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Abstract  

The Electrocardiogram (ECG) signal, which is a record of the electrical activity of the heart, can be 
treated as a combination of a free-noise signal and noises. The primary source of interference in the ECG 
recording during exercise is broadband myopotentials (EMG), contained in a full frequency band. 
Because the frequency ranges of both signals (ECG and EMG) overlap, band-stop filters distort the ECG 
signal, especially of QRS complexes. An alternative method of removing interference may be using 
Adaptive Wavelet Wiener Filter (AWWF) with noise-free signal estimation. As a result of a 
straightforward wavelet transform, it is possible to extract noise with some components of the QRS 
complex in the highest frequency bands. The central part of the QRS components is in the lower 
frequency bands. The resulting signal can be filtered by matching the transform coefficients. Testing was 
performed on muscle (EMG) artifact noised signals from the MIT-BIH Noise Stress Test Database at 360 
Hz sampling frequency. 
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I. Introduction 

Exercise testing can be an inexpensive 
and non-invasive standard diagnostic 
procedure performed by physicians to assess 
cardiovascular diseases, and the prescription 
of exercise and training. When performing 
the test, the patient’s ECG signal will be 
monitored while their exercise level is 
increased gradually. There are several 
different methods and modes available that 
can provide vital information to the clinician 
to help patients and athletes improve their 
fitness or cardiovascular status. This method 
is based on the increase in the organism’s 
need for oxygen and glucose exchange 
during physical exercise, and consequent 
heart beating capacity raise. As a result, it is 

possible to uncover potential cardiovascular 
problems that may not manifest at rest.  

Since this testing procedure involves 
significant physical movement and breathing 
activities, multiple sources of additive noises 
affect the ECG analysis, and they make the 
cardiac monitoring difficult in practice. 
These sources of interference mainly include 
baseline wander, electrode motion artifact, 
and electromyogram-induced (EMG) noise. 
EMG is considered as the significant artifact 
source and is difficult to separate because its 
frequency spectrum overlaps the frequency 
spectrum of the ECG signal.  

Wavelet transform (WT) based denoising 
methods can increase the efficiency of 
suppression of wide-band EMG artifact 
compared to linear filtering. The WT will 
decompose the signal into different bands so 
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that the highest bands contain EMG artifact 
and several components of QRS complexes, 
while QRS complex components are mainly 
located in the lower frequency bands. Then, 
the resulting signal can be filtered by 
appropriately adjusting the transform 
coefficients depending on the estimated noise 
level. In this way, the selection of parameters 
such as decomposition and reconstruction 
filter banks, level of decomposition, and the 
strategy of wavelet transform coefficient 
adjustment will play an important role.  

In [1], the authors proposed an optimal 
denoising approach for ECG using stationary 
wavelet transform (SWT). This method 
includes the choice of optimal mother 
wavelet, appropriate thresholding method, 
and level of decomposition. The authors in 
[2] presented the use of wiener filtering in 
the shift-invariant wavelet domain with the 
pilot estimation of the signal to eliminate 
EMG noise. This method utilizes the shift-
invariant dyadic discrete-time wavelet 
transform (DyDWT) with four-levels of 
decomposition for the pilot estimation and 
wiener filtering blocks. In [3], the authors 
presented an algorithm for ECG denoising 
using discrete wavelet transform (DWT). 
This proposed method is implemented 
through three main steps that are forward 
DWT, thresholding, and inverse DWT. The 
ECG signal denoising algorithm including 
two-stage which combines wavelet shrinkage 
with wiener filtering in the translation-
invariant wavelet domain, was presented in 
[4]. 

In this work, we focused on the wavelet 
Wiener filtering to eliminate EMG artifact in 
the ECG signal. We utilized DyDWT for 
both the Wiener filter and in the estimation 
of a noise-free signal. The goal of this work 
was to find the most suitable parameters for 
the Wiener filter based on the signal-to-noise 
ratio.   

The remainder of this paper is organized 
as follows: we present the materials and 
proposed method in Section II. The results 
are presented and discussed in section III. 

Finally, the conclusions are presented. 

II. Materials and Methods 

1. Stationary Wavelet Transform 

Nowadays, the wavelet transform has 
been a popular and useful computational tool 
for signal and image processing applications, 
because it provides signal characteristics in 
both the time domain and frequency domain. 
While analyzing non-stationary signals had 
been a significant challenge for various 
transform techniques such as Fourier 
Transform (FT), short-time Fourier 
Transform (STFT), wavelet transform 
techniques can effectively analyze both non-
stationary and stationary signals. With the 
wavelet decomposition, the signal is 
decomposed in like-tree structure using filter 
banks of low-pass and high-pass filters with 
down-sampling of their outputs. The dyadic 
transform, where only decomposed outputs 
of the low-pass filter, is the most commonly 
used decomposition tree structure. In this 
work, we used the Stationary Wavelet 
Transform when it gives better filtration 
results [4]. 

2. Wavelet Filtering (WF) Method 

When using the wavelet transform to 
remove the artifact from ECG signals, the 
parameters used are decomposition depth of 
input signal, thresholding method, threshold 
level, and filter banks. The selection of 
appropriate parameters is an essential task 
because the signal will be separated from 
interference by thresholding of wavelet 
coefficients.  

We assume that the corrupted signal 
denoted �(�) is an additive mixture of the 
noise-free signal �(�) and the noise �(�), 
both uncorrelated. 

�(�) = �(�) + �(�)   (1) 

where � represents the discrete-time (n = 0, 
1, …, N-1), and N is the length of the signal. 

If the noisy signal �(�) is transformed 
into the wavelet domain using the dyadic 
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SWT, we can obtain wavelet coefficients. 

��(�) = ��(�) + ��(�)   (2) 

where ��(�) are coefficients of the noise-
free signal and ��(�) denote the coefficients 
of the noise, � is the level of decomposition 
and denotes m-th frequency band. We need 
to recover coefficients of the noise-free 
signal ��(�) from ��(�). The idea of 
Wiener filtering of each wavelet coefficient 
can solve it. 

To the modification of the wavelet 
coefficients to be more efficient, the 
threshold sizes should be set separately for 
each decomposition level m. For the 
calculation of the threshold value, the 
standard deviation of the noise is multiplied 
by an empirical constant � and described by 
the equation. 

�� = �. ���  (3) 

where ��� is the standard deviation of noise 
in the m-th frequency band, and it can be 
estimated using the median [5], [6].  

��� =
������(��)

�.����
      (4) 

If the standard deviation of the noise is 
estimated using a sliding window, we can 
obtain the time-dependent ���(�), and the 
threshold value becomes, 

��(�) = �. ���(�)      (5) 

3. Wavelet Wiener Filtering (WWF) Method 

By input signal preprocessing using 
wavelet transform and thresholding we 
obtain an estimation of coefficients ��(�). 
This strategy is showed in Figure 1. 

 

Figure 1. The block diagram of the Wavelet Wiener 

Filtering method. 

The upper path of the scheme consists of 
four blocks: the wavelet transforms SWT1, 
modification of coefficients in the block H, 
the inverse wavelet transforms ISWT1, and 
the wavelet transform SWT2. The lower path 
of the scheme consists of three blocks: the 
wavelet transforms SWT2, the Wiener filter 
in the wavelet domain HW, and the inverse 
wavelet transforms ISWT2. 

Because the signal can be easily separated 
from noise in the wavelet domain, the noisy 
signal, �(�), will first be transformed into 
the wavelet domain by the SWT1 block. 
Threshold level, ��(�), will then be 
estimated for thresholding to separate the 
free-noise signal and noise. The estimation 
�̂(�), which approximate noise-free signal 
�(�) is obtained by using the ISWT1 block. 
This estimate is used to design the Wiener 
filter (HW), which is applied to the original 
corrupted signal �(�) in SWT2 transformed 
domain (lower path) via Wiener correction 
factor [1], [7].      

���(�) =
���
� (�)

���
� (�)����

� (�)
       (6) 

where ���
� (�) are the squared wavelet 

coefficients obtained from the pilot 
estimation �̂(�), and ���

� (�) is the variance 
of the noise coefficients ��(�) in the m-th 
frequency band. We get final signal �(�) by 
inverse transform IWT2 of modified 

coefficients ��(�)
� . 

��(�) = ��(�).
� ���(�)  (7) 

4. Adaptive Wavelet Wiener Filtering 
(AWWF) Method 

In order to use the wavelet Wiener filter 
effectively, it is necessary to choose the exact 
parameters of the filter. The most important 
ones are the decomposition depth, the 
thresholding method, the empirical constant 
K, and the wavelet filter banks used in the 
SWT3 and SWT4 blocks. It is evident that if 
the noise levels in the input signal changes, 
the parameters need to change accordingly to 



Van Manh Hoang 4

get the best results. 
To adapt to the change of noise, the input 

signal is divided into segments with an 
approximately constant level of noise. 
Besides, the WWF is also improved by 
adding the block for noise estimate (NE). 
This block has two inputs: the first input is 
the noisy signal �(�), and the other is the 
estimate of the free-noise signal �(�) 
obtained by the WWF method. The estimate 
of the input noise is the difference between 
these two signals, and the signal-to-noise 
ratio (SNR) can thus be calculated. The NE 
block is responsible for monitoring SNR 
changes at the beginning of each segment to 
choose the appropriate parameters for the 
filter at each segment. The filtered segments 
will then be reconnected.  

The parameters in blocks SWT3, H3, 
ISWT3, SWT4, and ISWT4 are set up using 
an estimated ������  value.    

 

Fig. 2. The block diagram of the Adaptive Wavelet 
Wiener Filtering Method.  

5. Rules for evaluating results 

The results were assessed according to 
achieved signal to noise ratio ������ [dB] of 
the output signal �(�) by the following 
equation, 

������ = 10����� �
∑ [�(�)]����
���

∑ [�(�)��(�)]����
���

� (8)  

where �(�) is the free-noise signal.  
From Eq. (8) it is apparent that we need to 

know the free-noise signal �(�) to calculate 
the ������, which is not possible in real 
situations. Because free-noise signals are not 
available, we selected several segments of 
signals of the MIT-BIH Noise Stress Test 

Database [8]. These signals were corrupted 
by a noise, which calibrated amounts of noise 
from record 'em'. The signal-to-noise ratios 
(SNRs) during the noisy segments of these 
records are listed in the flowing Table 1. 

Table 1. The records in the MIT-BIH Noise Stress Test 
Database [8]. 

Record SNR (dB) Record SNR (dB) 
118e24 24 119e24 24 
118e18 18 119e18 18 
118e12 12 119e12 12 
118e06 6 119e06 6 
118e00 0 119e00 0 
118e_6 -6 119e_6 -6 

III. Simulation results 

1. Thresholding of pilot estimation 

The choice of thresholding in block H has 
an essential influence on the result. It is vital 
to remove the maximum of the noise. We 
tested three different methods for pilot 
estimation: hard, soft and hybrid. Table 2 
summarizes the achieved results. 

Table 2. Influence of different thresholding methods 
on results 

Filters: SWT3/SWT4: db4/bior1.3 

SNRin 
[dB] 

SNRout [dB] 

Pilot estimation thresholding 

Hard Soft Hybrid 

-6 34.3933 33.3418 33.3377 

0 34.3492 33.3670 33.3012 

6 34.6166 33.6817 31.3878 

12 36.2835 35.4364 34.1689 

18 37.6831 37.0186 35.2549 

24 38.2241 37.5143 35.9313 

We can see from SNRout, that better 
results are achieved using hard or soft 
thresholding. Results are worse when we 
apply hybrid thresholding. 

2. Choice of filters for SWT3 and SWT4 

Our next investigation will be focused on 
the choice of the filters for SWT3, and 
SWT4 transforms. We have experimented 
with wavelet families in the library of Matlab 
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2017b. The best results are received as 
described in Table 3. 

Table 3. Influence of different filters SWT3/SWT4 on 
results. 

Hard thresholding in the pilot estimation 

SWT3/SWT4 
SNRin 

24 dB 18 dB 

haar/boir1.3 37.4013 36.5682 

db4/sym2 37.4619 36.9358 

db4/bior1.3 38.2241 37.6831 

db4/coif1 37.4740 36.9106 

sym2/bior1.3 38.1714 37.6207 

sym2/coif1 37.3964 36.7957 

rbio1.3/coif1 37.5431 36.9949 

According to SNRout, we can say that the 
combination of filters used for SWT3 and 
SWT4 transforms yields the best result, 
db4/bior1.3. So, we have chosen db4/bior1.3 
for STW3/SWT4 transforms and the hard 
thresholding approach to design filter. 

The filtered results for the segments taken 
from [8] are summarized in Table 4. Where 
SNRin is the signal-to-noise ratio of the input 
signal, SNRout denotes signal-to-noise ratio 
of the filtered signal, and SNRz denotes 
improvement signal-to-noise ratio, SNRz = 
SNRout – SNRin.  Our effort is to make the 
SNRz the highest possible. 

Table 4. The result achieved with the filter AWWF 

SNRin [dB] SNRout [dB] SNRz [dB] 

-6 32.9 38.9 

0 32.8 32.8 

6 31.1 25.1 

12 33.8 21.8 

18 34.9 16.9 

24 35.6 11.6 

Besides, we also compared the results 
achieved when using the AWWF filter with 
other filters like WWF and WF. The 
comparison results are given in Table 5. 

Table 5. Comparison results between filters AWWF, 
WWF and WF 

Filter SNRavg [dB] 

AWWF 24.51 

Filter SNRavg [dB] 

WWF 20.73 

WF 18.72 

From the data table, we can see that the 
AWWF filtering method gives the best 
results, followed by WWF and WF with 
improved SNR of 24.51 dB, 20.73 dB, and 
18.72 dB, respectively. 

IV. Conclusion  

In this study, we used the Adaptive 
Wavelet Wiener Filter for improving stress 
test ECG signals. From the obtained results, 
we can see that the proposed algorithm 
provides better filtering results than several 
other tested algorithms. The setting of 
suitable parameter values to the estimated 
noise level has a positive effect on the 
performance of the filtering algorithm. 
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