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Abstract

Zn; _Sn,O NRs/ITO composite photocatalytic films were fabricated by the hydrothermal method. A
concentration of Sn dopant in Zn; ,Sn,O nanorods (NRs) was varied from 0% to 7%. The structural
and surface morphology characteristics of Zn; _,Sn,O NRs/ITO composite photocatalytic films were
investigated by X-Ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. In
addition, photocatalytic properties of synthesized materials were evaluated by degradation rates of
Rhodamine-B aqueous solutions under UV light irradiation. The SEM results indicated that, with an
increasing concentration of Sn dopant in Zn; _,Sn,O NRs/ITO, the effective surface areas were
declined by an exponential decay function and the reduction was negligible as the Sn doping
concentration was higher than 3%. With the similarity in effective surface area, the contribution of Sn
in the enhancement of the photocatalytic activity of Zn 93Sng ;O NRs/ITO is clearly observed with
41% improvement in comparison to ZnO NRs/ITO.

1. Introduction

Recently, water pollution has become an increasingly serious issue because of rapid industrialization, increased
urbanization, and overpopulation. Finding methods to clean water sources with low costs and high effectiveness
is one of the most important missions of current studies. Compared to well-known traditional methods such as
electrolysis and microbial decomposition, etcetera [ 1-4], a photocatalytic method to decompose contaminants
has proved to be an outstanding method and attracted much attention of scientists around the world [5-10].

In various photocatalytic materials, ZnO has captured special attention because it is an n-type
semiconductor material with stable structure, high exciton binding energy (60 meV) and, especially, a non-toxic
property [11-13]. Furthermore, ZnO can be easily formed under one-dimension nanostructures [14—17] and
greatly abundant in nature with low costs. However, the photocatalytic efficiency of pure ZnO materials is still
quitelow [18, 19]. The reason is relative to its direct wide band-gap energy. Electron and hole pairs produced
during photon absorption will be rapidly recombined due to the direct band-gap energy, while wide band-gap
energy allows ZnO to absorb only UV light that is about 5% of solar energy. To improve the photocatalytic
activity of ZnO, metal oxides [20, 21] and noble metals such as Ag [22-24], Au [24, 25], and Pt [24, 26], were
incorporated to reduce the recombination rate and collect photogenerated carriers. Besides, an ITO layer was
also used as a photogenerated electron collecting layer [27]. The formed heterojunction between ITO and ZnO
can separate the photogenerated electrons and holes resulting in the recombination suppression of electron-hole
pairs. Using this structure, the photocatalytic rate can be enhanced up to 9.65 times faster than that of pure ZnO
nanowire without an ITO layer. Furthermore, the photocatalytic ability of ZnO materials was improved by
doping metals which can control the active surface area, generate lattice defects, modify bandgap energy, and
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extend absorption range to visible light [28—30]. Many metals such as Al [31], Fe [32], Sn [33], Ag [34] etcetera
doped in ZnO photocatalysts, are successfully utilized for the photodegradation of organic pollutants. Among
these additive metals, tin (Sn) coincides with the cage structure of ZnO crystallization due to the similarity of
ionic radius of Sn** and Zn*" which are 0.071 nm and 0.074 nm, respectively [35]. The doping of Sn in ZnO
materials is expected to change the absorption, photocatalytic and physical properties of ZnO materials.
Therefore, tin is considered to be one of the most important doping elements to improve the photocatalytic
activity of ZnO. However, the influences of doping concentrations of Sn and the ITO layer on the photocatalytic
activity of ZnO materials, are separately investigated. Therefore, the combination of Sn dopant with various
concentrations and ITO layer should be further investigated to find out its improvement in photocatalysis.

In this report, Zn; ,Sn,O NRs/ITO composite photocatalytic films were studied and fabricated by a simple
hydrothermal method. The Sn doping concentrations were varied from 0% to 7%. The results demonstrate that
the combination between Sn dopant and ITO layer can enhance the photocatalytic activity of the Zn; ,Sn,O
NRs/ITO composite photocatalytic film up to 41%.

2. Experimental details

2.1. Materials

Zn(CH;C00),.2H,0, Zn(NOs3),.6H,0, C¢H;,Ny, SnCl, were all purchased from Sigma. All chemicals are of
analytic reagent grade and used as received without purification. ITO-coated glass was used as the substrates to
support Zn; _,Sn,O NRs.

2.2.Fabrication of Zn, _,Sn,O NRs/ITO composite photocatalytic films

ITO-coated glass substrates with dimensions 30 mm x 30 mm were soaked in a solution containing 1.5 M
NaOH for 15 min. They were then ultrasonicated in a mixture solution of acetone, ethanol, and deionized water
to remove possible attached contaminants. Finally, all the substrates were completely dried and putina

clean box.

The ZnO seed layer for the subsequent step of nanorod growth was prepared as follows: Firstly, 0.1 M
Zn(CH;3COO); clear solution was prepared. 20 ml isopropyl alcohol solvent and 0.438 g Zn(CH;CO0),.2H,0
was constantly stirred for 1 h at room temperature, then 0.5 ml diethylamine (DEA) was added drop by drop
until the solution became clear and continued stirring for another hour. At the end of the process,a0.1 M
Zn(CH;3COO), transparent solution was obtained. Secondly, the ZnO seed layer was prepared on the ITO layer
by spin coating of a prepared 0.1 M Zn(CH3COOQ), transparent solution with a spin rate of 3000 rpm for 30 s.
Finally, the samples were dried in the air at 150 °C for 15 min to evaporate solvents and annealed at a
temperature of 450°C for 1 h.

ZnO nanorod thin films (ZnO NRs/ITO) were fabricated by a hydrothermal method by the following
experimental process. The ZnO seed/ITO layers were put in an autoclave containing a 100 ml solution of 20 mM
Zn(NO3),.6H,0, 5 mM C¢H,,N, (hydrothermal solution) and underwent the hydrothermal process at 80 °C
for 2 h. Finally, the autoclave was slowly cooled down to room temperature, and then the samples were washed
by DI water.

Zn; Sn,ONRs/ITO composite photocatalytic films have been synthesized by the hydrothermal method by
the following steps. The hydrothermal solution containing 100 ml solution of 20 mM Zn(NO3),.6H,0, 5 mM
CeH 5N, and SnCl, with various molar concentrations of Sn** (1%, 3%, 5%, and 7% in comparison with molar
concentration of Zn®") were prepared in an autoclave. The ZnO seed /ITO layers were then placed in the
autoclave and underwent the hydrothermal processes at 80 °C for 2 h. The autoclave was then slowly cooled
down to room temperature, and then the samples were washed by DI water.

After the hydrothermal process, all the samples were subsequently annealed at 450 °C for 1 h in the air
ambient.

2.3. Characterization

The surface morphologies were characterized using a field emission scanning electron microscopy (FESEM,
Hitachi, S-4800). The crystal phases of the fabricated samples were determined using an X-ray diffractometer
(XRD) D5000 with CuK, radiation (A = 1.5406 A) over the 20 range 20 ~ 70° at room temperature. The UV—
Vis transmittance and absorption spectra were carried out by a UV—vis spectrophotometer (Jasco, V-670).

2.4. Photocatalytic activity measurement

The photocatalytic activity of Zn; Sn,O NRs/ITO films were investigated by the degradation of Rhodamine B
(RhB) under ultraviolet (UV) light irradiation. A sample (the surface areais 30 mm x 30 mm) was placed in
100 ml RhB solution with an initial concentration of 10 mg.L~". A 250 W mercury lamp was used as a UV light
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Figure 1. Top- and side-view SEM images of the ZnO NRs/ITO composite photocatalytic film.

source. After each given time interval (10 min), 2 ml solution was withdrawn and analyzed by a UV—vis
spectrophotometer (Jasco, V-670) at a wavelength of 554 nm.

3. Results and discussion

Figure 1 shows the top- and side-view SEM images of the ZnO NRs/ITO composite film. This result indicates
that the ZnO NRs are well-aligned and uniformly distributed. The average length, diameter, and density of the
ZnO NRs are approximately of 280 nm, 35 nm, and 1.52 x 10'° rods/cm?, respectively. The synthesized ZnO
NRs are in a hexagonal structure.

Figure 2 illustrates the top-view SEM images of Zn, ,Sn,O NRs/ITO composite photocatalytic films with
variations of Sn doping concentrations from 1% to 7% (x is from 0.00 t0 0.07). Even Zn; ,Sn,ONRsareallina
hexagonal structure, the morphologies of the samples strongly depend on the Sn doping concentrations. This
dependence is clearly indicated in figure 3 where the density of nanorods was reduced with an increase of the Sn
doping concentration. The reduction of nanorod density follows an exponential decay function and the
reduction was negligibly observed when the Sn doping concentration is greater than 3%. That means the
nanorod densities of Zn; _,Sn,O NRs/ITO as x 0f 0.03, 0.05, and 0.07 are relatively similar and much lower than
that of ZnO NRs/ITO and Zn 99Sng 9;O NRs/ITO. Furthermore, as can be seen in figure 2, the diameter of the
nanorods rises with an increment of Sn concentrations [36]. This is due to the different growth rates and surface
energies on various crystal facets of ZnO in the nanorods’ growth mechanism [37]. When the concentration of
doping Sn increased, the lower nanorods’ density and the higher diameter are obtained, which, subsequently,
contribute to the decline of effective surface areas of Zn, _,Sn,O NRs/ITO. In addition, the direction which is
oriented perpendicularly to the substrate’s surface is decreased when the doping concentration of Sn increases. It
is due to the formation of ZnO NRs following by its c-axis orientation growth [38], but the appearance of dopant
Snin the crystal structure would disturb this orientation.

To investigate the crystal structure of samples, XRD studies were carried out and the results are shown in
figure 4. The XRD patterns indicated that the structures of Zn; ,Sn,O NRs/ITO composite films are
polycrystalline. The presence of the (100), (002), (101), (102), (110), 103, and (112) peaks in the XRD patterns
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Figure 2. Top-view SEM images of Zn, _,Sn,O (x = 0.01-0.07) NRs/ITO composite photocatalytic film.
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Figure 3. The dependence of rod density on the concentration of Sn dopant.

proved that Zn; ,Sn,O NRs have a hexagonal wurtzite structure. The comparison of the peak intensity of the
(002) peak in XRD patterns indicates that the preferential orientation along the c-axis direction of Zn; ,Sn,O
NRs/ITO composite photocatalytic films is considerably reduced if the Sn doping concentration increases. This
is entirely consistent with the results obtained from SEM results. No diffraction peaks corresponding to
compounds of Sn were found in the XRD patterns. That means Sn** successfully replaced Zn*" in the ZnO
crystal structure.
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Figure 4. XRD patterns of Zn; _,Sn,O NRs/ITO composite photocatalytic films.
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Figure 5. (a) Optical transmittance spectra of Zn; _,Sn,O NRs/ITO composite photocatalytic films and (b) First derivative (dT/d\)
plot of the optical transmittance spectra of Zn,; _Sn,O NRs/ITO composite photocatalytic films.

Figure 5(a) shows the transmittance spectra of Zn; _,Sn,O NRs/ITO composite photocatalytic films with
different Sn doping concentrations. The results indicate that the transparency of Zn; _;Sn,O NRs/ITO
composite photocatalytic films rise from 88.9 to 99.8% as the increment of Sn doping concentrations rise from 0
to 5%. This transmittance increment can be explained by the surface morphology of samples in figure 2. The
higher Sn doping concentrations, the sparser the nanorod density was obtained which contributes to an
increment of optical transmission.

The bandgap (Eg) values of Zn; ,Sn,O NRs/ITO composite photocatalytic films were estimated by plotting
the graph of the first derivative of transmittance (dT/d\) versus the wavelength as shown in figure 5(b). The
bandgap energies that correspond to the peaks for all of the Zn; ,Sn,O NRs/ITO composite photocatalytic
films were extracted as 3.289, 3.307, 3.298, 3.316, 3.324 eV when xis 0, 1, 3, 5, 7, respectively. The results indicate
that the bandgap energy is slightly enlarged with the increasing Sn concentrations doped in ZnO/ITO composite
photocatalytic films. This enlargement might be attributed to the enrichment of carriers in doping
concentration. When the Zn*" ions are replaced by Sn** ions, the carrier number is increased, which might shift
the Fermi level which causes an expansion of bandgap [35].

The photocatalytic activity of Zn; _,Sn,O NRs/ITO composite photocatalytic films was evaluated by the
decomposition of RhB dye under the irradiation of UV light source. During the photodegradation process, the
decrement of RhB concentrations was determined by a UV—vis spectrometer and shown in figure 6. The C, and
Cin figure 6 are the initial concentration of RhB and the concentration of RhB at a certain reaction time,
respectively. The concentration of RhB declines when reaction time increases under the illumination of UV
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Figure 6. The photodegradation of RhB by Zn, ,Sn,O NRs/ITO composite photocatalytic films.
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Figure 7. The first-order kinetic plot for RhB photodegradation by Zn, _,Sn,O NRs/ITO composite photocatalytic films.

light. After 60 min of illumination, the degradation percentage of RhB under the catalysis of Zn; Sn,O /ITO
composite films with x 0f 0, 0.01, 0.03, 0.05, and 0.07 are 98, 97, 81, 92 and 95%, respectively. Furthermore, the
first-order kinetics of RhB photodegradation were also calculated and replotted in figure 7. From the slopes of
first-order kinetic, the pseudo-order photodegradation rate constants (k) were determined and shown in

figure 7 (inset). The results indicate that the photocatalytic activity of Zn; ,Sn,O NRs/ITO composite
photocatalytic films is lower than that of ZnO NRs/ITO composite photocatalytic films. The photocatalytic
activity of Zn; _,Sn,O NRs/ITO composite photocatalytic films is contributed to by two main factors in
comparison to ZnO NRs/ITO. The first one is the effectiveness of the combination between Sn dopant and ITO,
and the second one is the effective surface area of nanorods. In this case, the reduction of photocatalysis of
Zn;_Sn,O NRs/ITO composite photocatalytic films is heavily contributed to by the second factor which
related to lower nanorod density and the larger in nanorod diameter of the Sn doped composite films (shown in
figure 2). Hence, if the second factor was controlled, the enhancement effect of Sn dopant and ITO substrate on
photocatalysis can be clearly observed. In details, when the Zn; _,Sn,O NRs/ITO composite photocatalytic films
with a doping concentration from 3% to 7% have a similarity in effective surface areas (shown in figure 2), which
means the second factor was controlled nearly unchanged, the increment of degradation of RhB was observed
from 819% to 95%, which is contributed to by the first factor. These results indicate that the photocatalytic
activity of Zn; _,Sn,O NRs/ITO composite photocatalytic films can be more efficient when the effective surface
area is controlled similarity.
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Figure 8. Top-view SEM images of the ZnO NRs/ITO composite film with variation in the effective surface areas.
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Figure9. (a) The first-order kinetic plot for RhB photodegradation by the ZnO NRs/ITO composite photocatalytic films. (b) The
pseudo-order photodegradation rate constants versus the effective surface areas.

To further evaluate the role of Sn dopant (the first factor) on photocatalysis of Zn; _,Sn,O NRs/ITO
composite photocatalytic films, the relationship between photodegradation rate constant (k) and effective
surface areas (A) was studied by the following investigations. Firstly, the ZnO NRs/ITO composite
photocatalytic films were fabricated with variation in growth temperatures from 60 to 100 °C and SEM images
are shown in figure 8. These samples have different effective surface areas which vary from 30.04 cm” to
49.8 cm®. Secondly, the pseudo-order photodegradation rate constant in the reaction of decomposition of RhB
under UV light was investigated and depicted in figure 9(a). Finally, the relationship between photodegradation
of rate constant and effective surface areas was determined from the slope of the plot of the photodegradation
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rate constant versus the effective surface areas and the resultis 1.2 x 10~ min~'.cm 2 (figure 9(b)). Based on
this result, the calculated photodegradation rate constant of ZnO NRs/ITO composite photocatalytic film is

3.4 x 107> min~ ' corresponding to its effective surface areas of 28.3 cm” which is the effective surface area of the
Zng 93519070 NRs/ITO composite photocatalytic film calculated from SEM results in figure 2. The results in
figure 7 (inset) indicate that the experimental photodegradation rate constant of the Zng 935n4,9;0 NRs/ITO
composite photocatalytic filmis 4.8 x 10> min~ . Therefore, the photodegradation rate constant of the

Zng 93519,070 NRs/ITO composite photocatalytic film can be improved up to 41% compared to that of the ZnO
NRs/ITO composite photocatalytic film. This improvement is contributed to by the role of Sn dopant in
composite films.

4. Conclusions

Zn;_,Sn,O NRs/ITO composite photocatalytic films were successfully fabricated by the hydrothermal method.
The Sn doping concentrations have a strong influence on the effective surface areas of Zn, _,Sn,O NRs/ITO
composite photocatalytic films. The reduction of effective surface areas followed an exponential decay function
and the negligible reduction was observed when Sn doping concentration is higher than 3%. With the similarity
in effective surface area, the photodegradation rate constant of the Zng 93Sn¢ ;0 NRs/ITO composite
photocatalytic film can be improved up to 41% compared to that of the ZnO NRs/ITO composite
photocatalytic film. Therefore, the Sn dopant was proved to contribute to the enhancement of the photocatalytic
activity of Zn; _,Sn,O NRs/ITO composite photocatalytic films.
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