
Formal verification of an abstract version of Anderson protocol
with CafeOBJ, CiMPA and CiMPG

Duong Dinh Tran, Kazuhiro Ogata
School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Email: {duongtd,ogata}@jaist.ac.jp

Abstract— Anderson protocol is a mutual exclusion protocol.
It uses a finite Boolean array shared by all processes and
the modulo (or reminder) operation of natural numbers. This
is why it is challenging to formally verify that the protocol
enjoys the mutual exclusion property in a sense of theorem
proving. Then, we make an abstract version of the protocol
called A-Anderson protocol that uses an infinite Boolean array
instead. We describe how to formally specify A-Anderson
protocol in CafeOBJ, an algebraic specification language and
how to formally verify that the protocol enjoys the mutual
exclusion property in three ways: (1) by writing proof scores
in CafeOBJ, (2) with a proof assistant CiMPA for CafeOBJ
and (3) with a proof generator CiMPG for CafeOBJ. We
mention how to formally verify that Anderson protocol enjoys
the property by showing that A-Anderson protocol simulates
Anderson protocol.

Keywords-algebraic specification language; mutual exclusion
protocol; proof assistant; proof generator; proof score

I. INTRODUCTION

Anderson protocol [1] is a mutual exclusion protocol. The
protocol uses a finite Boolean array whose size is the same
as the number of processes participating in the protocol.
It also uses the modulo operation of natural numbers and
an atomic operation fetch&incmod. fetch&incmod takes a
natural number variable x and a non-zero natural number
constant N and atomically does the following: setting x to
(x+1)%N, where % is the modulo operation, and returning
the old value of x.

It is challenging to formally verify that Anderson protocol
satisfies desired properties, such as the mutual exclusion
property, in a sense of theorem proving. This is because
the protocol uses a finite array and the modulo operation of
natural numbers. Then, we make an abstract version of the
protocol by using an infinite Boolean array instead of a finite
Boolean array, using fetch&inc instead of fetch&incmod
and stopping use of the modulo operation, where fetch&inc
is an atomic operation that atomically does the follow-
ing: setting x to x + 1 and returning the old value of
x. The abstract version is called A-Anderson protocol or

This work was partially supported by JSPS KAKENHI Grant Number
JP19H04082.

DOI reference number: 10.18293/SEKE2020-064

A-Anderson. A-Anderson is formalized as an observation
transition system (OTS) [2], [3], the OTS is specified in
CafeOBJ [4] and it is formally verified in three ways that the
OTS enjoys the mutual exclusion property with CafeOBJ,
CiMPA [5] and CiMPG [5]. CafeOBJ is an algebraic speci-
fication language. Its processor is called CafeOBJ. The first
implementation of CafeOBJ was done in Common Lisp,
while the second implementation was done in Maude [6], a
sibling language of CafeOBJ. The second implementation
is called CafeInMaude [7]. CafeInMaude Proof Assistant
(CiMPA) is a proof assistant for CafeOBJ and CafeInMaude
Proof Generator (CiMPG) is a proof generator that takes
annotated proof scores in CafeOBJ and generates proof
scripts for CiMPA.

Proof scores can be written in a similar way to write
programs in a similar sense of Larch Prover (LP) [8]. The
proof score approach to formal verification is flexible in
this sense. This is one advantage of the approach. The
approach, however, has a disadvantage. Proof scores are
subject to human errors. What CafeOBJ essentially does for
proof scores is reduction. If human users overlook some
cases, CafeOBJ does not point them out. To get rid of the
disadvantage, CiMPA has been developed. Although CiMPA
is not subject to human errors, it is not flexible enough. To
make each advantage of proof score and CiMPA available,
CiMPG has been developed. Given proof scores that should
be annotated a little bit, CiMPG generates proof scripts that
are fed into CiMPA. If CiMPA can successfully discharge
all goals with the generated proof scripts, the proof scores
are correct for the goals.

The rest of the paper is organized as follows: Sect. II
mentions Anderson protocol and its abstract version. Sect. III
describes the formal specification of the abstract version
in CafeOBJ. Sect. IV describes the formal verification that
the abstract version enjoys the mutual exclusion property
by writing proof scores in CafeOBJ. Sect. V describes the
formal verification with CiMPA. Sect. VI describes the for-
mal verification with CiMPG. Sect. VII mentions simulation-
based verification between A-Anderson and Anderson pro-
tocols. Sect. VIII mentions related work. Sect. IX concludes
the paper.



II. ANDERSON PROTOCOL AND ITS ABSTRACT VERSION

We suppose that there are N processes participating in
Anderson protocol. The pseudo-code of Anderson protocol
for each process i can be written as follows:

Loop “Remainder Section′′

rs : place[i] := fetch&incmod(next ,N );
ws : repeat until array [place[i]];

“Critical Section′′

cs : array [place[i]],
array [(place[i] + 1)%N] := false, true;

We suppose that each process is located at rs, ws or
cs and initially located at rs. place is an array whose
size is N and each of whose elements stores one from
{0, 1, . . . ,N − 1}. Initially, each element of place can be
any from {0, 1, . . . ,N − 1} but is 0 in this paper. Although
place is an array, each process i only uses place[i] and then
we can regard place[i] as a local variable to each process i.
array is a Boolean array whose size is N . Initially, array [0]
is true and array [j] is false for any j ∈ {1, . . . ,N − 1}.
next is a natural number variable and initially set to 0.
fetch&incmod(next ,N ) atomically does the following: set-
ting next to (next + 1)%N and returning the old value
of next . x, y := e1, e2 is a concurrent assignment that is
processed as follows: calculating e1 and e2 independently
and setting x and y to their values, respectively.

We also suppose that there are N processes participating
in an abstract version of Anderson protocol. The abstract
version is called A-Anderson protocol. The pseudo-code of
A-Anderson protocol for each process i can be written as
follows:

Loop “Remainder Section′′

rs : place[i] := fetch&inc(next);
ws : repeat until array [place[i]];

“Critical Section′′

cs : array [place[i] + 1] := true;

We use an infinite Boolean array array instead of a fi-
nite one and do not use %. fetch&inc is used instead
of fetch&incmod. fetch&inc(next) atomically does the
following: setting next to next + 1 and returning the old
value of next . We also suppose that each process is located
at rs, ws or cs and initially located at rs. Initially, each
element of place can be any natural number but is 0 in this
paper, array [0] is true, array [j] is false for any non-zero
natural number j and next is 0.

III. SPECIFICATION OF A-ANDERSON PROTOCOL

Each state of A-Anderson protocol can be characterized
by the following pieces of information: the location of each
process, the value stored in next , the value stored in each
element of place and the value stored in each element of
array . Therefore, we use the following observation func-
tions:

op pc : Sys Pid -> Label .
op next : Sys -> SNat .
op place : Sys Pid -> SNat .
op array : Sys SNat -> Bool .

where Sys is the sort of states, Pid is the sort of process
IDs, Label is the sort of rs, ws and cs, SNat is the sort of
natural numbers and Bool is the sort of Boolean values. We
do not use any infinite arrays in the specification. Instead,
we use the observation function array to observe the value
stored in each element that is given to array as its second
argument.

We use one constructor that represents an arbitrary initial
state:

op init : -> Sys {constr} .

init is defined in terms of equations, specifying the values
observed by the four observation functions in an arbitrary
initial state as follows:

eq pc(init,P) = rs .
eq next(init) = 0 .
eq place(init,P) = 0 .
eq array(init,I)
= (if I = 0 then true else false fi) .

where P is a CafeOBJ variable of Pid and I is a CafeOBJ
variable of SNat.

We use three transition functions that are also construc-
tors:

op want : Sys Pid -> Sys {constr}
op try : Sys Pid -> Sys {constr}
op exit : Sys Pid -> Sys {constr}

The three transition functions capture the actions that each
process moves to ws from rs, tries to move to cs from ws
and moves back to rs from cs, respectively. The reachable
states are composed of the four constructors.

Each of the three transition functions is defined in terms
of equations, specifying how the values observed by the four
observation functions change. Let S be a CafeOBJ variable
of Sys, P & Q be CafeOBJ variables of Pid and I & J be
CafeOBJ variables of SNat.
want is defined as follows:

ceq pc(want(S,P),Q)
= (if P = Q then ws else pc(S,Q) fi)
if c-want(S,P) .
ceq place(want(S,P),Q)
= (if P = Q then next(S) else place(S,Q) fi)
if c-want(S,P) .
ceq next(want(S,P))
= s(next(S)) if c-want(S,P) .
eq array(want(S,P),I) = array(S,I) .
ceq want(S,P) = S if c-want(S,P) = false .

where c-want(S,P) is pc(S,P) = rs. s of
s(next(S)) is the successor function of natural
numbers. The equations say that if c-want(S,P) is true,
the location of P changes to ws, the location of each other



process Q does not change, the P’s place changes to next ,
each other process Q’s place does not change, next is
incremented and array does not change in the state denoted
want(S,P); if c-want(S,P) is false, nothing changes.
try is defined as follows:

ceq pc(try(S,P),Q)
= (if P = Q then cs else pc(S,Q) fi)
if c-try(S,P) .
eq place(try(S,P),Q) = place(S,Q) .
eq array(try(S,P)) = array(S) .
eq next(try(S,P),I) = next(S) .
ceq try(S,P) = S if c-try(S,P) = false .

where c-try(S,P) is

pc(S,P) = ws and array(S,place(S,P)) = true

The equations say that if c-try(S,P) is true, the location
of P changes to ws, the location of each other process Q does
not change, place does not change, array does not change
and next does not change in the state denoted try(S,P);
if c-try(S,P) is false, nothing changes.
exit is defined as follows:

ceq pc(exit(S,P),Q)
= (if P = Q then rs else pc(S,Q) fi)
if c-exit(S,P) .
eq place(exit(S,P),Q) = place(S,Q) .
eq next(exit(S,P)) = next(S) .
ceq array(exit(S,P),I) =
(if I = s(place(S,P)) then true
else array(S,I) fi) if c-exit(S,P) .

ceq exit(S,P) = S if c-exit(S,P) = false .

where c-exit(S,P) is pc(S,P) = cs. The equations
say that if c-exit(S,P) is true, the location of P changes
to rs, the location of each other process Q does not change,
place does not change, next does not change, the Ith
element of array is set true if I equals s(place(S,P))
and each other element of array does not change in the state
denoted exit(S,P); if c-exit(S,P) is false, nothing
changes.

IV. FORMAL VERIFICATION WITH PROOF SCORES

Let S be a CafeOBJ variable of Sys, P & Q be CafeOBJ
variables of Pid and I & J be CafeOBJ variables of SNat.
One desired property A-Anderson protocol should satisfy is
the mutual exclusion property that is expressed as follows:

eq mutex(S,P,Q)
= ((pc(S,P) = cs and pc(S,Q) = cs)

implies (P = Q)) .

The expression (or the term) says that if there are processes
in the critical section, there is one, namely that exists at most
one process in the critical section at any given moment.

To prove that A-Anderson protocol enjoys the property,
we need to use the following lemmas:

eq inv1(S,P,Q)
= ((pc(S,P) = ws and array(S,place(S,P))

= true and (P = Q) = false)
implies
(pc(S,Q) = cs or (pc(S,Q) = ws and
array(S,place(S,Q)) = true)) = false) .

eq inv2(S,P)
= ((pc(S,P) = cs)

implies (array(S,place(S,P)) = true)) .
eq inv3(S,P,Q)
= ((place(S,P) = place(S,Q) and (P = Q)

= false)
implies (place(S,P) = 0)) .

eq inv4(S,P)
= (place(S,P) = next(S)

implies (next(S) = 0)) .
eq inv5(S,P)
= (place(S,P) < s(next(S))) = true .
eq inv6(S,P)
= (pc(S,P) = cs or (pc(S,P) = ws and

array(S,place(S,P)) = true))
implies array(S,next(S)) = false .

eq inv7(S) = array(S,s(next(S))) = false .
eq inv8(S,I,J)
= (array(S,J) = true and I < s(J))

implies array(S,I) = true .

where s used in s(next(S)) and s(J) is the successor
function of natural numbers.

We prove mutex(S,P,Q) for all reachable states S
and all process IDs P & Q by structural induction on
S. There are four cases to tackle: (1) init, (2) want,
(3) try and (4) exit. Let us consider case (3). What
to prove is mutex(try(s, r), p, q), where s is a
fresh constant of Sys representing an arbitrary state and p,
q and r are fresh constant of Pid representing arbitrary
Process IDs. The induction hypothesis is mutex(s,P,Q)
for all process IDs P & Q. Let us note that s is shared
by mutex(try(s, r), p, q) and mutex(s,P,Q),
while the variables P and Q can be replaced with any terms
of Pid, such as p and q.

Case (3) is first split into two sub-cases: (3.1)
pc(s, r) = ws and (3.2) (pc(s, r) = ws)
= false. Case (3.2) can be discharged, while it is
necessary to split case (3.1) into two sub-cases: (3.1.1)
q = r and (3.1.2) (q = r) = false. It is also
necessary to split case (3.1.1) into two sub-cases:
(3.1.1.1) p = r and (3.1.1.2) (p = r) = false.
Case (3.1.1.1) can be discharged, while it is still
necessary to split (3.1.1.2) into two sub-cases: (3.1.1.2.1)
array(s,place(s,r)) = true and (3.1.1.2.2)
array(s,place(s,r)) = false. Case (3.1.1.2.2)
can be discharged, but we need to split case (3.1.1.2.1)
into two sub-cases again: (3.1.1.2.1.1) pc(s,p) = cs
and (3.1.1.2.1.2) (pc(s,p) = cs) = false. Feeding
the proof scores of case (3.1.1.2.1.1) and case (3.1.1.2.1.2)
into CafeOBJ, CafeOBJ returns false and true,
respectively. Case (3.1.1.2.1.1) says that process p is
located at cs, process r (or q since q = r) is located
at ws and array(s,place(s,r)) = true. In case



(3.1.1.2.1.1), process r can move to cs, breaking the
property concerned because there are two processes p
and r located at cs. Therefore, we need to conjecture
a lemma to discharge case (3.1.1.2.1.1). Such a lemma
can be conjectured from the assumptions made in case
(3.1.1.2.1.1). We have conjectured inv1 as such a lemma.
The proof score of case (3.1.1.2.1.1) is as follows:

open INV .
op s : -> Sys . ops p q r : -> Pid .
eq pc(s, r) = ws . eq q = r .
eq (p = r) = false .
eq array(s,place(s,r)) = true .
eq pc(s,p) = cs .
red inv1(s,r,p)

implies mutex(s, p, q)
implies mutex(try(s, r), p, q) .

close

In order to discharge case (3.1.2), we need to split
it into two sub-cases: (3.1.2.1) p = r and (3.1.2.2)
(p = r) = false. If p and q are swapped, case
(3.1.2.1) becomes exactly the same as case (3.1.1.2). Hence,
case (3.1.2.1) can be discharged in the same way as case
(3.1.1.2). We also need to use inv1 as a lemma but
should use inv1(s,r,q) instead of inv1(s,r,p). The
proof score of a sub-case derived from case (3.1.2.1) that
corresponds to case (3.1.1.2.1.1) is as follows:

open INV .
op s : -> Sys . ops p q r : -> Pid .
eq pc(s, r) = ws .
eq (q = r) = false . eq p = r .
eq array(s,place(s,r)) = true .
eq pc(s,q) = cs .
red inv1(s,r,q)

implies mutex(s, p, q)
implies mutex(try(s, r), p, q) .

close

(3.1.2.2) is the only unresolved sub-case of case (3). Once
again, this case is split into two sub-cases: (3.1.2.2.1) p = q
and (3.1.2.2.2) (p = q) = false. The former can be
discharged, while we need to split the latter into two sub-
cases: (3.1.2.2.2.1) array(s,place(s,r)) = true
and (3.1.2.2.2.2) array(s,place(s,r)) = false.
Both cases can be discharged. Then, case (3) has been
discharged.

Case (4) can be discharged in a similar way as case (3)
is discharged. We can discharge case (2) without using any
lemmas. It is straightforward to discharge case (1). We need
to prove inv1 to complete the formal verification. The proof
of inv1 uses inv2, inv3, mutex and inv6 as lemmas.
inv2 and inv5 can be proved independently without use
of any other lemmas. The proof of inv3 uses inv4 as a
lemma. The proof of inv4 uses inv5 as a lemma. The
proof of inv6 uses inv1, inv4, mutex and inv7 as
lemmas. The proof of inv7 uses inv2, inv6 and inv8
as lemmas. The proof of inv8 uses inv2 as a lemma. Let

us note that although the proof of mutex uses inv1 as a
lemma and the proof of inv1 uses mutex as a lemma, our
argument is not circular. We use simultaneous induction to
conduct our proof.

To prove each invariant for an OTS by writing proof
scores in CafeOBJ, we first use simultaneous induction on
states and do the following: for the base case, it is usually
straightforward to discharge the case, and for each induction
case, we conduct case splittings and use instances of induc-
tion hypotheses (or lemmas) as premises of implications.

It took much less than 1s to run all proof scores with
CafeOBJ so as to formally verify that A-Anderson protocol
enjoys the mutual exclusion property. The experiment used
a computer that carried 3.4GHz microprocessor and 32GB
main memory. The same computer was used to conduct the
other experiments mentioned in the present paper.

V. FORMAL VERIFICATION WITH CIMPA

The proof score approach to formal verification does not
require to explicitly construct proof trees. The outcomes of
the approach are open-close fragments written in CafeOBJ
that correspond to leaf parts of proof trees. Conducing
formal verification by writing proof scores in CafeOBJ,
however, we implicitly construct proof trees. Once we have
completed formal verification by writing proof scores in
CafeOBJ, we must be able to conduct the formal verifica-
tion with CiMPA. We partially describe formal verification
with CiMPA that A-Anderson enjoys the mutual exclusion
property.

We first introduce the goals to prove for CiMPA with the
command :goal as follows:

open INV .
:goal{

eq [inv1 :nonexec]
: inv1(S:Sys,P:Pid,Q:Pid) = true .

eq [inv2 :nonexec]
: inv2(S:Sys,P:Pid) = true .

...
eq [mutex :nonexec]
: mutex(S:Sys,P:Pid,Q:Pid) = true .

}

where the six more lemmas should be written in the place
..., inv1, inv2 and mutex written in square brackets
are the names referring to the goals, respectively, and
:nonexec instructs CafeOBJ not to use the equations as
rewrite rules.

Then, we select S with the command :ind on as the
variable on which we start proving the goals by simultaneous
induction:

:ind on (S:Sys)
:apply(si)

The command :apply(si) starts the proof by simulta-
neous induction on S, generating four sub-goals for exit,
init, try and want, where si stands for simultaneous



induction. Each sub-goals consists of nine equations to
prove. We skip the sequence of commands that discharge
the first two sub-goals for exit and init. We partially
describe how to discharge the third sub-goal for try. To
this end, the first command used is as follows:

:apply(tc)

where tc stands for theorem of constants. The command
generates nine sub-goals, one of which is as follows:

3-9. TC eq [mutex :nonexec]:
mutex(try(S#Sys,P#Pid),P@Pid,Q@Pid) = true .

The command :apply(tc) replaces CafeOBJ variables
with fresh constants in goals. S#Sys and P#Pid are fresh
constants introduced by :apply(si), while P@Pid and
Q@SNat are fresh constants introduced by :apply(tc).

To discharge goal 3-9, the following commands are first
introduced:

:def csb3_9_1 =
:ctf {eq pc(S#Sys,P#Pid) = ws .}

:apply(csb3_9_1)
:def csb3_9_2 = :ctf {eq Q@Pid = P#Pid .}
:apply(csb3_9_2)
:def csb3_9_3 = :ctf {eq P@Pid = P#Pid .}
:apply(csb3_9_3)

Case splittings are carried out based on these three equations.
For one generated sub-goal in which we assume that the
three equations hold, we use the following commands:

:imp [mutex] by
{P:Pid <- P@Pid ; Q:Pid <- Q@Pid ;}

:apply (rd)

The induction hypothesis is instantiated by replacing the
variables P:Pid and Q:Pid with the fresh constants
P@Pid and Q@Pid and the instance is used as the premise
of the implication. Then, :apply(rd) is used to check if
the current goal can be discharged. The goal is discharged
in this case. The goal corresponds to case (3.1.1.1) in the
last section.

After that, the following commands are written:

:def csb3_9_4 =
:ctf [ array(S#Sys,place(S#Sys,P#Pid)) .]

:apply(csb3_9_4)
:def csb3_9_5 =
:ctf {eq pc(S#Sys,P@Pid) = cs .}

:apply(csb3_9_5)

Case splittings are carried out based on one Boolean term
and one equation. For one generated sub-goal in which we
assume that the Boolean term is true and the equation holds,
we use the following commands:

:imp [inv1] by
{P:Pid <- P#Pid ; Q:Pid <- P@Pid ;}

:imp [mutex] by
{P:Pid <- P@Pid ; Q:Pid <- Q@Pid ;}

:apply (rd)

The lemma inv1 is instantiated by replacing the variables
P:Pid and Q:Pid with the fresh constants P#Pid and
Q#Pid and the instance is used as the premise of the
implication. Next, the induction hypothesis is instantiated by
replacing the variables P:Pid and Q:Pid with the fresh
constants P@Pid and Q@Pid and the instance is used as
the premise of the implication. Then, :apply(rd) is used
to check if the current goal can be discharged. The goal
is discharged in this case. The goal corresponds to case
(3.1.1.2.1.1) in the last section.

When CiMPA is used to formally verify invariant proper-
ties for an OTS, what to do is essentially the same as we do
formal verification by writing proof scores in CafeOBJ. The
difference is as follows: it is necessary to use the commands
given by CiMPA when CiMPA is used.

It took about 22s to run the proof scripts with CiMPA so
as to formally verify that A-Anderson protocol enjoys the
mutual exclusion property.

VI. FORMAL VERIFICATION WITH CIMPG
After writing proof scores that A-Anderson protocol en-

joys the mutual exclusion property, we can confirm that the
proof scores are correct by doing the formal verification with
CiMPA as described in the last section. Although we are
able to conduct the formal verification with CiMPA once we
have completed formal verification by writing proof scores
in CafeOBJ, it would be preferable to automatically confirm
the correctness of proof scores. CiMPG makes it possible
to automatically confirm the correctness of proof scores by
generating proof scripts for CiMPA from the proof scores.

To use CiMPG, we need to add one open-close fragment
to the proof scores. The open-close fragment is as follows:

open INV .
:proof(ander)

close

Moreover, we need to write :id(ander) in each open-
close fragment. For example, the first open-close fragment
used in Sect. IV becomes as follows:

open INV .
:id(ander)
op s : -> Sys . ops p q r : -> Pid .
eq pc(s, r) = ws . eq q = r .
eq (p = r) = false .
eq array(s,place(s,r)) = true .
eq pc(s,p) = cs .
red inv1(s,r,p)

implies mutex(s, p, q)
implies mutex(try(s, r), p, q) .

close

Feeding the annotated proof scores into CiMPG, CiMPG
generates the proof script for CiMPA. The generated proof
script is quite similar to the one written manually. Feeding
the generated proof script into CiMPA, CiMPA discharges
all goals, confirming that the proof scores are correct. It took
about 626s to generate the proof script with CiMPG.



VII. A-ANDERSON PROTOCOL SIMULATES ANDERSON
PROTOCOL

We can use “simulation-based verification for invariant
properties [9]” so as to formally verify that Anderson pro-
tocol enjoys the mutual exclusion property. To this end, we
first need to prove that the OTS formalizing A-Anderson
protocol simulates the OTS formalizing Anderson protocol
by showing that there exists a simulation relation from the
latter OTS to the former OTS. We next need to prove that the
simulation relation preserves the mutual exclusion property.
Then, since we have formally verified that A-Anderson
protocol enjoys the property, we can conclude that Anderson
protocol also enjoys the property. We will describe this part
in a longer version of the present paper.

VIII. RELATED WORK

Anderson protocol has been formally specified in
CafeOBJ and semi-formally verified with CafeOBJ [10].
Proof scores have been partially written and then all nec-
essary lemmas have not been conjectured and used. They
have used a simulation relation between Ticket protocol
and Anderson protocol, where the former is abstract, while
the latter is concrete. But, they have not used any precise
definitions of simulation relations.

In the paper [9] that proposes simulation-based verifica-
tion for invariant properties in the OTS/CafeOBJ method,
Alternating Bit Protocol (ABP), a communication protocol,
is used as an example. Two more abstract protocols are
used. The paper concludes that it is not very beneficial to
use the simulation-based verification technique in order to
formally verify that ABP enjoys desired invariant properties.
It is useful to use the technique so as to formally verify
that Anderson protocol enjoys the mutual exclusion property,
however, although the present paper does not describe the
part in detail.

Farn Wang [11] proves that it is impossible to auto-
matically formally verify that concurrent software systems
as processes running algorithms on data-structures with
pointers enjoy desired properties if there are an arbitrary
number of processes. Then, he proposes a new automatic
approximation method to tackle it. He uses the proposed
method to formally verify that a revised version of the MCS
mutual exclusion protocol [12] enjoys desired properties. It
is one piece of future work to formally verify with the Farn
Wang’s method that Anderson protocol enjoys the mutual
exclusion property and to compare his method with the
technique used in the present paper. It is another piece
of future work to formally verify that the MCS mutual
exclusion protocol enjoys the mutual exclusion property with
the technique used in the present paper.

IX. CONCLUSION

We summarize some lessons learned from the case study.
(1) Abstraction makes it possible to tackle the formal

verification task. Although we were not able to formally
verify that Anderson protocol enjoys the mutual exclusion
property by writing proof scores in CafeOBJ, we were able
to conduct the formal verification for A-Anderson protocol,
an abstract version of Anderson protocol. (2) Our experience
says that once we have written all proof scores to prove
that A-Anderson protocol enjoys the property, it is rather
straightforward to write the proof scripts for CiMPA. (3)
Although CiMPG can automatically generate the proof script
for CiMPA from proof scores in CafeOBJ, it takes time to
do so. One piece of our future work for (2) is to prepare
a gentle guide for non-experts to writing proof scripts for
CiMPA from their experiences of writing proof scores in
CafeOBJ. Another piece of our future work for (2) and (3)
is to come up with better annotations to proof scores for
CiMPG to more efficiently generate the proof scripts from
annotated proof scores.

REFERENCES

[1] T. E. Anderson, “The performance of spin lock alternatives
for shared-memory multiprocessors,” IEEE Trans. Parallel
Distrib. Syst., vol. 1, no. 1, pp. 6–16, 1990.

[2] K. Ogata and K. Futatsugi, “Proof scores in the OTS/CafeOBJ
method,” in FMOODS 2003, 2003, pp. 170–184.

[3] K. Ogata and K. Futatsugi, “Some tips on writing proof
scores in the OTS/CafeOBJ method,” in Algebra, Meaning,
and Computation, 2006, pp. 596–615.

[4] R. Diaconescu and K. Futatsugi, Cafeobj Report, ser. AMAST
Series in Computing. World Scientific, 1998, vol. 6.

[5] A. Riesco and K. Ogata, “Prove it! inferring formal proof
scripts from CafeOBJ proof scores,” ACM Trans. Softw. Eng.
Methodol., vol. 27, no. 2, pp. 6:1–6:32, 2018.

[6] M. Clavel, et al., Ed., All About Maude, ser. Lecture Notes
in Computer Science. Springer, 2007, vol. 4350.

[7] A. Riesco, K. Ogata, and K. Futatsugi, “A Maude environ-
ment for CafeOBJ,” Formal Asp. Comput., vol. 29, no. 2, pp.
309–334, 2017.

[8] S. J. Garland and J. V. Guttag, “An overview of LP, the larch
power,” in RTA-89, 1989, pp. 137–151.

[9] K. Ogata and K. Futatsugi, “Simulation-based verification for
invariant properties in the OTS/CafeOBJ method,” Electron.
Notes Theor. Comput. Sci., vol. 201, pp. 127–154, 2008.

[10] K. Ogata and K. Futatsugi, “Specification and verification of
some classical mutual exclusion algorithms with CafeOBJ,”
in OBJ/CafeOBJ/Maude Workshop at Formal Methods 1999,
1999, pp. 159–177.

[11] F. Wang, “Automatic verification of pointer data-structure
systems for all numbers of processes,” in World Congress
on Formal Methods 1999, 1999, pp. 328–347.

[12] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for
scalable synchronization on shared-memory multiprocessors,”
ACM Trans. Comput. Syst., vol. 9, no. 1, pp. 21–65, 1991.


