate 
determination of local maxima with different 
shapes, a K-nearest neighbor-based peak-
finding and particle swarm optimization 
algorithm was implemented. 

This paper aims to develop an algorithm 
to detect and localize QRS complexes in 
ECG signals during exercise by analyzing a 
wide range of other morphologies. The 
performance of the method is evaluated on 
reputable standard manually annotated MIT-
BIH Noise Stress Test Database [6].  

The remainder of this work is organized 
as follows: the proposed approach is 
introduced in Section II. Experimental results 
and performance are presented in Section III. 
The novelty and findings of this work are 
summarized in Section IV. 

II. Description of the proposed approach 

The proposed wavelet-based algorithm for 
the detection of the QRS complex is 
presented in Figure 1. This method includes 
the signal preprocessing, the continuous 
wavelet transform, the thresholding and 
determination of candidate extremum pairs, 
and the identification of QRS complexes. 
The detail of each stage is described in the 
following sections. 

Continuous Wavelet Transform

Thresholding and Identification 
of the QRS Complexes

Signal Preprocessing

ECG Recording

QRS Complexes or Not  
Figure 1. Block diagram of the proposed wavelet-based 
algorithm for the detection of the QRS complex. 

1. Signal preprocessing 

Each ECG signal was first segmented by 
a sliding window of 4096 samples with an 
overlap of 150 samples between two adjacent 
windows, as shown in Figure 2. The design 
of the 150-sample overlap aims to avoid the 
incomplete QRS complexes located at the 
end of the 4096-sample segments, which 
could be misidentified as Not QRS 
complexes. Each section was then filtered by 
the adaptive filter algorithm to remove the 
Powerline Interference (PLI) and Baseline 
Wander  (BW) noise from the ECG signals.        

4096 samples
4096 samples

150 samples

...

 
Figure 2. Illustration of segmentation of the ECG signal 

2. Continuous wavelet transform 

In this work, the numerical realization of 
the CWT has been chosen because the 
execution speed of the algorithm will be 
faster. The wavelet transform (WT) describes 
a signal from a time-frequency perspective 
on different scales, with a different frequency 
band corresponding to each scale. While the 
dyadic form of discrete-time wavelet 
transform (DyDTWT) is limited to scales 
that are powers of two [9][10], the CWT can 
be calculated for any scale. Thus, a CWT-
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based approach is offered as an alternative 
tool to detect the QRS complexes in ECG 
signals. The use of the appropriate scales, the 
effects of interference, and signal 
fluctuations caused by breathing and patient 
movements during recording can be 
significantly reduced.  

The CWT of the continuous signal �(�) at 
the scale � ∈ �� and translational value � ∈
�� is expressed by the integral [10] 

���(�, �) =  
�

√�
∫ �(�)�∗ �

���

�
�

��

��
��     (1) 

where �(�) is a continuous function called 
the mother wavelet, and the asterisk denotes 
the operation of the complex conjugate. 

The most commonly used types of mother 
wavelet for detecting the QRS complexes are 
the quadratic spline function [9][10] and the 
first derivative of the Gaussian function [11]. 
However, by experimenting with several 
other mother wavelets, especially from the 
biorthogonal family, we achieved the best 
results with bior1.5. In [9][10], the authors 
found the similarities across the other 
DyDTWT scales; our approach is based on 
finding and using an appropriate scale. The 
best results were achieved with the scale 15. 
The wavelet bior1.5 is an odd symmetry 
wavelet that transforms the extremes of the 
original signal into zero-level passages and 
transforms the inflection points into 
extremes. Thus, by transform, the signal is 
altered in a similar way to the derivative. 

3. The thresholding and identification of the 
QRS complexes 

After the filtered signal is transformed by 
the CWT at the scale 15, the algorithm will 
search in the transformed signal of pairs of 
near opposite sign extremes, whose absolute 
values are greater than the threshold ����. If 

such pairs of extremes are found, and if these 
extremes are spaced less than 120 ��, then 
the positions of these extremes correspond to 
the ascending and descending edges of 
several of the QRS complexes. The wave 
position is then determined by the zero-
crossing position between the two adjacent 

extremes. In this way, one or more waves of 
the QRS complex can be detected. Because 
the detector indicates the location of the 
complex as a whole, it is necessary to select a 
single position representing the QRS 
complex. For this purpose, there is a 
refractory period 120 �� before the next one 
can be detected since the QRS complexes 
cannot occur more closely than this 
physiologically. The positions preceded by 
another location in an interval shorter than 
the refractory period are removed from the 
detected positions. Therefore, the location of 
the QRS complex is the position of the first 
detected wave within the complex. The 
threshold level ���� is given by the equation, 

���� = 1,6. �
�

�
∑ (�� − �̅)��

���       (2) 

And thus, we can see that the threshold value 
corresponds to 1.6 times the standard 
deviation calculated from all the values of 
the transformed signal segment analyzed. 
The constant of 1.6 was determined as a 
suitable factor of the standard deviation 
based on the analysis of the complete ECG 
signal database (highest detection rate). 
Deriving a threshold level from a standard 
deviation is a more robust approach than a 
threshold derived from the maximum value 
or the difference between the maximum and 
the minimum that can easily be affected by 
the artifact or extrasystoles. The threshold is 
fixed, and its value is the same for the entire 
segment of the analyzed signal. 

III. Results and Discussion 

1. The ECG database 

The proposed algorithm is evaluated 
using the MIT-BIH Noise Stress Test 
Database [6], which includes twelve half-
hour ECG records and three half-hour 
records of noise typical in ambulatory ECG 
records. The ECG records were created by 
adding calibrated amounts of noise (baseline 
wander, electrode motion artifact, or muscle 
noise) to clean ECG recordings from the 
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MIT-BIH Arrhythmia Database [12]. To 
evaluate the performance of this work, only 
the files provided from the database (files 
118 and 119) are used in the test. They are 
only affected by the artifact of EM type 
(electrode motion artifact noise). 

The noise was added beginning after the 
first five minutes of each record, during two-
minute segments, alternating with two-
minute clean sections. The three noise signal 
records were assembled from the signal files 
by selecting parts that contained an electrode 
motion artifact. Since the original ECG 
recordings are clean, the correct beat 
annotations are known even when the noise 
makes the records visually unreadable. The 
reference annotations for these records are 
simply copies of those for the original clean 
ECG signals. The signal-to-noise ratios 
(SNRs) during the noisy segments of these 
records are listed in the flowing Table 1. 

Table 1. The records in the MIT-BIH Noise Stress Test 
Database [13]. 

Record SNR (dB) Record SNR (dB) 

118e24 24 119e24 24 

118e18 18 119e18 18 

118e12 12 119e12 12 

118e06 6 119e06 6 

118e00 0 119e00 0 

118e_6 -6 119e_6 -6 

To compare the performance of our 
proposed algorithm with several other 
prominent QRS complex detectors specified 
in the literature, only the first channel of each 
ECG record is used. 

2. Performance evaluation and comparisons 

For the performance evaluation of the 
proposed method, the parameters such as 
sensitivity, positive prediction, and detection 
error rate are taken into account. The 
sensitivity (��) is defined as the probability 
of detecting a QRS complex when a QRS 
exists; the positive prediction (��) represents 
the probability of detecting the QRS complex 
among the detected ECG peaks. They are 

calculated by using the following equations: 

Sensitivity: �� =  
��

�����
      (3) 

Positive Prediction: �� =
��

�����
     (4) 

Detection Error Rate: ��� =
�����

�����
    (5) 

where, TP (the number of true positive 
detections) is the number of correct identified 
QRS complexes present in the signal under 
test; FN (stands for the amount of false-
negative detections) is the number of QRS 
complexes present in the signal that the 
algorithm is not able to detect; FP (stands for 
the amount of false-positive misdetections) is 
the number of QRS complexes detected by 
the algorithm that are not actually in the 
signal. 

To evaluate the accuracy of the detected 
QRS complex, a tolerance window of 
150 ��, centered at the reference annotation, 
has been used. Different signal to noise ratio 
(SNR) levels for the same ECG record is 
analyzed; in particular, values ranging from 
24 �� to 0 �� are tested. The performance 
of the proposed method related to different 
SNR levels of the same ECG signal is shown 
in Figures 3 and 4. 

From the analytical figures, we can see 
that the sensitivity parameter is almost 
constant. Therefore, it is rather unaffected by 
artifact corrupting the ECG signal. The 
obtained results show that the algorithm is 
almost immune to noise up to SNR levels 
equal to 6 dB. Specifically, for SNR = 6 dB, 
the obtained �� and �� values are 99.51% 
and 96.63%, respectively. For SNR levels 
lower than 6 dB, the parameters �� and �� 
are dependent on the amount of noise. In 
particular, an assessment of the results 
achieved for SNR values equal to 0 dB, �� 
and �� reach values of 95.97% and 88.61%, 
respectively.  
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Figure 3. Algorithm behavior as a function of different 
SNR levels. 

 
Figure 4. Detection error rate achieved as a function of 
different SNR levels. 

To compare the performance of the 
proposed algorithm with several available 
works, the same test procedure indicated in 
the article [14] has been implemented. In 
[14], the authors have analyzed the 
algorithms in [15][16][17][11] for the 
assessment of their robustness against artifact 
using the MIT-BIH Noise Stress Test 
Database as a test bench. Table 2 shows a 
comparative study among the performance of 
the proposed method in this paper and the 
results of the algorithms, as reported in 
[13][14]. 

Table 2. The Se and P+ values obtained using the MIT 
BIH Noise Stress Test Database, with an SNR = 6 dB 
and 0 dB. 

 SNR = 6 dB SNR = 0 dB 

Method Se P+ Se P+ 

This work 99.51 96.63 95.97 88.61 

Pangerc U. et al. 99.91 95.91 83.97 68.92 

De Cooman T. et al. 99.47 73.30 96.51 59.36 

Vollmer M. 98.50 96.73 77.10 74.91 

Matteo D’Aloia et al. 98.13 96.91 78.98 75.25 

Antink C.H. et al. 84.89 76.40 72.20 66.37 

The data table indicates that our proposed 
algorithm has good results compared to other 
algorithms shown in the literature. More 
specifically, it achieves the most effective �� 

value compared to all the analyzed methods 
for SNR value equal to 0 dB. 

IV. Conclusion 

This paper introduces an innovative 
approach to the detection of QRS complexes 
in noisy exercise ECG signals. The method is 
based on the numerical implementation of 
the continuous wavelet transform, an 
appropriate choice of mother wavelet and 
scale used, thresholding with a fixed 
threshold. 

The MIT-BIH Noise Stress Database was 
employed to evaluate the noise robustness of 
the proposed algorithm. Experimental results 
indicate that the algorithm can still obtain 
good results when the SNR level is up to 6 
dB. For SNR levels lower than 6 dB, the 
achieved results get worse, since an increase 
of the FP and FN is observed.   

 

V. Acknowledgment 

This work is supported by the research 
project N0. 01C02/01-2016-2 granted by the 
Department of Science and Technology 
Hanoi. 

VI. References 

[1] J. Mateo, A. M. Torres, A. Aparicio, and 
J. L. Santos, “An efficient method for 
ECG beat classification and correction of 
ectopic beats,” Comput. Electr. Eng., vol. 
53, pp. 219–229, 2016. 

[2] S. Shadmand and B. Mashoufi, “A new 
personalized ECG signal classification 
algorithm using Block-based Neural 
Network and Particle Swarm 
Optimization,” Biomed. Signal Process. 
Control, vol. 25, pp. 12–23, 2016. 

[3] J. Pan and W. J. Tompkins, “A Real-time 
{QRS} Detection Algorithm,” IEEE 
Trans. Biomed. Eng., vol. 32, no. 3, pp. 
230–236, 1985. 

[4] P. S. Hamilton and W. J. Tompkins, 
“Quantitative Investigation of QRS 
Detection Rules Using the MIT/BIH 



Van Manh Hoang 6

Arrhythmia Database,” IEEE Trans. 
Biomed. Eng., vol. BME-33, no. 12, pp. 
1157–1165, Dec. 1986. 

[5] R. He et al., “A novel method for the 
detection of R-peaks in ECG based on K-
Nearest Neighbors and Particle Swarm 
Optimization,” EURASIP J. Adv. Signal 
Process., vol. 2017, no. 1, 2017. 

[6] G. B. Moody, W. K. Muldrow, and R. G. 
Mark, “Noise Stress Test for Arrhythmia 
Detectors.,” Computers in Cardiology. 
pp. 381–384, 1984. 

[7] G. D. Clifford, F. Azuaje, and P. E. 
McSharry, “Advanced Methods and 
Tools for ECG Data Analysis,” Adv. 
Methods Tools ECG Data Anal., pp. 1–
400, 2006. 

[8] P. L. and T. Hill, “Statistics : Methods 
and Applications By Pawel Lewicki and 
Thomas Hill,” Statistics (Ber)., vol. 1st, 
pp. 1–719, 2006. 

[9] C. Li, C. Zheng, and C. Tai, “Detection of 
ECG characteristic points using wavelet 
transforms,” IEEE Trans Biomed Eng, 
vol. 42, no. Bmei, pp. 21–28, 1995. 

[10] J. P. Martínez, R. Almeida, S. Olmos, A. 
P. Rocha, and P. Laguna, “A Wavelet-
Based ECG Delineator Evaluation on 
Standard Databases,” IEEE Trans. 
Biomed. Eng., vol. 51, no. 4, pp. 570–
581, 2004. 

[11] M. Vollmer, “Robust detection of heart 
beats using dynamic thresholds and 
moving windows,” Comput. Cardiol. 
(2010)., vol. 41, no. January, pp. 569–
572, 2014. 

[12] G. B. Moody and R. G. Mark, “The 
impact of the MIT-BIH arrhythmia 
database,” IEEE Eng. Med. Biol. Mag., 
vol. 20, no. 3, pp. 45–50, 2001. 

[13] M. D’Aloia, A. Longo, and M. Rizzi, 
“Noisy ECG signal analysis for automatic 
peak detection,” Inf., vol. 10, no. 2, pp. 1–
12, 2019. 

[14] M. Vollmer, “Noise resistance of several 
top-scored heart beat detectors,” Comput. 
Cardiol. (2010)., vol. 44, no. April, pp. 1–
4, 2017. 

[15] C. H. Antink, C. Brüser, and S. 
Leonhardt, “Detection of heart beats in 
multimodal data: A robust beat-to-beat 
interval estimation approach,” Physiol. 
Meas., vol. 36, no. 8, pp. 1679–1690, 

2015. 
[16] T. De Cooman, G. Goovaerts, C. Varon, 

D. Widjaja, T. Willemen, and S. Van 
Huffel, “Heart beat detection in 
multimodal data using automatic relevant 
signal detection,” Physiol. Meas., vol. 36, 
no. 8, pp. 1691–1704, 2015. 

[17] U. Pangerc and F. Jager, “Robust 
detection of heart beats in multimodal 
records using slope- and peak-sensitive 
band-pass filters,” Physiol. Meas., vol. 
36, no. 8, pp. 1645–1664, 2015. 

 


