
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

ECHONET Lite-based IoT Platform for Smart
Homes

Hoai Son Nguyen, Xuan Anh Do, Hoang Le, Van Hoang Nguyen, Quang Khai Duong, Xuan Viet Cuong Nguyen, Minh Hoang Ngo
Faculty of Information Technology

VNU University of Engineering and Technology, Vietnam National University, Hanoi
Hanoi, Vietnam

{sonnh,16020192, 16020229,16020242,16020208, 16020064}@vnu.edu.

Abstract— In this paper, we introduce an ECHONET Lite
based IoT platform which allows households to set up smart
home environment with ease as well as allows service providers
to deploy their IoT applications easily and securely. Our
proposed platform is fully implemented with three main
features: a simple process for integrating new IoT devices into
smart home environment, a seamless data transfer mechanism
between IoT devices and service providers, and a RESTful API
for verifying and supporting service providers to deploy their
IoT applications into our platform. The experimental results
verified the practicability of our proposed IoT platform.

Keywords— IoT Platform, Smart home, ECHONET Lite
protocol, MQTT protocol, JWT-based authentication

I. INTRODUCTION
The technological breakthroughs have facilitated daily

life of people all around the world. One of the most successful
innovations which improves standard of living is the Internet
of Things (IoT). The simple conception of IoT is a network
which allows all the things in the world to connect and
exchange data with each other. When we bring IoT
technologies to domestic space, we can introduce a new
comfortable living environment called “smart home” in
which various domestic services such as home automation,
smart lighting, anomaly detection for IoT devices, smart air
conditioner, etc. are provided to home users.

In a smart home, IoT devices collect and send data they
obtain from the real world to service providers, who analyze
the data and send control commands to IoT devices to provide
services to home users. In fact, the increasingly popular of
IoT devices and services for smart homes leads to a demand
of an IoT platform which allows home users to easily set up
smart home environment and allows service providers to
easily access and control IoT devices inside a smart home. It
means that the IoT platform needs to facilitate the interaction
amongst IoT devices, households as well as service providers.

There are a large number of researches on the design of
IoT platforms for smart homes. One design approach is
cloud-based platform which utilizes cloud computing
paradigms to achieve scalability, flexibility and high secure
in data storage [1-4]. However, these platforms lack the
ability of integrating various kinds of IoT devices to the
system with ease. On the other hand, a number of IoT
developers choose local platform to deploy their services [6-
10]. Contrary to cloud-based platforms, local platforms
handle all requests locally instead of pushing them into cloud.
As a result, data transmission delay of local platforms is much
smaller than cloud-based platforms. However, it is difficult
to deploy applications which require large computing
resources likely deep learning-based applications.

With the aim of allowing households to set up and manage
their smart home environment with ease and supporting
service providers deploying their IoT applications in smart
home environment securely and efficiently, we propose in
this paper the design of an ECHONET Lite-based IoT
platform. First of all, our platform is implemented with
ECHONET lite, a protocol designed for data communication
in smart home [12]. Due to the flexibility of ECHONET Lite
protocol, our IoT platform does not only enable smart
devices’ connectivity and management like other platforms,
but also include some valuable features.

• A simple process for integrating new smart devices to
the ECHONET Lite environment

• A seamless data transfer mechanism between IoT
devices

• and service providers
• An API for service providers to easily deploy their

services
• An JSON Web token-based authentication

mechanism to authenticate users and specify service
providers’ access permission

In order to verify the practicability of our IoT platform,
we implemented a testbed which is a smart lighting system
with the use of our proposed IoT platform. The performance
of our IoT platform is evaluated by the use of the testbed.

The paper is organized as follows. Section II presents past
works in IoT platforms. Section III describes novelties of our
platform in three part: Home Gateway, Server part and
Application part. Section IV illustrates how we deploy our
IoT platform and provide a method to evaluate our platform’s
performance. Finally, section V draws final conclusions.

II. RELATED WORKS
In an effort to work out feasible IoT solutions, the

development of IoT platforms has attracted considerable
attention. Particularly, two design approaches have been
conducted for the construction of IoT platforms in recent
years: cloud-based platforms and local platforms.

Cloud-based platforms are typical examples of the
convergence between the IoT and the cloud computing
paradigms. The authors of the paper [1] had proposed a
platform based on a novel multi-layer cloud architectural
model for smart homes, which substantially improves the
interactions/inter-operations between heterogeneous home
devices and services supplied by different vendors in IoT-
based smart home. In comparison with the platform
introduced in the paper [1], [2-4] are the prevalent ones that
are not restricted to only smart home. Kaa [2] is a feature-rich
open and efficient IoT cloud platform which supports various
integrations for better scalability. Kaa platform empowers
integration of not only a wide range of hardware types but

also different kinds of software such as data analytics,
business tools and legacy systems. ThingSpeak – the platform
proposed in the paper [3], distinguishes itself by generating a
sense of community through the capability of creating public
data-sharing channels. Furthermore, ThingSpeak offers users
prominent features such as free hosting for channels,
MATLAB visualization and additional support for the
programming languages Ruby, Node.js and Python.
Meanwhile, Mainflux [4] is another open-source, scalable
and secure IoT platform based on the cloud. In addition to
easy deployment and supplement of visualizations and
analytical tools, Mainflux is capable of delivering over-the-
air firmware updates and supporting all widely-used
protocols - MQTT, WebSockets, CoAP and REST API [5].

While the above cloud-based platforms [2-4] have
demonstrated their strengths, particularly overall cost and
flexibility, there are great many things remaining to be done.
Kaa IoT platform, in spite of its considerable potential, does
not have many hardware modules supported and cannot
deploy applications based on the PaaS model as well. With
regard to ThingSpeak, that there is a limit when uploading
data to the API and some required coding knowledge can be
an obstacle to its users. In the meantime, Mainflux users need
to host the IoT platform by themselves and are only able to
exploit cloud services with commercial version.

In parallel with the blooming of cloud-based platforms,
there exists abundant local IoT platforms which have data
locally stored. OpenRemote [6] is an open-source project that
focuses on home automation, commercial buildings, public
spaces and healthcare. This platform allows users to integrate
any device, protocol or design using available resources like
iOS, Android or web browsers. Moreover, local data storage
can truly offer the full data ownership to its end-users,
thereby raising the level of user privacy. Thing Broker [7],
another platform developed based on centralized architecture,
delivers a Twitter-based abstraction model for things and
events. The mission of Thing Broker is to integrate IoT
objects with different characteristics, protocols, interfaces
and constraints as well as to concurrently preserve the
simplicity and flexibility of applications. Besides using a
single abstraction to represent things, Thing Broker provides
a model of relationship between things, which resembles the
notions of “following” and “followed” links as observed in
Twitter, to connect the world of heterogeneous entities that
need to be accessed and controlled. [6] and [7] basically meet
the major needs that customers expect from an IoT platform.
However, local platforms require lots of efforts of service
providers to deploy and maintain smart services in smart
homes due to the lack of computing resource and storage
resources.

ECHONET Lite [8] is an open communication protocol
developed by the ECHONET Consortium which has turned
out to be an international standard via ISO/IEC. The primary
aim of ECHONET Lite is to develop a home network system
that enable interconnectivity between multi-vendor electrical
appliances, which are frequently found in ordinary houses. A
remarkable feature of ECHONET is the use of lightweight
messages which help to speed up transmission amongst IoT
devices in a home network as well as avoid wasting
transmission bandwidth and energy. Besides, the fact that
ECHONET Lite protocol is supported by various IoT vendors
as well as designed in object-oriented paradigm results in

lower hardware cost and faster deployment. Upon
characteristics, in ECHONET Lite protocol, communication
between devices is carried out on a node-by-node basis, then
there exists a term called ECHONET Lite node. A node is an
entity on an ECHONET Lite network and uniquely identified
by a single IP address. An ECHONET Lite node encompasses
a profile object that stores information about the node and a
device object list containing the names of one or more device
objects. A device object is a logical model of the information
held by sensors or home electrical appliances. Since device
objects are classified based on types of devices, even products
of different manufacturers that are of the same device type
can be remotely controlled in the same way through a
standardized interface form. However, ECHONET Lite only
supports local communication methods and does not specify
a design of a whole smart home system.

III. ECHONET LITE-BASED IOT PLATFORM

A. IoT platform design
In this paper, we propose the design of an IoT platform

which allows households to easily deploy smart home
systems and obtain the benefits of smart homes in small cost
and allows service providers to easily deploy their
applications on smart home environment. In order to do that,
the IoT platform must deal with a number of following tasks.

• Connect and integrate multi-vendor smart IoT devices
inside a smart home into the platform

• Collect and store sensor-actuator data for future use
such as data analysis or data monitoring

• Allow only 3rd party service providers which receive
households’ permissions to access and send control
commands to IoT devices

• Provide a simple and easy-to-use API for 3rd party
service providers to deploy their applications

Our proposed IoT platform are structured into 3 main
sides: Local side, Server side and User side (Fig. 1). Each side
is assigned a separate task and builds on the component
packaging mechanism that only one component of a side can
connect to the another side.

The Local side is implemented inside a smart home. It
contains one Home Gateway and a number of smart IoT
devices. Its mission is to collect sensor data about the home's
living environment and execute control commands sent by
service providers on actuator devices.

Smart IoT devices include 2 types:
• Sensor devices: measure physical parameters such as

temperature, humidity, illuminance, electrical
current, etc. of home environment

• Actuator devices: change the home’s environment to
meet users’ requirements (E.g. light bulbs, HVAC
devices, curtain controllers, etc.).

We utilize ECHONET Lite as a communication protocol
between smart IoT devices and Home Gateway. Each IoT
device is considered as an ECHONET Lite device. By the use
of ECHONET Lite protocol, our IoT platform can easily
connect ECHONET Lite compatible devices of different
vendors and perform data transmission between smart IoT
devices and Home Gateway in small cost.

Home Gateway is a mini computer that serves as a
communication bridge between smart IoT devices and Server
side. Home Gateway takes responsibility for four following

operations: identifying all smart IoT devices already joined
in the network and detecting new devices, monitoring and
controlling devices and exchanging data with Server side.
The Home Gateway is the only component that is capable of
communicating with the Server side, which helps to easily
manage and control smart IoT devices.

The Server side is implemented in physical servers in
cloud. Server side is structured into 3 components: MQTT
broker, Data pool and RESTful API server.

The first component is MQTT Broker (Broker) whose
main job is to support data exchange between Local side and
Server side using MQTT protocol [13]. The usage of MQTT
protocol brings to our platform many advantages such as
highly decoupled publisher and subscriber model, support of
asynchronous messaging and 3-level QoS.

Our IoT platform stores collected actuator-sensor data in
Data pool, the second component of the Server side. The Data
pool also stores information of home users’ account, home
information, service providers’ information and other
information necessary for managing all activities in smart
home.

The third component is RESTful API server. In our
design, RESTful API server takes an important role of
providing interface for service providers to access data and
send control commands to smart IoT devices inside a smart
home. The location of RESTful API server enables the IoT
platform to control the information provided to service
providers and check the commands sent by Service providers
to secure user’s information as well as their safety. RESTful
API server authenticates users and service providers by the
use of JSON Web token to ensure their access privileges.

We design the architecture of the Server side according to
the idea of a black box in which only MQTT Broker has the
ability to communicate with Local service and only API
server can communicate with End-User side. This design
helps the system to be secured, easy to maintain, change and
increase system scalability.

The household of a smart home can monitor and control
IoT devices inside the smart home by the use of an
application provided by User side. The User side can provide

a web application or a mobile application, which may be
installed on households’ smart phones.

B. Device naming
In Local side and Server side we use different naming

schemes to flexibly specify the smart IoT devices that the
system needs to access and control. In Local side, we need a
naming scheme which is simple enough to implement and
save transmission cost. In Server side, we need a naming
scheme which can allow service provider to access to the
right smart IoT device inside a smart home in an easy and
flexible way.

On the Local side, an IoT device is identified by a device
ID, which is a combination of its IP address of the ECHONET
lite node it belongs to and EOJ code which specifies the type
of the IoT device. EOJ code includes group code, class code
and instance code, which are defined by ECHONET lite
standard. The group code and the class code written in hex
code play the role as an identifier for a particular group of
devices and a specific device type in that group. For example,
an air pollution sensor has a class code of 0x0B, an
illuminance sensor has a class code of 0x0D and an electric
energy sensor has a class code of 0x22. These sensors have
the group code of 0x00.

Meanwhile, on the Server side, device name is set
according to a hierarchical naming scheme that includes five
levels, namely: “user ID”, “home ID”, “room name”, “device
type”, and “device ID”. The attribute “user ID” specifies the
user account that is granted to the household of one or more
smart homes. The attribute “home ID” is an identification
which identifies a smart home of the household. In fact, a
person can own several smart homes. The attribute “room ID”
indicates a place (outside, bedroom, living room, kitchen,
etc.) in which the device is installed. The attribute “device
type” identifies the type of the device, which corresponds to
the group code and class code defined by ECHONET lite
standard. Finally, “device ID” specify an ECHONET lite
device by a combination of the physical address (e.g. MAC
address) of ECHONET lite node and the instance code of the
ECHONET lite device. The physical address is used in order
to identify the ECHONET lite node while the instance code
is necessary in the case multiple ECHONET lite devices
exists on a single ECHONET lite node.

We use a hierarchical naming scheme on the Server side
since the naming scheme allows service providers to flexibly
and easily describe the information that they need. For
example, the naming scheme allows a service provider to get
information of all devices in a room or information related to
a device type in a room by sending one request. They can also
exactly specify the device that they want to access and
control.

C. Integration of smart devices into IoT platform
In our proposed IoT platform, a new ECHONET Lite

device will be automatically integrated into the platform after
joining home network based on the ECHONET Lite protocol
standard. When an ECHONET Lite device joins the home
network, it will be automatically discovered by IoT platform
and an appropriate monitoring scenario is set up to obtain
device data and send it to the Server part. Control commands
sent from service providers will also be delivered to the right
devices without loss.

Fig. 1 Overview of ECHONET lite-based IoT platform

The discovery of devices in the Local side of our IoT
platform is realized through a broadcast channel defined by
ECHONET Lite protocol. As shown in Fig. 2, once entering
the home network, Home Gateway will send a notification
request message to retrieve all existing nodes and its devices’
information using the broadcast channel. All ECHONET Lite
nodes that previously exist in the home network can receive
this message and send a response message containing a
device object list and a profile object to Home Gateway.
Home Gateway then establishes listening events to detect
new devices whenever their ECHONET Lite node
participates in the network. A newly joined ECHONET Lite
node also sends a notification message with a device object
list and a profile object on the broadcast channel as soon as it
joins the home network. This message will be delivered to all
ECHONET Lite nodes including Home Gateway and be
caught by a corresponding listening event at Home Gateway.
Based on ECHONET Lite specification in [12], Home
Gateway will identify which device that a device object
corresponds to.

Regarding the timely delivery of data to service providers
to analyze and take appropriate actions, each time a device is
discovered, a corresponding monitoring scenario will be set
based on the type of the device. Devices such as actuators
only need to send update data in case there are any status
changes but sensors may need send their data periodically. By
sending a GET request message with appropriate data fields
to a specific device in a period of time, Home Gateway can
easily get status information of the device at a predetermined
period. Besides, an ECHONET Lite node can notify other
nodes including Home Gateway in case its devices have
changes in terms of operation status by sending notification
messages on the multicast channel. Whenever receiving a
status update message, Home Gateway will convert the
content of the message to JSON format and send the data to
the Server side (i.e. MQTT broker). Details of updating data
in the Server side will be described in Section 3.4.

Our IoT platform will deliver a control command sent by
a service provider to a specific ECHONET Lite device in the
home network in order to control the device for service
provision. Whenever Home Gateway receives a message
containing a control command from Server side, it converts
the command into ECHONET lite format and sends a SET
request message to the device. The ECHONET Lite node,
upon receiving the message, will change its own devices’
status and send a response message to notify that its devices’
status has been updated successfully.

Since a control message is essential for service provision,
our IoT platform guarantees the delivery of the SET request
message. Since the message can be lost during data
transmission in the home network, Home Gateway will set a

timer after sending the message. In case a SET request
message is lost, the receiver will not receive a response
message within the predefined timeout. In this case, the
Home Gateway will resend the SET request message to the
receiver until it receives a response message indicating that
device status is updated successfully.

D. MQTT-based interaction within Server side
In order to send data between components within Server

side and between Local side and Server side we utilize MQTT
protocol. There are three main data flows in the IoT platform:

• Home Gateway publishes sensor-actuator data to
MQTT broker which forward the data to Data poll and API
servers which require the data.

• API server publish control commands destined to an
IoT device inside a smart home to MQTT broker, which will
forward the command to the Home gateway of the smart
home.

• API server request data from Data pool.
Since MQTT protocol utilize topics to determine the

receiver of published data, we organized MQTT topic based
on device names. For each device name, we have two topics:
one topic for data publication from the device and one topic
for sending control commands from Server side to the device
(Fig. 3).

Sensor-actuator data in all smart homes will be stored in
Data pool for home monitoring and data analysis. In order to
do that, the Data pool acts as a MQTT subscriber, which
subscribes the root topic on MQTT broker. All data sent to
MQTT broker will be forwarded to Data pool to store. We
also store information about user’s account and their smart
home’s structure in Data pool.

Beside fundamental services provided by IoT platform,
most of smart home services for households will be provided
by Service providers via RESTful API servers. Service
providers may require to receive two types of data: real-time
data and historical data. In order to provide real-time data of
IoT devices to service provider, RESTful API server
subscribes to the topic that the data is published at MQTT
broker. For example, if the service provider request the
temperature data of the living room of the home “Home 2” of
user B, the API server will subscribe a MQTT topic of
“/userB/home2/living room/temperature sensor/*” at MQTT
broker. If a service provider requests historical data of an IoT
device, the RESTful API server will send the request to Data
pool and forward the received data to Service provider.

Fig. 2 Device discovery process

Fig. 3 MQTT topics for IoT devices

Nguyen Cuong

Nguyen Cuong

Nguyen Cuong

Nguyen Cuong

Nguyen Cuong

Nguyen Cuong

In order for a service provider to send control commands

to actuator devices in a smart home, the Home gateway will
subscribe topics corresponding to actuator devices it is
responsible for. When a control command destined to an IoT
device is sent to RESTful API server, the API server will
check the validity of the command and publish the command
to the topic corresponding to the IoT device, which will be
forwarded to the responsible Home gateway.

E. JWT-based authentication mechanism
For a smart home, access control to IoT devices is very

important. In order to receive sensor/actuator data and send
control commands to devices within a smart home, service
providers must obtain user approval on which devices they
can access depending on the service they provide.

In our IoT Platform, we define 3 user types based on data
access levels: Administrator, normal user and service
provider. The administrator has full access privileges to the
system. The normal user who owns a smart home has full
access privileges to devices inside the smart home that he/she
owns. Service providers can only access and control devices
which are approved by the user.

We design an authentication mechanism to verify the
access privileges for normal users and service providers (or
users in brief), using JSON Web Token (JWT) [14], a light-
weight authentication mechanism which can create a truly
RESTful API without session maintenance after logging in.
JWT has 3 parts: Header, Payload and Signature. Header part
stores information about the token type (i.e. JWT in this case)
and the algorithm used to create the token. Payload part
contains user ID and access privileges of the authenticated
user. Here, the access privileges are the list of MQTT topics
that the user can access and the time-to-live of each topic.
Signature part is created from Header part, Payload part and
a secret key by the use of the algorithm specified in Header.

RESTful API server utilizes JWT token to verify the
access privileges of users each time it receives a data request
(Fig. 4). When a user logs in the system with their username
and password, the API server returns an initial JWT token to
the user. When the user sends an access request for a smart
home along with the JWT token, the API server will check
the MQTT topic corresponding to the access request. If the
topic is included in the payload of the JWT token, the access
request is valid and the API server will execute the request.
If the topic is not included in the payload of the JWT token,
the API server will send a request to Data pool to get the
access privilege of the user. If the access request is valid, the
API server will execute the request, as well as update the list
of MQTT topics in the payload part of the JWT token and
send back to the user.

In order to reduce the size of JWT token and the overhead

and delay caused by Data pool access of RESTful API server,
when updating the list of MQTT topics in the payload part of
the JWT token, the highest-level MQTT topic that the user
can access is used. For example, if a user request corresponds
to a MQTT topic of “/userB/home2/living room/temperature
sensor/device ID1/data” but the highest topic that the user can
access is “/userB/home2/living room/*” (i.e. the user can
access to all devices in the living room), the topic will be used
to update the JWT token. Further, we limit the topic number
in the list of MQTT topics. If the topic number is over the
maximum number, the old topic will be deleted.

IV. IMPLEMENTATION AND EVALUATION

A. Installation environment
We implement our IoT platform in a testbed environment

in order to verify our design and evaluate the performance of
the IoT platform in three components: local side, server side
and user side.

In the Local side, we used OpenEcho library [15] to
implement sketches for the Home Gateway because it has
pre-installed abstract classes, along with the methods and
attributes which support specifically for ECHONET Lite
protocol.

In the Server side, we used Mosquitto open source
software to implement MQTT Broker. In regard to the
database for Data pool component, we employed MySQL,
which is the most popular open source database provided by
Oracle.

For the User side, we develop a web application using
Node.js and an iOS mobile application. Both mobile and web
applications are configured to the API server with the aim of
enabling users to control and manage their connected
household devices in a convenient way.

B. Build a smart lighting system based on IoT Platform
To prove the feasibility of the IoT platform that we have

designed above, we have built a smart lighting control service
that automatically turn on/off lights to match the user's
desired brightness while minimizing the power consumption
of the whole system as much as possible.

The smart lighting control service provider uses our
proposed IoT platform to deploy its service. When a user
sends his/her desired brightness in some areas in a room to
the smart lighting server by the use of a mobile application,
the server interacts with RESTful API server to get
illuminance data from IoT devices in the room such as
lighting illuminance or nature illuminance. Then, the smart
lighting server calculates an optimal light turning pattern

Fig. 4 Authentication mechanism using JWT
Fig. 5 A prototype of a smart lighting system

Nguyen Cuong

based on the illuminance data and users’ desired brightness
and sends back commands via API server to control lights in
the room.

The system is integrated with Genetic Algorithm (GA),
which helps our system optimize light turning pattern to meet
user’s desired brightness. It also maximizes the energy saving
by utilizing natural illuminance efficiently.

In order to verify the operation of our implemented smart
lighting control service, we built a plastic home prototype
(Fig. 5). The home prototype has 6 smart lighting kits and 6
illuminance sensors which are controlled by 6 ESP8266 Wi-
Fi modules. We use BH1750 illuminance sensors to measure
illuminance value at each lighting area. In addition, we
installed the source code of Home Gateway into a Raspberry
Pi, which is running on Raspbian OS. We implemented Data
pool, RESTful API Server and MQTT Broker on a server
running on Ubuntu 18.04 with a 10-core CPU.

The experimental results of the prototype system have
proved that the smart lighting system worked properly as
expected. The lighting devices and illuminance sensors were
automatically integrated into the system and the lighting
control service provider could obtain illuminance sensor data
and sent control commands to the lighting devices. It does not
only bring convenience to the user, but also helps saving
energy of the whole indoor lighting system brightness.

C. Perfomance evaluation
To evaluate the performance of the smart lighting system

built on our IoT platform, we conducted an experiment of a
lighting control scenario and measure the delay when
controlling the lights. In this experiment scenario, the user set
the required brightness level at a location inside the home
prototype. The experimental results are denoted in Table 1.

TABLE 1. DELAY TIME WHEN SENDING MESSAGES IN THREE SECTIONS

Section Delay time

Mobile application sends request to
service provider (i.e. lighting controller)

15ms

Service provider runs algorithm to
result in light turning pattern

300ms

Service provider sends requests to
Home Gateway

4ms

Home Gateway sends a command until
a lighting device is controlled at right
level

1.4s – 1.7s

Table 1 illustrates the delay time in four message
transmission sections in our IoT platform. The delay between
Home Gateway and lighting devices is the largest in four
sections. It is mainly because of the processing time at the
smart lighting kits, which are processed by ESP8266 Wi-Fi
modules. The running time of GA-based optimization
algorithm at the service provider also contribute large delay
of the system. Other delays are small enough comparing to
these two delays.

V. CONCLUSION
In this paper, we have introduced an IoT platform which

enables users to set up and manage smart home environment
with ease as well as allows approved service providers to
access IoT devices in order to develop IoT services in smart
homes. ECHONET Lite protocol is the key factor of our
platform when compared to myriad other IoT platforms due
to its light-weight messages, multi-vendor support and
object-oriented device modeling. Besides, our platform
provides a simple process for integrating new IoT devices
into the ECHONET Lite environment, equips reliable
transmission services at Home Gateway and supplies an API
for service providers to receive device access permission and
deploy their IoT services easily. Based on the process of
development and experiments undertaken, our ECHONET
Lite-based platform has proven its flexibility and stability,
which can leverage the large-scale deployment.

In our future work, we plan to further develop basic IoT
applications such as devices’ data visualization and improve
the performance of our proposed IoT platform.

REFERENCES
[1] Tao, M., Zuo, J., Liu, Z., Castiglione, A., & Palmieri, F. (2018). Multi-

layer cloud architectural model and ontology-based security service
framework for IoT-based smart homes. Future Generation Computer
Systems, 78, 1040-1051.

[2] Kaa IoT platform. Retrieved September 2, 2019, from
https://www.kaaproject.org/

[3] Maureira, M. A. G., Oldenhof, D., & Teernstra, L. (2011).
ThingSpeak–an API and Web Service for the Internet of Things.
World Wide Web.

[4] Mainflux - Full-stack Open-Source, Patent-free IoT Platform and
Consulting services. Retrieved September 2, 2019, from
https://www.mainflux.com/

[5] The Top Open Source IoT Platforms for Developers. Retrieved
September 2, 2019, from https://opensourceforu.com/2018/10/the-
top-open-source-iot-platforms-for-developers/

[6] OpenRemote. Retrieved September 2, 2019, from
http://www.openremote.com/

[7] Perez de Almeida, R. A., Blackstock, M., Lea, R., Calderon, R., do
Prado, A. F., & Guardia, H. C. (2013, September). Thing broker: a
twitter for things. In Proceedings of the 2013 ACM conference on
Pervasive and ubiquitous computing adjunct publication (pp. 1545-
1554), ACM.

[8] Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte,
J. P., Riahi, M., ... & Skorin-Kapov, L. (2015). Openiot: Open source
internet-of-things in the cloud. In Interoperability and open-source
solutions for the internet of things (pp. 13-25). Springer, Cham.

[9] Medvedev, A., Hassani, A., Zaslavsky, A., Jayaraman, P. P.,
Indrawan-Santiago, M., Haghighi, P. D., & Ling, S. (2016,
November). Data ingestion and storage performance of IoT platforms:
study of OpenIoT. In International Workshop on Interoperability and
Open-Source Solutions (pp. 141-157). Springer, Cham.

[10] Kostelnik, P., Sarnovsk, M., & Furdik, K. (2011). The semantic
middleware for networked embedded systems applied in the internet
of things and services domain. Scalable Computing: Practice and
Experience, 12(3), 307-316.

[11] da Cruz, M. A., Rodrigues, J. J., Sangaiah, A. K., Al-Muhtadi, J., &
Korotaev, V. (2018). Performance evaluation of IoT middleware.
Journal of Network and Computer Applications, 109, 53-65.

[12] ECHONET Lite Specification. Retrieved September 2, 2019, from
https://ECHONET.jp/spec_v113_lite_en/

[13] MQTT Protocol. Retrieved September 2, 2019, from http://mqtt.org/
[14] Json Web Token. Retrieved September 2, 2019, from https://jwt.io/
[15] OpenEcho. Retrieved September 2, 2019, from

https://github.com/SonyCSL/OpenECHO/

