VNU-UET Repository

Architecture and Design Methodology for Highly-Reliable TSV-NoC Systems

Dang, Nam Khanh and Abdallah, Abderazek Ben (2018) Architecture and Design Methodology for Highly-Reliable TSV-NoC Systems. In: Horizons in Computer Science Research. Nova Science Publishers, pp. 199-246. ISBN 978-1-53613-327-1

This is the latest version of this item.

Download (1MB) | Preview


During the past few decades, a lot of research has been focusing on Three-dimensional Networks-on-Chips (3D-NoCs) as an auspicious solution to alleviate the interconnect bottleneck and reduce the power consumption in current System-on-Chips (SoCs) designs. However, 3D-NoC systems are becoming susceptible to a variety of faults caused by crosstalk, radiation, oxide breakdown, and so on. As a result, a simple failure in a single transistor caused by one of these factors may compromise the entire system reliability where the failure can be illustrated in corrupted message delivery, time requirement unsatisfactory, or even sometimes the whole system collapse. This chapter presents a detailed faults/defects analysis and an efficient reliability assessment method to approximate the lifetime reliability of a NoC system. Also, this chapter presents an architecture and hardware design of a fault-tolerant TSV based 3D-NoC system which can handle major failures (i.e., hard-faults, soft-errors and TSV-defects) that can occur in TSV-based 3D-NoC systems.

Item Type: Book Section
Subjects: Electronics and Communications
Electronics and Communications > Electronics and Computer Engineering
Divisions: Key Laboratory for Smart Integrated Systems (SISLAB)
Depositing User: Khanh N. Dang
Date Deposited: 28 Mar 2020 11:47
Last Modified: 28 Mar 2020 11:47

Available Versions of this Item

Actions (login required)

View Item View Item