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1. Introduction

According to estimates [1] in 2010, epilepsy affects 
about 50 million people worldwide in which nearly 
40 million people live in developing countries. In 
electroencephalography (EEG) records of the brain, 
epilepsy biomarkers are seizures and epileptiforms 
(e.g. spikes, sharp waves and spike-wave complexes), 
which are resulted from abnormal and excessive 
electrical discharges of nerve cells.

For epilepsy diagnosis and treatment, one needs 
to observe epileptic seizures or epileptiforms to help 
identify the type of epilepsy and the affected area 
of the brain. Since epileptic spikes are interictal (i.e. 
they occur in between seizures) while seizures occur 
sparsely in time, one normally obtains EEG records 

which contain various spikes. To better detect the epi-
leptic spikes in long EEG records or to reduce false-
alarm detection (which is often the case since vari-
ous other non-epileptic spikes also co-exist in EEG),  
automatic detection of spikes by software programs/
systems is advantageous over visual reading by neurol-
ogists, and thus has been a subject of engineering and 
science studies for several decades [2–6].

For epileptic spike detection, most studies have 
focused on analysis of single-channel EEG signals, each 
of which is obtained from an EEG electrode. Especially, 
recent efforts are seen in developing multi-stage detec-
tion systems that take into account of various types 
of information (i.e. electrical, physiological and mor-
phological) of the spikes [7–9]. However, each EEG 
record simultaneously collects signals from  multiple 
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Abstract
Objective. Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, 
the neurologist needs to observe epileptic spikes from electroencephalography (EEG) data. Since 
multi-channel EEG records can be naturally represented by multi-way tensors, it is of interest to 
see whether tensor decomposition is able to analyze EEG epileptic spikes. Approach. In this paper, 
we first proposed the problem of simultaneous multilinear low-rank approximation of tensors 
(SMLRAT) and proved that SMLRAT can obtain local optimum solutions by using two well-known 
tensor decomposition algorithms (HOSVD and Tucker-ALS). Second, we presented a new system 
for automatic epileptic spike detection based on SMLRAT. Main results. We propose to formulate the 
problem of feature extraction from a set of EEG segments, represented by tensors, as the SMLRAT 
problem. Efficient EEG features were obtained, based on estimating the ‘eigenspikes’ derived from 
nonnegative GSMLRAT. We compared the proposed tensor analysis method with other common 
tensor methods in analyzing EEG signal and compared the proposed feature extraction method with 
the state-of-the-art methods. Experimental results indicated that our proposed method is able to 
detect epileptic spikes with high accuracy. Significance. Our method, for the first time, makes a step 
forward for automatic detection EEG epileptic spikes based on tensor decomposition. The method 
can provide a practical solution to distinguish epileptic spikes from artifacts in real-life EEG datasets.
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 electrodes, resulting in a multi-channel EEG signal. 
Since epilepsy is often caused by an affected area in 
the brain, several electrodes may be able to pick up the 
resulting epilepsy biomarkers around the same time 
at which the single-channel EEG signals are spatially 
correlated across the channels. Therefore, analysis of 
multi-channel EEG signals may enhance the detec-
tion of epileptic spikes. Currently, there exists only one 
study on spike detection that deals with multi-channel 
EEG signals [10].

Multi-channel EEG signals can be naturally rep-
resented by matrices which are two-way tensors 
(when considering time and channel domains), or 
multi-way tensors (when considering more than two 
domains, e.g. of time, frequency, space, trial, condi-
tion, subject and group). Many studies have used ten-
sor decomposition for EEG signals in general and for 
epileptic seizures in particular [11–19]. To the best of 
our knowledge, there exists no study applying tensor 
decomposition to detect EEG epileptic spikes. There-
fore, the aim of our study is to propose a new method 
of tensor decomposition to deal with this challeng-
ing problem, that is to separate two types of spikes 
in an EEG dataset, including real epileptic spikes and 
non-epileptic ones. Real epileptic spikes are those 
 recognized and labeled by the neurologists, whereas 
non-epileptic spikes are not related to epilepsy but 
may be easily misdiagnosed as epileptic spikes. Non-
epileptic spikes are large positive or negative voltage 
transients that can be confused as epileptic spikes by 
regular algorithms.

In many analysis and classification systems, low-
rank matrix approximation (LRAM) and its multi-
way extension—low-rank tensor approximation 
(LRAT)—play important role for dimensionality 
reduction, feature extraction and feature selection 
[20]. In this paper, we are interested in dealing with 
a sequence of matrices and tensors and, hence, the 
problems of simultaneous LRA of multiple matrices 
(SLRAM) and tensors (SLRAT), as well as their appli-
cations in classification. We now review simultaneous 
LRA approaches in general (i.e. not limited to EEG 
applications), while noting that the literature for LRA 
of a single matrix or tensor, and their applications can 
be found in recent reviews [21, 22].

The common idea in dimensionality reduction is 
to seek a linear or multilinear subspace embedded in 
a high-dimensional manifold which represents the 
dataset of interest. Then depending on the applica-
tions at hand, different approaches can be taken. For 
SLRAM, the resulting two-dimensional subspace 
methods include: two-dimensional singular value 
decomposition (2dSVD) [23, 24], two-dimensional 
principal component analysis (2dPCA) [25, 26], 
population value decomposition (PVD) [27], general-
ized low-rank approximation of matrices (GLRAM) 
[28–32], two-dimensional linear discriminant analysis 
(2dLDA) [33], and simultaneous component analy-
sis (SCA) [34, 35]. These methods can be categorized 

in two main approaches: non-iterative-based and 
 iterative-based algorithms. The former [23–27, 29] 
provides sub-optimal solutions, but is simple and effi-
cient in practice. The latter [28, 30–32, 35] can yield 
optimal solutions, but follows procedures that are 
time-consuming.

For SLRAT, the resulting higher dimensional sub-
space methods include: manifold regularization non-
negative Tucker decomposition (MR-NTD) [36], 
concurrent subspace analysis (CSA) [37], multilinear 
discriminant analysis (MLDA) [38], multilinear PCA 
(MPCA) including unconstrained MPCA [39], non-
negative MPCA [40] and sparse MPCA [41]. In a per-
spective of data fusion perspective [42], the problem 
of SLRAT can be considered as a special type where 
data inputs have the same size. Data fusion is to look 
for common factors sharing meaningful information 
between datasets. When the data are represented by 
multiple matrices or tensors, simultaneous decomposi-
tion (a.k.a. joint factorization) methods are the key for 
fusing the data.

In light of the above literature, the work in this 
paper has two main contributions. Based on the pre-
liminary result in [43], the first contribution of this 
paper is the proposal of a new method for SLRAT, 
generalizing SLRAM from matrices to tensors. In par-
ticular, we introduce simultaneous multilinear LRAT 
(SMLRAT) in which different tensors with identical 
dimensions are factorized so that (i) all tensors share 
common factor matrices and (ii) each tensor has it 
own core-tensor. By a theoretical analysis, we then 
show that SMLRAT can obtain local optimum solu-
tions by using two well-known tensor decomposition 
algorithms: higher-order singular value decomposi-
tion (HOSVD) and higher-order orthogonal iteration 
(HOOI or Tucker alternating least-squares (Tucker-
ALS). We further develop a local solution for nonnega-
tive SMLRAT since our analysis aims to EEG signals for 
which the nonnegativity constraint plays an important 
role [44]. Finally, inspired by the feature extraction 
algorithm proposed in [45], we propose a generalized 
SMLRAT algorithm (GSMLRAT) to effectively solve 
the SMLRAT and nonnegative SMLRAT problems. We 
note that the SLRAT methods are considered as spe-
cial cases of our proposed GSMLRAT, and is analyzed 
in conjunction with other methods, as shown in our 
technical report of [46]. Also, a similar approach to 
[45] can be found in [47, 48], which is based on the lin-
ear system with a CP decomposition constrained solu-
tion (LS-CPD) framework for data classification.

The second contribution of the paper is, for the 
first time, the successful application of tensor decom-
position for detection of EEG epileptic spikes. We pro-
pose to formulate the problem of feature extraction 
from a set of EEG segments, represented by tensors, as 
the SMLRAT problem. We first obtain efficient EEG 
features, based on estimating the ‘eigenspikes’ derived 
from nonnegative GSMLRAT. We then apply the Fisher 
score as the feature selection method for selecting 
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 significant features. These selected features are then 
fed into the widely used classifiers to evaluate their sep-
arability between epileptic and non-epileptic spikes. 
Due to artifacts, false detection of epileptic spikes 
often occurs, possibly leading to misdiagnosis. Our 
algorithm, however, can accurately distinguish real 
events from artifacts (see table 2 for further details). 
Note that, nonnegative Tucker decomposition (NTD) 
has previously been applied for multi-domain feature 
extraction in EEG analysis [49]. In this paper, similar 
to [49], EEG segments were also represented by higher 
order tensors and then decomposed by NTD to derive 
their features. However, our work is different from [49] 
in both objective and method. Particularly, in [49], 
NTD was applied to extract the multi-domain feature 
of visual mismatch negativity (i.e. event-related poten-
tials) for the cognitive research while the objective of 
this study is to detect epileptic spikes. In addition, the 
approach in [49] does not exploit the relation among 
inputs, while our method aims to investigate the rela-
tion among input tensors by looking for a ‘common’ 
feature space of activities of interest (e.g. epileptic 
spikes). Besides, the core tensor in conjunction with 
factors are used as feature in our work instead of only 

core tensor as [49].
The paper is organized as follows. In section 2, a 

brief review of tensors and related operators, as well 
as the multilinear LRAT problem will be presented. In 
section 3, we present the SLRAM problem, and hence 
propose the SMLRAT problem that extends SLRAM 
from matrices to general tensors and nonnegative ten-
sors. Section 4 describes a new tensor-based epileptic 
spike detection system and section 5 shows exper-
imental results.

2. Preliminaries

2.1. Tensor notations and definitions
Follow notations defined in [50], we use lowercase 
letters (e.g. a), boldface lowercase letters (e.g. a), 
boldface capital letters (e.g. A) and bold calligraphic 
letters (e.g. A) to denote scalars, vectors, matrices and 
tensors respectively. Moreover, we summarize here 
some useful tensor operators, to be used later.

The mode-k unfolding of a tensor A  is a matrix in 
vector space RIk×(I1...Ik−1Ik+1...In), where Ik is the inte-
ger number presenting the dimension of the kth vec-
tor space generating the tensor, denoted as A(k), whose 
elements are defined by

A(k)(ik, i1 . . . ik−1ik+1 . . . in) = A(i1, i2, . . . , in),

where i1i2 . . . in is a multi-index, which combines 
multiple indices i1, i2, . . . , in together in a single index 
used regularly in vectorization/matricization for 
tensors [21], given by

i1i2 . . . in = i1 + (i2 − 1)I1 + (i3 − 1)I1I2 + . . .

+(in − 1)I1I2 . . . IN .

The k-mode product of A  with a matrix 
U ∈ Rrk×Ik, written as A×k U , yields a new tensor 
B ∈ RI1×···×Ik−1×rk×Ik+1···×In such that its k-mode 
unfolding is given by B(k) = UA(k). Useful properties 
for the k-mode product follow:

A×k U ×l V = A×l V ×k U for k �= l,

A×k U ×k V = A×k (VU).

The inner product of two n-way tensors 
A,B ∈ RI1×I2···×In is defined by

〈A,B〉 =
I1∑

i1=1

· · ·
In∑

in=1

A(i1, i2, . . . , in)B(i1, i2, . . . , in).

The Frobenius norm of a tensor A ∈ RI1×I2···×In is 
defined by the inner product of A  with itself

‖A‖F =
√

〈A,A〉.

The concatenation of A∈ RI1×I2···×In and a tensor  
B ∈ RI1×I2···×In−1 yields a new tensor C = A�B
∈ RI1×···×In−1×(In+1) such that

C(i1, . . . , in) =

{
A(i1, . . . , in−1, in), if in � In,

B(i1, . . . , in−1), if in = In + 1.

Remark that, a (n-1)-way tensor D ∈ RI1×I2···×In−1 can 
be represented by a n-way tensor E ∈ RI1×I2···×In−1×1, 
so the operator can be used for concatenating the two 
n-way tensors.

For operators on a matrix A ∈ RI1×I2, AT  and 
A# denote the transpose and the pseudo-inverse of 
A respectively. The Kronecker product of A with a 
matrix B ∈ RJ1×J2, denoted by A ⊗ B, yields a matrix 
C ∈ RI1J1×I2J2 defined by

C = A ⊗ B =




a1,1B . . . a1,I2 B
...

. . .
...

aI1,1B . . . aI1,I2 B


 .

2.2. Multilinear low-rank tensor approximation
Multilinear LRAT (MLRAT) can be considered as a 
generalization of LRAM for tensors [21]. In particular, 
MLRAT of a tensor X  requires the following 
optimization problem:

argmin
X̃

fMLRAT = ‖X − X̃‖2
F ,

s.t.X̃ = G ×1 U1 ×2 U2 · · · ×n Un,

rank(Uk) � rk, k = 1, 2, . . . , n,
 

(1)

where G is called the core tensor of X , {Uk}n
k=1 are 

called factors of X , and a set of {rk}n
k=1 is the desired 

low multilinear rank. Next, we present the connection 
of MLRAT with several types of tensor decomposition.

2.2.1. CP decomposition
This decomposition can be considered as constrained 
MLRAT, where the core tensor is diagonal and the 
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factors have the same rank. Specifically, fMLRAT can be 
expressed to CP as

argmin
X̃

fCP = ‖X − X̃‖2
F ,

s.t.X̃ =

r∑
i=1

λiU1(:, i) ◦ · · · ◦ Un(:, i),

rank(Uk) = r, k = 1, 2, . . . , n,
 

(2)

where ‘⚬’ presents the outer product, the factors 
Uk ∈ RIk×r  are full column-rank and {λi}r

i=1 are 
diagonal entries of the core tensor G. To solve fCP in (2), 
the ‘workhorse’ algorithm is based on alternating least 
squares (ALS) [50, 51].

2.2.2. Tucker decomposition
This decomposition is more flexible than CP, where the 
core-tensor are not required to be diagonal while the 
factors are orthogonal matrices, i.e.

argmin
X̃

fTucker = ‖X − X̃‖2
F

s.t.X̃ = G ×1 U1 ×2 U2 · · · ×n Un,

UT
k Uk = Irk

, k = 1, 2, . . . , n,
 

(3)

where Irk
∈ Rrk×rk denotes the identity matrix. As a 

result, solution of fTucker in (3) is not unique in general, 
but the subspaces spanned by {Uk}n

k=1 are physically 
unique [50, section IV]. Two well-known algorithms 
for solving fTucker are HOSVD and Tucker-ALS. 
Depending on applications, both HOSVD and Tucker-
ALS can provide good approximation. Moreover, in 
many practical implementations, HOSVD is used as a 
starting point (i.e. initialization) to further accelerate 
the convergence of Tucker-ALS [52].

2.2.3. Nonnegative tensor decomposition
This type of decomposition is considered as a 
generalization of nonnegative matrix factorization for 
tensors, where the nonnegativity constraint is imposed 
on the factors and/or the core tensor [44]. Specifically, 
nonnegative tensor decomposition (NTD) can be seen 
as a nonnegative fMLRAT as

argmin
X̃

fNTD = ‖X − X̃‖2
F ,

s.t.X̃ = G ×1 U1 ×2 U2 · · · ×n Un,

G � 0, Uk � 0, k = 1, 2, . . . , n,
 

(4)

where the notation � means that all entries of the 
matrix/tensor are nonnegative.

3. Generalized simultaneous multilinear 
low-rank approximation of tensors

In this section, we first present connection between 
the SLRAM and three-way tensor decomposition 

methods (i.e. HOSVD and Tucker-ALS). Motivated 
by such connection, we then propose a generalized 
approach for SLRAT, where the tensors are general or 
constrained to be nonnegative.

3.1. SLRAM and tensor decomposition
SLRAM problem [28]. Given a set of N matrices 
X1, . . . , XN ∈ RI1×I2, find two orthogonal matrices 
U1 ∈ RI1×r1 and U2 ∈ RI2×r2 and N matrices 
F1, . . . , FN ∈ Rr1×r2 such that U1FiUT

2 , i = 1, . . . , N , 
yield good approximates of Xi.

Solving SLRAM is equivalent to finding the solu-
tion of

arg min
{Fi}N

i=1,U1,U2

fSLRAM =

N∑
i=1

‖Xi − U1FiU
T
2 ‖2

s.t.UT
1 U1 = Ir1 , and UT

2 U2 = Ir2 .
 

(5)

Let us define a three-way tensor X ∈ RI×J×N  con-
catenating inputs such that each slide X:,:,i of X  is the 
input matrix Xi. Then tensor X  can be expressed as 
X = X1 � X2 · · ·� XN.

It is well-known that Tucker-ALS provides the local 
optimal solution [50, 52] of (3), while SLRAM was 
shown to be a special case of Tucker-ALS [53, theo-
rem 4.1]. Accordingly, we have the following propo-
sition, showing the connection between SLRAM and 
Tucker-ALS, and hence providing good iterative-based 
approximation for SLRAM.

Proposition 1 ([53, theorem 4.1]). If U1 and U2 
are the factors obtained from decomposing a three-
way tensor X ∈ RI×J×N  using Tucker-ALS, and let 
Fi = UT

1 XiU2, then U1, U2 and F1, . . . , FN  form a (lo-
cal) optimal solution of fSLRAM  in (5).

It is also well-known that HOSVD gives a sub-opti-
mal solution of (3) [50, 52]. Accordingly, we have the 
following connection between SLRAM and HOSVD, 
providing good non-iterative-based approximation 
for SLRAM.

Proposition 2 ([24, section IV]). If U1 and U2 are 
the factors obtained from decomposing a three-way 
tensor X  using HOSVD, and let Fi = UT

1 XiU2, then 
U1, U2 and {Fi}N

i=1 form a sub-optimal solution of 
fSLRAM  in (5).

3.2. Generalized simultaneous multilinear LRAT
Inspired by results in section 3.1, we first state the 
following simultaneous multilinear low-rank tensor 
approximation (SMLRAT) problem.
SMLRAT problem. Given a set of N n-way tensors 
{Xi}N

i=1,Xi ∈ RI1×I2···×In , find n common factors  
{Uk}n

k=1, Uk ∈ RIk×rk  and N core tensors {Gi}N
i=1,Gi 
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∈ Rr1×r2···×rn such that Gi ×1 U1 ×2 U2 · · · ×n Un, 
i = 1, . . . , N , yield good approximates of Xi.

The problem can be considered as a generalization 
of SLRAM for multi-way tensors and formulated as 
follows:

arg min
{X̃i}N

i=1

fSMLRAT =

N∑
i=1

‖Xi − X̃i‖2
F

s.t.X̃i = Gi ×1 U1 ×2 U2 · · · ×n Un.
 

(6)

To solve (6), we propose the following theorem which 
provides (local) optimal solution. Details of the proof 
of this theorem can be found in the technical report of 
[46].

Theorem 1. A local optimum solution of the SML-
RAT problem is given by

Gi = Xi ×1 UT
1 ×2 UT

2 · · · ×n UT
n , (7)

with Uk, k = 1, 2, . . . , n, including the principal rk ei-
genvectors of the covariance matrix Rk defined by

Rk =

N∑
i=1

Xi(k)ŨkŨT
k Xi

T
(k), (8)

where Ũk is given by

Ũk =
(

Un ⊗ · · · ⊗ Uk+1 ⊗ Uk−1 · · · ⊗ U1

)
. (9)

Let X ∈ RI1×···×In×N be the tensor formed by 
concatenating N multi-way tensors X1, . . . ,XN ; that 

is, X = X1 �X2 · · ·�XN . Inspired by theorem 1, a 
practical solution for the problem of fSMLRAT in (6) can 
be achieved, using the Tucker-ALS algorithm, given by 
the following proposition.

Proposition 3. If {Uk}n
k=1 are the factors ob-

tained from decomposing the (n + 1)-way tensor 
X ∈ RI1×···×In×N using Tucker-ALS, and core tensors 
Gi are defined by

Gi = Xi ×1 UT
1 ×2 UT

2 · · · ×n UT
n , (10)

then {Uk}n
k=1 and {Gi}N

i=1 can be a (local) optimal so-
lution of fSMLRAT  in (6).

This result contributes a connection between theo-
rem 1 and the well-known Tucker-ALS algorithm for 
Tucker decomposition, thus allowing us to exploit 
known characteristics of this algorithm to enhance 
performance and/or reduce computational complex-
ity of implementation [54–56]. Therefore, we can also 
obtain an alternative solution of SMLRAT using the 
HOSVD algorithm, as given by the following proposi-
tion.

Proposition 4. If {Uk}n
k=1 are factors obtained from 

decomposing the (n + 1)-way tensor X ∈ RI1×···×In×N 
using HOSVD, and

Gi = Xi ×1 UT
1 ×2 UT

2 · · · ×n UT
n ,

then {Uk}n
k=1 and {Gi}N

i=1 can be a sub-optimal solu-
tion of fSMLRAT  in (6).

To deal with nonnegative tensors, we can propose 
the nonnegative SMLRAT as

arg min
{X̃i}N

i=1

fNSMLRAT =

N∑
i=1

‖Xi − X̃i‖2
F

s.t.X̃i = Gi ×1 U1 ×2 U2 · · · ×n Un.

{Uk}n
k=1 � 0.

 

(11)

Similarly, we can obtain a practical solution for the 
NSMLRAT problem using NTD.

Proposition 5. If G, {Uk}n
k=1 are core ten-

sor and factors obtained from performing NTD 
on the (n + 1)-way tensor X ∈ RI1×···×In×N, and 
Gi = G(:, :, . . . , i), then {Uk}n

k=1 and {Gi}N
i=1 can be a 

local solution of fNSMLRAT  in (11).

Based on theorem 1, propositions 3–5, we propose 
algorithm 1, namely Generalized SMLRAT (GSML-
RAT). Depending on kinds of constraints being con-
sidered (e.g. orthogonality, sparsity or nonnegativity), 
we can apply the corresponding tensor decomposition 
(e.g. HOSVD, Tucker-ALS and NTD) to obtain the 
desired solution.

Table 1. EEG Dataset.

Pat. Gen. Age Dur. Spike

1 M 4 19 m21 s 8/15 145

2 M 6 22 m25 s 635/20 484

3 M 9 11 m24 s 6/14 975

4 M 9 11 m24 s 16/30 751

5 M 11 16 m16 s 351/25 916

6 M 12 17 m49 s 22/44 387

7 M 15 22 m00 s 2/2036

8 M 16 22 m58 s 11/29 351

9 M 20 27 m13 s 1/3742

10 M 21 23 m57 s 8/2371

11 M 72 15 m26 s 2/1565

12 F 10 17 m07 s 3/53 302

13 F 13 18 m53 s 5/69 583

14 F 16 20 m14 s 8/6217

15 F 20 14 m32 s 324/11 219

16 F 22 27 m37 s 28/23 215

17 F 28 5 m31 s 12/21 170

Pat.  =  Patient, Gen.  =  Gender (M  =  Male, F  =  Female), 

Dur.  =  Duration,

Spike  =  Number of epileptic spikes / Number of non-epileptic spikes.

J. Neural Eng. 17 (2020) 016023
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Algorithm 1. GSMLRAT: generalized simultaneous multilinear 
LRA of tensors.

    Input: N n-way tensors {Xi}N
i=1,Xi ∈ RI1×I2×···×In,  

multilinear rank {r1, r2, . . . , rn}.

   Output: common factors {Uk}n
k=1, core tensors {Gi}N

i=1.

1 function

2      Initialization:

3        Contruct a concatenated (n + 1)-way tensor 

X = X1 �X2 · · ·�XN ;

4        Compute covariance matrices {R̃(k)}n
k=1 over modes of 

tensors as R̃(k) =
∑N

i=1 Xi(k)Xi
T
(k);

5       {U(0)
k }n

k=1 are initilized by selecting the first eigenvec-

tors of R̃(k) and U(0)
n+1 = IN ;

6    Tucker decomposition (HOSVD, Tucker-ALS, NTD):

7       G, {Uk}n+1
k=1 = decompose(X , {U(0)

k }n+1
k=1);

8    Obtain core tensors: Gi = G(:, :, . . . , i)

4. Proposed epileptic spike detection 
system

In this section, we introduce a novel epileptic spike 
detection system based on the proposed SLRMAT 
method. This system, illustrated in figure 1, is 
composed of four stages: data transformation, EEG 
feature extraction, feature selection and classification.

In the data representation stage, three-way EEG 
tensors (time, wavelet-scale and channel) are calcu-
lated by applying the continuous wavelet transform 
on multi-channel EEG segments simultaneously. 
Then, magnitude of the resulting wavelet coefficients 
is used to construct nonnegative EEG tensors. In EEG 
feature extraction, we propose to estimate the so-
called ‘eigenspikes’. We also propose to use HOSVD 
for determining the multilinear rank for the three-way 
EEG tensors. In the feature selection stage, we propose 
to apply the Fisher score for selecting significant EEG 
features. In the classification stage, we use several well-
known classifiers to assess system performance. Now, 
we will focus on our contributions to the second and 
the third stages.

4.1. Feature extraction

Consider N three-way EEG tensors, Xi ∈ RI1×I2×I3
+  

(whose dimensions I1, I2 and I3 correspond to time, 
wavelet-scale and channel), in which N1 tensors 
represent EEG segment containing epileptic spikes, 

denoted as {X ep
i }N1

i=1, and N2 tensors represent 

EEG segment containing non-epileptic spikes, 

{X nep
j }N2

j=1. For feature extraction, our idea is first to 

estimate a feature space, Fep, which spans the class of 
EEG epileptic spikes, and then to project both types of 
spikes onto the resulting space to derive discriminant 
features. In such a case, the objective function can be 
expressed as

fEEG =

N1∑
i=1

‖X ep
i − Gep

i ×1 A ×2 B ×3 C‖2, (12)

over nonnegative projection matrices A, B, C and N1 

core tensors {Gep
i }N1

i=1.
Inspired by the proposed SMLRAT method and a 

method proposed by Phan and Cichocki in [45], we 
minimize fEEG by concatenating all three-way epi-

leptic tensors {X ep
i }N1

i=1 into a single four-way tensor 

X̃ ep ∈ RI1×I2×I3×N1
+ , and then perform NTD of X̃ ep, as 

given by

X̃ ep = X ep
1 �X ep

2 · · ·�X ep
N1

NTD
= G ×1 A ×2 B ×3 C ×4 D,

 (13)

to obtain the factors A ∈ RI1×r1
+ , B ∈ RI2×r2

+ , C ∈ RI3×r3
+  

and D ∈ RN1×N1
+ , which respectively span the spaces of 

parameters representing the domains of time, wavelet-
scale, channel and epileptic spikes. Columns of D are 
considered as eigenspikes, the span of which forms the 
feature space F ep of epileptic spikes.

Therefore, given any three-way tensor X  of some 
EEG data, its k-mode unfolding can be expressed by a 
linear combination of eigenspikes as

X(k)︸︷︷︸
input data

= D︸︷︷︸
basic vectors

G(k)(C ⊗ B ⊗ A)T

︸ ︷︷ ︸
coefficients

,
 (14)

Figure 1. Proposed epileptic spike detection system.
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where G(k) is the k-mode unfolding of the core tensor 
G. The core G and the factor D now carry part of 
information of the EEG data which resides in F ep, i.e.

F ep = G ×4 D. (15)

To investigate multi-domain features of EEG 
epileptic spikes, we can choose different basis func-
tions. For examples, we can define an eigenspike 
time-basis Ftime, by multiplying A with F ep to obtain 
F ep

time = G ×1 A ×4 D, to yield the principal axes of 
variations of an epileptic spike across channel and 
wavelet-scale modes. Similarly, we can derive the chan-
nel-basis and scale-basis of the eigenspike space, i.e. 

F ep
scale = G ×2 B ×4 D and F ep

channel = G ×3 C ×4 D.
Given a training set of M tensors X train

m , 
m = 1, 2 . . . , M, of EEG data (including both epileptic 
and non-epileptic spikes), we form a discriminant fea-
ture vector ftrain

m  as follows:

F train
m = Gtrain

m ×4 D = X train
m ×1 A# ×2 B# ×3 C#,

ftrain
m = vec(F train

m ).
 (16)

Similarly, for any tensor X test in the testing set of EEG 
data, its features can be extracted by projecting the 
tensor onto F ep, i.e.

F test = X test ×1 A# ×2 B# ×3 C#,

ftest = vec(F test).
 (17)

4.1.1. Remark
Our formulation of the concatenated tensor in (13) 
differs from [45] in which we do not integrate the 
complete set of training tensors of both epileptic and 
non-epileptic spikes, but use only tensors of epileptic 
spikes to compute the factors and hence the feature 
space. It stems from the following observations. 
EEG signals are composed of several components, 
including epileptic spikes (which are abnormal 
brain activity), EEG background (which includes 
normal brain activities) and artifacts (which are 
non-brain activities, e.g. eye or muscle movements). 
Since epileptic spikes are abnormal activity, they 
can be considered independent from the other 
activities. Hence, we assume that the other activities 
do not belong to the feature space of epileptic spikes. 
Moreover, it is difficult to describe non-epileptic 
activities present in the EEG data because we do not 
have knowledge of all these activities. Furthermore, 
the number of non-epileptic spikes is huge in EEG 
datasets, hence, the concatenation of a complete set of 
training tensors results in a very big four-way tensor 
(e.g. more than 109 entries). This leads to two issues: (i) 
decomposition of such four-way tensor is difficult and 
the resulting factors are not guaranteed to be optimal; 
(ii) the imbalance problem which has emerged as one 
of the challenges in data science [57] (e.g. the ratio of 
epileptic spike class to non-epileptic class is 1:260 in our 
EEG dataset). Therefore, we aim to capture a feature 
space that covers only epileptic spikes. Our method 

is related to the one-class classification (OCC) which 
aims to find a decision boundary around a specific 
class of interest, namely ‘positiv’ class, in machine 
learning [58, 59]. Accordingly, data of no interest 
form the ‘negative’ class. The OCC problem may be 
harder than the conventional classification with data 
from two or multiple classes. Since the ‘negative’ data 
samples (i.e. belonging to the negative class) in such a 
case are limited (i.e. activities of non-interest such as 
collected non-epileptic spikes can not cover the whole 
feature space for the negative class in our case), so only 
one side of the decision boundary can be estimated 
definitively by using the collected data. Our method is, 
thus, consistent with one of three learning frameworks 
of OCC, as categorized in [58, 59]: learning with only 
positive examples, learning with positive examples 
and some amount of poorly distributed negative 
examples, and learning with positive and unlabeled 
data. On the contrary, Phan–Cichocki’s method [45] 
was proposed to solve the problem of binary/multi-
class classification, concatenating all training tensors 
derived from multiple classes.

4.2. Feature selection
The aim of feature selection is to find a subset of 
input features, such that it can span the space of data 
of interest. An EEG dataset usually includes different 
components: brain activities of interest such as 
epileptic spikes, and activities without interest such as 
artifacts and noise. In addition, tensor decomposition 
may result in a huge number of the features; for 
example, NTD would give r = r1r2r3 features. Thus, 
the expected outputs (e.g. detected epileptic spikes) 
may not be determined by a complete set of the resulting 
features, but depends only on a subset of relevant 
features. In this stage, we use the Fisher score [60] of 
each feature to assess the effectiveness of classification. 
Assume that we have extracted n features from 
NTD, i.e. F = {f1, f2, . . . , fn}. Denote N1 and N2 the 
numbers of epileptic spikes and non-epileptic spikes, 
respectively. Let µi,c  and σi,c be the mean and standard 
deviation of the ith feature for class Ωc, c ∈ {1, 2}, µi 
and σi be the mean and the standard deviation of the 
ith feature in the whole training dataset, mc and Σc be 
the mean and covariance matrix of class Ωc.

The objective is to find a linear combination wT f  
such that the best separation can be achieved. In par-
ticular, the Fisher discriminant ratio is determined by 
maximizing the ratio of between-class variation and 
within-class variation, i.e.

fFisher(w) =
σ2

between

σ2
within

=
[w(µ1 − µ2)]

2

wT(Σ1 +Σ2)w
. (18)

The Fisher score of each feature fi  can then be defined 
as the maximum separation w(i), i.e.

γ(fi)
∆
= w(i) =

N1(µi,1 − µi)
2 + N2(µi,2 − µi)

2

N1σ2
i,1 + N2σ2

i,2

.

 (19)
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We select l significant features with top Fisher scores,

FFisher = {f(1), f(2), . . . , f(l)|f(i) ∈ F, i = 1, 2, . . . , l}.

4.3. Number of components
In tensor decomposition, determining rank of a tensor 
(or number of components) is an important issue, and 
it is also an NP-hard problem. In the literature, several 
popular methods for this task was surveyed in [61], 
such as DIFFIT, CORCONDIA and ARD.

To determine the number of components when 
decomposing an EEG tensor, we apply the truncated 
HOSVD algorithm, which can provide an effective 
solution for the best rank-(r1, . . . , rn) tensor approx-
imation [52]. This selection is motivated by an obser-
vation that the ‘meaningful’ components of each fac-
tor is often related to the underlying signal of interest 
(e.g. EEG spikes) and thus may be different the true 
rank of the data tensor. For our three-way EEG ten-

sor, the numbers of components {rk}3
k=1 in the factors 

{Uk}3
k=1 can be estimated from their corresponding 

modes {X(k)}3
k=1 using the truncated SVD, as follows:

X(k) ≈ UI×rk

k Λrk×rk

k Vrk×JK
k , k = 1, 2, 3. (20)

In the above SVDs, each number of components 
(e.g. r1) in each tensor mode of the EEG tensor can be 
obtained by selecting r1 principal singular values of the 
mode such that the total variance is maximized, i.e.

VARr1 =

∑r1

i=1 λi∑I
j=1 λj

100%. (21)

5. Experimental results and discussions

5.1. EEG Dataset and EEG tensor construction
The EEG data used in this study were recorded by 
using the international standard 10–20 system 

with 19 channels and the sampling rate of 256 Hz. 
The measurements were carried out on 17 patients 
(including 11 males and six females) who were 
clinically diagnosed to have epilepsy, with durations 
varying from 5 to 28 min. Details of the dataset are 
given in table 1. Figure 2 illustrates some epileptic 
spikes from this dataset. Epileptic spikes were manually 
identified by a neurologist from Vietnam National 
Children’s Hospital.

To obtain EEG signals within the desired frequency 
band and restrain artifacts and noise as well as ‘negli-
gible’ spikes, as shown in figure 2, the following pre-
processing was implemented [9]. We first used a digital 
Butterworth low-pass filter with the cutoff frequency 
70 Hz, a notch filter with the cutoff frequency of 50 Hz 
associated with a bandwidth of 2 Hz, and a high-pass 
filter with the cutoff frequency of 0.5 Hz. After that, we 
removed negligible spikes by using a threshold criteria 
and three training perceptrons. The remaining set of 
possible spikes included either real epileptic or ‘non-
epileptic’.

From the EEG dataset, we extracted 1442 epilep-
tic spikes and more than 375 429 non-epileptic spikes. 
Then, we constructed the corresponding tensors of 
the 19-channel EEG 56-point segments containing 
these spikes, with dimensions of time, wavelet-scale 
and channel, as follows. Denote Ω1 and Ω2 the classes 
of epileptic and non-epileptic tensors, respectively. 
Now, for each spike, an EEG data sample is first pre-
sented by a segment of 56 points around the location 
of a spike. After that, the continuous wavelet transform 
was used to obtain the time-frequency representation 
of the multi-channel EEG segments simultaneously. 
We enlarged the number of wavelet scales in the domi-
nant range [4–8] to the size of 20, instead of 5 as used in 
[9]. Hence, we obtain 19 wavelet coefficient matrices of 
size 56 × 20 presenting EEG spectral features. Finally, 
we concatenate the 19 coefficient matrices into a ten-

Figure 2. Some epileptic spikes (circle markers) and non-epileptic spikes (star markers) derived from three typical patients in our 
filtered EEG data.
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sor X ∈ R56×20×19 with three modes of time, wavelet-
scale and channel.

5.2. Performance metrics
To assess epileptic spike detection performance, 
three statistical metrics including Sensitivity 
(SEN, a.k.a., Recall), Specificity (SPE) and Accuracy 
(ACC) are widely used to evaluate performance of 
detection systems, see [7–9, 18, 62, 63] for examples. 
Furthermore, boxplot, receiver operator characteristic 
(ROC) and its area under the ROC curve (AUC) are 
also used to illustrate the performance of the systems. 
When we assess the effectiveness of the system on the 
EEG dataset using cross validation methods, we may 
obtain different values of these metrics across different 
tests/patients. Inspired by the results on evaluating the 
average performance of EEG interictal spike detection 
algorithms in [64], the overall performance with 
respect to the metric ρ  (e.g. SEN) of our system can be 
averaged in the following ways:

 (i)  Arithmetic mean: ρAM =
1

T

T∑
i=1

ρi,

 (ii)  Time-weighted average: 

ρTWA =
1∑T

k=1 Dk

T∑
i=1

ρiDi ,

 (iii)  Total accuracy: ρTA =
1∑T

k=1 Nk

T∑
i=1

ρiNi

 (iv)  Time/event-weighting: 

ρTEW =
1∑T

k=1
Dk
Nk

T∑
i=1

ρi
Di

Ni
,

5.3. Experiment setups and results
Our experiments are conducted to study the three 
stages, by: (i) performing feature extraction by 
estimating the eigenspikes and the corresponding 
features, (ii) performing feature selection to obtain 
the significant features for classification task, and (iii) 
performing classification by comparing the testing 
features with the training features using well-known 
classifiers. The EEG dataset is split into two groups, 
including a training set and a testing set using leave-
one-out cross-validation (LOO-CV) method. In each 
test case, the classification model is fitted by using 
a training data composed of 16 patients and then 
is tested by a remaining patient. The evaluation is 
repeated until the last patient is done.

5.3.1. Feature extraction
The first task is to determine the multilinear rank 
(r1, r2, r3) of EEG tensors. The spectra and total 
variances of three covariance matrices for epileptic 
tensor modes are illustrated in figure 3. If we 
choose to have a significance level of 99%, which 
approximately corresponds to the sum of variances 
of the first 15 components in figure 3(a), then we can 

have a good approximation for the time mode A by 

A ≈
∑15

i=1 λiuivT
i , where λi is the ith singular-value 

associated with the right and left singular-vector, ui 
and vi, of A. In the same way, we also obtained 10 and 
19 components for the frequency and spatial domains 
respectively, as shown in figures 3(b) and (c).

By performing NTD of the training four-way epi-

leptic tensor X̃ ep ∈ R56×20×19×M
+ , with M is the num-

ber of training three-way tensors, we obtained com-

mon factors A ∈ R56×15
+ , B ∈ R20×10

+ , C ∈ R19×19
+ . 

Similarly, we also obtain factors of time, scale and chan-
nel for the non-epileptic spike class. Comparison of the 
features between class Ω1 and Ω2 are shown in figures 4 
and 5, revealing some difference between the factors 
of epileptic tensors and non-epileptic tensors. In par-
ticular, considering first the factor A, components of 
epileptic spikes were most localized in time; e.g. comp-
onents #1, #2 and #3 were associated with the 30th, 
28th and 3th time sample, respectively. Meanwhile, the 
components of non-epileptic spikes seem to be spread, 
except from components #9, #11 and #12. Next, 
the factor B is shown in figure 5. Since the behaviors 
of epileptic spikes and non-epileptic spikes are differ-
ent, the resulting subspace of parameter representing 
wavelet-scale for class C1 may not span non-epileptic 

spikes. Figure 6 shows common factor C ∈ R19×19
+  of 

epileptic tensors obtained from NTD, showing that the 
factor of epileptic spikes was well localized in space, i.e. 
to specific regions on the head. Hence, it may lead to 
the ability of learning localized parts of epileptic spikes 
from the channel mode.

Next, we investigated the advantages of NTD over 
other types of tensor decomposition, e.g. uncon-
strained Tucker decomposition and nonnegative CP 
decomposition (NCP), for EEG epileptic spike analy-
sis. The multilinear rank tensor used for this task is 
r1 = r2 = r3 = 15. As shown in figure 7, NTD and 
NCP can yield sparse basis vectors in A and B while 
this is not the case for Tucker decomposition (TD).

5.3.2. Feature selection
To assess the effectiveness of the proposed feature 
selection stage for detecting EEG epileptic spikes, 
the extracted features are fed into the support vector 
machine (SVM) classifier. For illustration, we use 
the simplest SVM kernel, namely the linear kernel. 
In addition, we also use p -value [65] to provide the 
strength of ranked features derived by the Fisher score. 
A p -value in a statistical hypothesis test is that value of 
p , with 0 � p � 1, such that given a significance level 
α, if α > p the test rejects the null hypothesis, H0, 
otherwise the test does not reject H0. By convention, α 
is commonly set to 0.05 [65]. The experimental results 
are shown in figures 8– 10.

Figure 8 shows that more than 600 significant fea-
tures with largest Fisher scores had p -values smaller 
than 0.05, corresponding to 45% of the original 1425 
features. Specifically, among the features there were 
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the top 500 features having p -value close to 0, meaning 
that we can reject the null hypothesis H0 completely. 
Hence, these 500 features have stronger discrimina-
tion power than others. Furthermore, these features 
are different to that of non-epileptic class Ω2, as illus-
trated in figure 9. Thus, they are efficient in detecting 
epileptic spikes. Performance of the SVM model using 
the first 500 significant features achieved the top SEN 
at approximately 0.9 and overall ACC around 0.92 
with the first 200 features (figure 10), while the corre-
sponding values of the area under ROC curves (AUC) 

were always higher than 0.9, thus ranked as excellent 
result of classification6.

5.3.3. Classification
To investigate how effective concatenation of input 
tensors, we compare the proposed method against 
Phan–Cichocki method in [45]. Second, we use other 

Figure 3. Eigen-spectra of three modes of the epileptic tensor. For each mode, the first row (in blue) corresponds to the set of 
eigenvalues, the second row (in red) corresponds to their spectral variance. (a) Time mode. (b) Scale (freq.) mode. (c) Channel 
mode.

6 Performance ranking based on AUC: [0.9–1] is excellent, 
[0.8–0.9] is good, [0.7–0.8] is fair, [0.6–0.7] is poor, [0.5–0.6] 
is fail.
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Figure 4. Common time factor A ∈ R56×15
+  derived from NTD.
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Figure 5. Common scale factor B ∈ R20×10
+  derived from NTD. The x-axis denotes the number of components (column vectors), 

while the y -axis presents 20 wavelet scales in the range of [4–8]. (a) Epileptic spike. (b) Non-epileptic spike.

Figure 6. Common channel factor C ∈ R19×19
+  of the epileptic tensor derived from NTD.
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tensor-based approaches which were successfully 
applied to detect brain activities of interest in EEG 
signals as comparative methods, including Tucker-
based [15, 18], CP-based [14, 16], NCP-based [66].

To evaluate the separability of the extracted fea-
tures, we applied three widely used classification mod-
els in the platform WEKA [67] to classify EEG epileptic 
spikes out of non-epileptic spikes, including k-nearest 
neighbors (KNN), naive Bayes (NB), decision tree 
(DT) and SVM. Parameters of the classifiers were set 
by default. In particular, the distance metric used in 
the KNN was the Euclidean distance and the size of 
the neighborhood was automatically obtained by set-
ting the cross-validation option. For NB, we selected 

the Gaussian distribution as predictor distribution to 
compute the posterior probability for the two classes 
and then made decision for the class with higher prob-
ability. For DT, the standard CART algorithm was 
selected as the predictor selection technique, the tree 
depth equaled the size of training set and each node 
in the training tree had 10 observations. Meanwhile, 
we used the linear SVM kernel, similar to the previous 
task. We report here results of the SVM model trained 
with our features across 17 patients using the LOOCV 
method. The detailed results of other classifiers can be 
found in the technical report of [46], due to space limit.

Feature extraction is key for EEG epileptic spike 
detection, and our approach outperforms the base-
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Figure 7. A comparison of obtained loading factors between using three different tensor decompositions (NTD, TD, NCP) of the 
epileptic tensor. The x-axis denotes the number of components (column vectors), while the y -axis presents 56 time samples. (a) 
Factor A: NTD. (b) Factor B: NTD. (c) Factor A: TD. (d) Factor B: TD. (e) Factor A: NCP. (f) Factor B: NCP.
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lines on all evaluation metrics. First, the NTD-SVM 
model yielded strong results in terms of all measure-
ments (SEN, SPE, ACC  and AUC) (see table 2). Table 2 
presents a quantitative statistic of EEG epileptic spike 
detection performance of our NTD-SVM model using 
the LOOCV method. Accordingly, the percentage 
of correctly detected epileptic spikes (i.e. SEN) var-
ied from patient to patient. In particular, the highest 
SEN achieved 100% in the cases of patients with a few 

of epileptic spikes (e.g. the 3-rd, 7th and 9th patient), 
while the worst case with SEN of 0.5 was from the 11th 
patient. The NTD-SVM model achieved over 80%SEN 
in ten out of 17 patients. In spite of the variation, the 
average metrics for SEN were still good, e.g. the arith-
metic mean SENAM = 0.8044, SENTA = 0.8516, and 
SEN = 0.8299 ± 0.0297. The metrics to the non-epi-
leptic class, including SPE and ACC  were all high with 
small standard deviations (i.e. ̄ρ � 0.9 and S.D. ≈ 0.04). 

0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.05

0.2

0.4

0.6

0.8

1

Figure 8. Fisher scores (blue marks) and p -values (red mark) of features. Features are ordered based on their Fisher score. The 
significant level p   =  0.05 is to make decision for rejecting H0, removing features with p   >  0.05.
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Figure 9. Top ten selected features of two typical epileptic spikes and two non-epileptic spikes. Behavior of features derived from 
epileptic spikes are similar, unlike non-epileptic spikes.
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Figure 10. Classification performance versus number of selected features.
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The key metric AUC to measure of separability of the 
classifier was also excellent, NTD-SVM obtained over 
90%AUC in 14 out of 17 patients and the mean 
AUC = 0.9323 ± 0.0076 on average. These results 
indicate that the features extracted by our method are 
able to detect epileptic spikes with good performance.

Our detection system outperforms the three other 
tensor-based approaches, including CP, NCP and 
unconstrained TD decompositions (see figures 11 
and 13(a)). Figure 11 illustrates a number of box-
plots to demonstrate the performance improvement 
of our system over others. Each boxplot for a specific 
metric (e.g. SEN) presents the distribution of evalu-
ation performance across 17 patients in our EEG 
dataset. A box is based on the five summary numbers, 
including the ‘minimum’, first quartile (Q1), second 
quartile, third quartile (Q3) and the ‘maximum’. For 
instance, across the 17 patients, the highest median 
SEN achieved 0.8182 from the NTD-SVM model, 
while the value was low (i.e. � 0.5) when using other 
tensor decompositions. In addition, the interquartile 
range (i.e. IQR = Q3 − Q1) measuring the variability 
of the NTD-SVM were lower than that of TD-SVM, 
CP-SVM and NCP-SVM for each evaluation met-
ric. The results were also verified by figure 13(a) that 
shows ROC curves to illustrate overall performance 
of the four models. The ROC curve is drawn by plot-
ting the true positive rate (TPR equivalent to SEN) and 
false positive rate that can be computed as 1 − SPE. 
Thus, the ROC curve allows us to derive a cost/bene-
fit analysis for making decision. We can observe from 
the two figures that the NTD-based feature  extraction 

provided a better classification accuracy than the 
CP decomposition (i.e. unconstrained CP and NCP 
decomposition) and unconstrained Tucker decom-
position based approaches in this work. According 
to the table 3, the average AUC of the CP-based and 
NCP-based models were always lower than 0.9. That 
means there were less than 90% chance that the mod-
els will be able to distinguish between epileptic spikes 
and non-epileptic spikes. The worst result was from 
the NCP-NB model which had much less discrimi-
nation capacity to detect EEG epileptic spikes, i.e. 
AUC = 0.574 ± 0.25. The results of TD-based mod-
els were similar to that of CP-based models. Although 
TD-SVM might provide a good performance in terms 
of AUC (i.e. 0.836 ± 0.113), the resulting SEN was not 
good enough, around 0.5. Hence, a half of the total 
number of epileptic spikes were detected incorrectly 
and labeled as non-epileptic activities. Meanwhile, the 
NTD-based models yielded a 10%–30% better per-
formance than that of other tensor decompositions. 
The two best overall accuracy belonged to the NTD-
based models, including NTD-SVM and NTD-DT 
(i.e. AUC = 0.929 ± 0.029 and 0.914 ± 0.041 respec-
tively, while SEN � 0.8 in both cases). Furthermore, 
the NTD-based models also detected non-epileptic 
spikes successfully, which more than 95% activities of 
non-interest were rejected correctly by the NTD-KNN 
model. The percentage was 90% when using the NTD-
SVM model. The experiments shows that the NTD-
based feature extraction can provide good features to 
enhance the separation between epileptic spikes and 
non-epileptic spikes.

Table 2. Detection performance of the NTD-SVM model using leave-one-out cross-validation (LOOCV).

Pat. Spikes Non-spikes TP FP TN FN SEN SPE ACC AUC

1 8 15 145 7 1 13 546 1599 0.8750 0.8944 0.8944 0.9435

2 635 20 484 525 110 18 639 1845 0.8268 0.9099 0.9074 0.9267

3 6 14 975 6 0 13 314 1661 1.0000 0.8891 0.8891 0.9488

4 16 30 751 15 1 29 587 1164 0.9375 0.9621 0.9617 0.9370

5 351 25 916 329 22 23 088 2828 0.9373 0.8909 0.8915 0.9633

6 22 443 87 16 6 40 967 3420 0.7273 0.9230 0.9229 0.9191

7 2 2036 2 0 1791 245 1.0000 0.8797 0.8789 0.9536

8 11 29 351 9 2 26 437 2914 0.8182 0.9007 0.9007 0.8822

9 1 3742 1 0 3447 259 1.0000 0.9212 0.9212 0.9546

10 8 2371 5 3 2327 44 0.6250 0.9814 0.9802 0.9036

11 2 1565 1 1 1407 158 0.5000 0.8990 0.8985 0.9476

12 3 53 302 2 1 48 318 4984 0.6667 0.9065 0.9065 0.9098

13 5 69 583 4 1 66 534 3049 0.8000 0.9562 0.9562 0.9736

14 8 6217 5 3 5691 526 0.6250 0.9154 0.9150 0.9406

15 324 11 219 271 53 9401 1818 0.8364 0.8380 0.8379 0.8976

16 28 35 495 21 7 19 563 3652 0.7500 0.8427 0.8426 0.8720

17 12 21 170 9 3 19 262 1908 0.7500 0.9099 0.9098 0.9212

Average performance: Mean ± S.D. ρAM ρTA ρTWA ρTEW ρ̄  ± S.D.

SEN : 0.8044 ± 0.1468 0.8044 0.8516 0.8042 0.8593 0.8299 ± 0.0297

SPE : 0.9071 ± 0.0371 0.9071 0.9145 0.9066 0.9137 0.9105 ± 0.0042

ACC : 0.9067 ± 0.0369 0.9067 0.9142 0.9062 0.9118 0.9097 ± 0.0039

AUC : 0.9291 ± 0.0287 0.9291 0.9291 0.9272 0.9436 0.9323 ± 0.0076
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Our NTD-SVM outperforms three widely used 
classifiers (i.e. KNN, NB and DT) in the classifica-
tion task. The performance comparison between 
using difference machine learning models is shown 
statistically in the table 3 and figure 12. The table 3 
shows the overall performance of 16 models in terms 

of all evaluation metrics. SVM-based models per-
formed better than others both in cases using features 
extracted from different tensor decompositions. As 
mentioned above, the two average area under ROC 
curves of NTD-SVM are AUC = 0.929 ± 0.029 and 
AUC = 0.932 ± 0.008 in terms of arithmetic mean 
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Figure 11. Detection performance of SVM when using our features against different tensor-based approaches (CP, NCP, TD and 
NTD). (a) NTD-SVM. (b) TD-SVM. (c) CP-SVM. (d) NCP-SVM.

Table 3. Detection performance comparison between using difference machine learning models.

Method SEN SPE ACC AUC SEN SPE ACC AUC

CP-KNN 0.106 ± 0.132 0.966 ± 0.027 0.963 ± 0.028 0.690 ± 0.124 0.126 ± 0.107 0.966 ± 0.003 0.966 ± 0.004 0.682 ± 0.012

CP-NB 0.546 ± 0.275 0.710 ± 0.138 0.709 ± 0.137 0.662 ± 0.216 0.627 ± 0.085 0.709 ± 0.003 0.713 ± 0.020 0.693 ± 0.050

CP-DT 0.826 ± 0.246 0.829 ± 0.046 0.829 ± 0.045 0.857 ± 0.112 0.831 ± 0.057 0.829 ± 0.008 0.826 ± 0.005 0.856 ± 0.001

CP-SVM 0.311 ± 0.270 0.950 ± 0.034 0.948 ± 0.035 0.742 ± 0.155 0.341 ± 0.142 0.952 ± 0.005 0.952 ± 0.005 0.728 ± 0.008

NCP-KNN 0.162 ± 0.194 0.955 ± 0.031 0.951 ± 0.030 0.733 ± 0.150 0.189 ± 0.118 0.956 ± 0.005 0.952 ± 0.003 0.726 ± 0.011

NCP-NB 0.366 ± 0.358 0.742 ± 0.147 0.741 ± 0.148 0.574 ± 0.250 0.472 ± 0.111 0.736 ± 0.011 0.733 ± 0.012 0.587 ± 0.023

NCP-DT 0.871 ± 0.149 0.835 ± 0.052 0.834 ± 0.051 0.888 ± 0.049 0.850 ± 0.042 0.834 ± 0.004 0.834 ± 0.004 0.892 ± 0.007

NCP-SVM 0.288 ± 0.255 0.941 ± 0.040 0.939 ± 0.040 0.734 ± 0.188 0.324 ± 0.203 0.941 ± 0.007 0.940 ± 0.006 0.695 ± 0.074

TD-KNN 0.098 ± 0.135 0.984 ± 0.030 0.980 ± 0.031 0.524 ± 0.229 0.081 ± 0.029 0.985 ± 0.003 0.983 ± 0.005 0.476 ± 0.090

TD-NB 0.333 ± 0.286 0.856 ± 0.160 0.857 ± 0.161 0.702 ± 0.243 0.278 ± 0.062 0.865 ± 0.008 0.872 ± 0.024 0.667 ± 0.062

TD-DT 0.240 ± 0.207 0.897 ± 0.042 0.894 ± 0.043 0.612 ± 0.171 0.211 ± 0.077 0.898 ± 0.004 0.900 ± 0.007 0.621 ± 0.014

TD-SVM 0.490 ± 0.281 0.929 ± 0.034 0.927 ± 0.035 0.836 ± 0.113 0.470 ± 0.115 0.903 ± 0.062 0.903 ± 0.063 0.811 ± 0.048

NTD-KNN 0.404 ± 0.274 0.957 ± 0.023 0.956 ± 0.030 0.855 ± 0.079 0.402 ± 0.213 0.958 ± 0.001 0.958 ± 0.005 0.856 ± 0.002

NTD-NB 0.560 ± 0.313 0.850 ± 0.087 0.851 ± 0.087 0.794 ± 0.141 0.539 ± 0.212 0.851 ± 0.008 0.854 ± 0.005 0.756 ± 0.070

NTD-DT 0.826 ± 0.247 0.877 ± 0.061 0.877 ± 0.060 0.914 ± 0.041 0.847 ± 0.015 0.879 ± 0.003 0.877 ± 0.001 0.911 ± 0.006

NTD-SVM 0.804 ± 0.147 0.907 ± 0.037 0.907 ± 0.037 0.929 ± 0.029 0.830 ± 0.030 0.910 ± 0.004 0.910 ± 0.004 0.932 ± 0.008

Results expressed as Mean ± S.D.
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and overall mean respectively. The values were higher 
than that of NTD-KNN (e.g. AUC = 0.856 ± 0.002), 
NTD-NB (e.g. AUC = 0.756 ± 0.070) and NTD-DT 
(e.g. AUC = 0.911 ± 0.006). The number of cor-
rectly detected epileptic spikes of NTD-SVM (i.e. 
SEN = 0.830 ± 0.003) was also higher than that of 
KNN and NB (i.e. 0.402 ± 0.213 and 0.539 ± 0.212). 
Moreover, the results were verified by boxplots across 
17 epileptic patients, as shown in figure 12. Results 
from TD-based feature extraction also indicated that 
the SVM model took more advance of tensor decom-
positions than the three classifiers. The AUC of TD-
SVM was 0.836 ± 0.113 compared to 0.524 ± 0.229, 
0.702 ± 0.243 and 0.612 ± 0.171 of TD-KNN, TD-NB 
and TD-DT respectively. In spite of that, the average 
SEN of the four models using the features were not 
good enough. Specifically, neither one of the TD-based 
models could detect more than 50% of total epilep-
tic spikes in our EEG dataset (i.e. SEN < 0.5, see the 

 second column of table 3). In the cases of using fea-
tures extracted from two types of CP decompositions, 
the detection performances were bad, except the DT 
classifier. However, the resulting AUC of the DT clas-
sifier (i.e.  <0.9) were not good enough compared to 
that of the NTD-SVM where four evaluation metrics 
for AUC of NTD were all higher 0.9.

The concatenation of training input tensors is key 
for EEG epileptic spike detection. Accordingly, our 
method provided a better performance than Phan–
Cichocki method. Table 4 and figure 13(b) present a 
performance comparison of epileptic spike detec-
tion between using our method and Phan–Cichocki 
method. We note that, according to Phan–Cichocki 
method, the complete set of training tensors was used 
to concatenate a single four-way tensor. However, the 
number of non-epileptic spikes is very huge in our 
EEG dataset (i.e. more than 375 000 spikes). Therefore, 
taking NTD decomposition of the resulting four-way 
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Figure 12. Detection performance of four classifiers using our features. (a) NTD-SVM. (b) NTD-KNN. (c) NTD-NB. (d) NTD-DT.

Table 4. Concatenation of input tensors, with SVM, KNN, NB and DT using first 500 significant features.

Our method Phan–Cichocki method

Metric SVM NB KNN DT SVM NB KNN DT

SEN 0.830 ± 0.030 0.402 ± 0.274 0.539 ± 0.213 0.847 ± 0.015 0.379 ± 0.047 0.346 ± 0.060 0.092 ± 0.036 0.217 ± 0.022

SPE 0.911 ± 0.004 0.958 ± 0.001 0.851 ± 0.010 0.878 ± 0.004 0.931 ± 0.013 0.779 ± 0.012 0.954 ± 0.008 0.866 ± 0.006

ACC 0.910 ± 0.004 0.958 ± 0.005 0.857 ± 0.006 0.877 ± 0.003 0.927 ± 0.012 0.783 ± 0.006 0.951 ± 0.006 0.865 ± 0.003

AUC 0.932 ± 0.008 0.856 ± 0.002 0.756 ± 0.070 0.911 ± 0.006 0.817 ± 0.011 0.590 ± 0.082 0.622 ± 0.028 0.521 ± 0.003
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tensor X̃train may be difficult, while the decomposed 
factors were not guaranteed to be optimal, because of 
the very big tensor (i.e. the number of entries in X̃train 
is more than 7.109 for each testing case using LOOCV). 
This could be a weakness of Phan–Cichocki method 
in this work. For the ease of implementation as well as 
avoiding the imbalanced problem, we applied the ran-
dom under-sampling technique for the non-epileptic 
spike class to balance two class distributions, which is 
a widely used technique to handle imbalance dataset 
[57]. As a result, around 6000 non-spikes were selected 
to form the training four-way tensor in our exper-
imental setup. The results showed that evaluation met-
rics measuring the four classifiers using our method 
were higher than that of Phan–Cichocki method. 
Specifically, the our method obtained the best classi-
fication accuracy, i.e. AUC of 0.932 ± 0.008, achieved 
the highest ACC = 0.910 ± 0.004 and the highest 
SEN = 0.830 ± 0.030. The separability of our fea-
tures was also validated by applying the classifiers 
KNN, NB and DT. In contrast to our method, both 
classifiers using features extracted by Phan–Cichocki 
method did not work well. In all test cases, the aver-
age SEN across 17 patients of four classifiers were low, 

(i.e. SEN < 0.4). That means more than 60% epilep-
tic spikes in our EEG dataset could not be detected by 
these classifiers. Our NTD-SVM and NTD-DT models 
provided much better performance in terms of SEN 
in which they detected more than 80% the number of 
epileptic spike correctly. The metrics to non-epileptic 
class (i.e. SPE and ACC) of both four classifiers were 
also effective, e.g. the overall SPE of SVM and KNN 
were 0.931 ± 0.013 and 0.954 ± 0.008 respectively. 
However, three of four classifiers resulted in a poor 
AUC on average (i.e. 0.5 � AUC � 0.6) which indi-
cates that these models failed to detect EEG epileptic 
spikes, except the SVM classifier. However, the AUC 
of SVM was lower 11% than that of our method. We 
refer the reader to the technical report [46] for further 
detailed results of the four classifiers using features 

extracted by Phan–Cichocki method.

6. Conclusions

In this paper, we have proposed a new model, 
abbreviated as GSMLRAT, for solving the problem of 
simultaneous multilinear low-rank approximation of 
tensors. Inspired by the advantages of GSMLRAT and 
NTD, we proposed, for the first time, a new tensor-
based system to detect epileptic spikes in EEG data. 
We have first derived a new feature space that can span 
EEG epileptic spikes from sparse loading factors of 
NTD. A new discriminant set of features, learned from 
NTD, which can distinguish between epileptic spike 
class and non-epileptic spike class with high accuracy. 
To reduce feature dimensionality as well as to achieve 
the good separability between these classes, we have 
applied the Fisher score in EEG feature selection. The 
numerical experiments have indicated that EEG multi-
way analysis using NTD allows us to extract multi-
domain features of epileptic spikes and provide high 
classification accuracy only with well-known ‘shallow’ 
classifiers such as KNN, NB, DT and SVM.
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