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Abstract: Our industry is now upgrading to the next industrial revolution,
or Industry 4.0, which have been generating massive data that we have never
seen before. It requires us to employ new methods to take advantage of this
fast and big data. Optimizing and fully automated production, by harnessing
cutting-edge technologies, are the ultimate goals of Industry 4.0. Among
various advanced and cutting-edge technologies, machine learning (ML) and
big data analytics (BDA) have been incorporated and applied successfully
to obtain insights from the data and help to adjust automatically industrial
processes as needed.
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1 Big data analytics for Industry 4.0

1.1 Characteristics of Big data
The concept of “Big data" was mentioned for the first time by Roger Mougalas
in 2005 [18]. It refers to a large scale data, one of the characteristics
of Industry 4.0, that cannot be stored in a single computer and is almost
impossible to be handled using traditional data analytics approaches. Big
data applications exploded after 2011 are related to the improvement in
computing power, storage as well as the reduction in the cost of sensors,
communication and recently the development of Internet of Things (i.e., IoT).
These advances have leaded to the utilization of multiple sources (sensors,
applications, people, and animals) in the generation of data. In 2011, Big
data is defined by [6] using 4Vs characteristics, including: Volume, Velocity,
Variety, and also Value. Then the fifth one, Veracity, was introduced in 2012
[10], as shown in Fig. 1.

Fig. 1 5Vs characteristics of Big data

Volume hints to the size and/or scale of datasets. Until now, there is not
an universal threshold for data volume to be considered as big data, because



of the time and diversity of datasets. Generally, big data can have the volume
starting from exabyte (EB) or zettabyte (ZB) [4].

Variety implies the diversity of data in different forms which contains
structured, semi-structured, or unstructured ones. Real-world datasets, com-
ing from heterogeneous sources, are mostly under unstructured or semi-
structured form that make the analysis to be challenged because of the
inconsistency, incompleteness, and noise. Therefore, data prepossessing is
needed to remove noise, which includes some steps as data cleaning, data
integrating, and data transforming [9].

Velocity indicates the speed of processing data. It can fall into 3 cat-
egorises: streaming processing, real-time processing, or batch processing.
This characteristic emphasizes that the speed of producing data should keep
up with the speed of processing data [4].

Value alludes the usefulness of data for decision making. Giant com-
panies (e.g., Amazon, Google, Facebook, etc.) analyze daily large scale
datasets of users and their behaviors to give recommendations, improve
location services, or provide targeted advertising, etc. [10].

Veracity denotes the quality and trustworthiness of datasets. Due to
variety characteristic of data, the accuracy and trust become harder to ac-
complish and they play an essential role in applications of big data analytics
(BDA). As analysing millions of health care entries in order to respond an
outbreak that impacts a huge number of people (e.g., CoVid-19 pandemic)
or veterinary records to guess the plague in swine herd (e.g., African swine
fever or Porcine reproductive and respiratory syndrome), any ambiguities or
inconsistencies in datasets can impede the precision of analytic process [10],
leading to a catastrophic situation.

Generally, big data in the context of Industry 4.0 can originate from sev-
eral and various sources, such as: product or machine design data, machine-
operation data from control systems, manual-operation records performed
by staff, product-quality and process-quality data, manufacturing execution
systems, system-monitoring and fault-detection deployments, information
on operational costs and manufacturing, logistics information from partners,
information from customers on product utilization, feedback, and so on and
so forth [25]. Some of these datasets are semi-structured (e.g., manual-
operation records), few are structured (e.g., sensor signals), and others are
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unstructured completely (e.g., images). Therefore, an enterprise 4.0 requires
cutting-edge technologies that can fully take advantage of the valuable man-
ufacturing data, including: machine learning (ML) and BDA.

1.2 Characteristics of Big data analytics
BDA can be referred to as “the process of analyzing large scale datasets
in order to find unknown correlations, hidden patterns, and other valuable
information which is not able to be analysed using conventional data analyt-
ics" [7]. As the conventional data analysis techniques are no longer effective
because of the special characteristics of big data: massive, heterogeneous,
high dimensional, complex, erroneous, unstructured, noisy, and incomplete
[27].

BDA has attracted attention from not only academic but also industrial
scientists as the requirement of discovering hidden trends in large scale
datasets increases. [11] compared the impact of BDA for Industry 4.0 with
the invention of the microscope and telescope for biology and astronomy,
respectively. Recently, the considerable development in the ubiquitous IoT
(i.e., Internet of Things), sensor networks, and CPS (i.e., cyber-physical
systems) have expanded the data-collection process to an enormous scale in
numerous domains, including: social media, smart cities, education, health
care, finance, agriculture, etc. [10].

Various advanced techniques to analyze data (i.e., ML, computational in-
telligence, data mining, natural language processing) and potential strategies
(i.e., parallelisation, divide and conquer, granular computing, incremental
learning, instance selection, feature selection, and sampling) can help to
handle big data issues. Empowering more efficient processing, and making
better decisions can also be obtained by using these techniques and strategies
[10].

Divide and conquer helps to reduce the complexity of computing prob-
lem. It is composed of three phases: firstly, it reduces the large-complex
problem into several smaller-easier ones; secondly, it tries to solve each
smaller problem; and finally, it combines solutions of all smaller problems
to solve the original problem [10].

Parallelisation allows to improve computation time by dividing big prob-



lems into smaller instances, distributing smaller tasks across multiple threads
and then performing them simultaneously. This strategy decreases compu-
tation time instead of total amount of work because multiple tasks can be
performed simultaneously rather than sequentially [28].

Incremental learning is widely practiced and used to handle streaming
data. It is a learning algorithm and can be trained continuously with addi-
tional data rather than current ones. In learning process, this strategy tunes
parameters each time new input data comes [28].

Granular computing helps to simplify the elements from a large space by
grouping them into subsets, or granules [2, 12]. By reducing large elements
to a search space which is smaller, uncertainty of elements in this search
space is identified effectively [30].

Feature selection is useful for preparing high scale datasets. This strategy
handles big data by determining a subset of relevant features which are for
an aggregation. Nevertheless, the data representation is more precise in this
particular strategy [16].

Instance selection is a major approach for pre-processing data. It helps
to shorten training sets and run-time in the training phases [21].

Sampling is a method for data reducing that helps to derive patterns in big
datasets by generating, manipulating, and analyzing subsets of the original
data [28].

2 Machine learning for Industry 4.0

Machine learning (ML), a state-of-the-art subfield of Artificial Intelligence
(AI) – Fig. 4, has been now powering several aspects of our society: informa-
tion search on the Internet, content filtered on social networks, recommen-
dations of e-commercial platforms, or accurate language translation, virtual
classrooms in education, support for diagnosing diseases in medicine, etc.
[13]. It has been applied successfully to solve several real problems, such
as: transcribing speech into text, matching new items, identifying objects,
selecting relevant search results, etc. [13].

Actually, the goal of a typical ML to find a mathematical formula (i.e.,
the model), when applied to a collection of inputs (i.e., the training data)
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then produces the desired outputs [3]. The “invented" mathematical formula
is also expected to generate the “correct" outputs for most other new inputs
(distinct from the training data) on the assumption that those inputs come
from the same or a similar statistical distribution of the training data [3].

In order to teach the machine, three components are needed, including:
(1) data - the more diverse and bigger the data, the better the result; (2)
features - also know as parameters or variables (e.g., age, gender, stock
price, etc.), they are the factors that the machine is looking at; and (3)
algorithms - the steps we follow to solve the given problem that affects the
precision, performance, and size of our model [32].

Generally, ML algorithms can be classified into 4 main types: (1) Un-
supervised learning, (2) Semi-supervised learning, (3) Supervised learning,
and (4) Reinforcement learning [5, 3], as shown in Fig. 2.

Fig. 2 Four main categories of Machine Learning



2.1 Supervised learning

Find out a mathematical formula that maps inputs to already-known outputs,
provided a set of human-annotated examples, is the purpose of a supervised
learning algorithm. In this case, we have a “supervisor" or a “teacher" who
gives the machine all the answers, like whether it’s a cat or a dog in a given
picture [32], i.e., a classification problem. The “teacher" has already labeled
input datasets and the machine will learn on top of these examples [32].

A specific kind of supervised learning is self-supervised learning, in
which machine learns without human-annotated labels [5]. There are still
associated labels, but they are generated from the input data typically using
a heuristic algorithm [5].

2.2 Unsupervised learning

In contrast to the former, in this case, the machine has no “supervisor" or
“teacher". Input data is not labeled, the machine is left on its own, trying
to find certain hidden patterns or structures in datasets. For example, in
clustering problem, the model (i.e., a mathematical formula) will output a
cluster identifier for each input data. Or in dimensionality reduction problem,
the model will output a new vector with fewer features than the original one
of input data [3].

2.3 Semi-supervised learning

In this case, input data contains not only labeled but also unlabeled examples.
The purpose of a semi-supervised learning is the same as the one of the
supervised learning [3]. By using several unlabeled examples (i.e., adding
more information about the problem and then reflects better the probability
distribution of data), we can help our learning algorithm to find out better
models [3].
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2.4 Reinforcement learning
In this case, the machine, also called an agent, is embedded in an environ-
ment. It is capable of observing states of that environment as a vector of
features, and then can perform actions in response to these states [3]. Dif-
ferent actions can give different rewards to the agent and could also move
it to another state of the environment, and so on. In contrast to supervised
learning and unsupervised learning, where we operate with static datasets, in
reinforcement learning, we work with dynamic datasets collected repeatedly
from a dynamic environment.

Learning an optimal policy is the target of an reinforcement learning
algorithm, i.e., a function that inputs the feature vector of a state and then
outputs an optimal sequence of actions to execute in that state [3], in order to
maximize long-term accumulated reward. For instance, sequence of scaling
actions such as adding or removing virtual machines/containers to keep
up with fluctuation of resource’s demand for big-data-analytic application
can be a result drawn from a reinforcement learning algorithm. Feature
vector here consists of information from the application itself (e.g., current
computing power, workload) and surrounding environment (e.g., type of
media, other co-located applications).

2.5 Machine learning for Big data
Conventional ML approaches cannot handle efficiently big data problems
because of its 5V’s characteristics (i.e., high speeds, diverse sources, low
value density, large volumes and incompleteness) [10]. Therefore, several
advanced ML techniques for BDA are proposed: transfer learning, feature
learning, active learning, distributed learning, and deep learning [10].

Feature learning empowers a system to figure out automatically the rep-
resentations required for feature detection or classification from raw datasets
[10].

Transfer learning allows to employ knowledge which has been learned
from one context to new contexts. By transferring useful information from
similar domains, it efficiently improves a learner from one specific domain
[29].



Distributed learning aims to alleviate the scalability issue of conventional
ML by distributing computations on datasets among a couple of machines
for scaling up the process of learning [23]. One of platforms using this
distributed approach to resolve scaling problem for multi-cloud applications
was proposed by [22].

Active learning aims to employ adaptive data collection. In this process,
parameters are adjusted automatically to gather as quickly as possible useful
data for accelerating ML tasks and overpowering the problem of labeling
[1].

Deep learning (DL) can be employed to extracts complex and high-
level abstractions of data representations. It is done by using a hierarchical,
layered architecture of learning, where more abstract features (i.e., higher-
level) are stated, described, and implemented on top of less abstract ones
(i.e., lower-level) [20] – see Fig. 3(a). DL techniques can analyze and learn
from enormous amount of unsupervised data, which is suitable for BDA in
which raw data is mostly unlabeled as well as uncategorised [20]. We will
focus on DL for Industry 4.0 on the next section.

Fig. 3 (a) Typical architecture of deep learning neural network with one
output, one input, and k hidden layers; (b) Artificial neuron: basic compu-
tational building block for neural networks
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3 Deep learning for Industry 4.0: State of the art

Deep learning, the most exciting branch of ML – Fig. 4, has been expanded
on the base of classic Artificial Neural Networks (NNs). It supports com-
putational models that, in contrast to shallow NN-like models with only few
layers, are consisted of multiple processing (non-linear) layers. Each layer
will take charge of different level of abstraction that helps to learn hierar-
chical representation of data. The functionality of DL is emulated from the
operation of neuron network in human brain for processing ambient signals
[19], with the notions of axon, synapse, dendrite – see Fig. 3(b). DL, with
different types (e.g., Recurrent Neural Networks, Autoencoders, Convolu-
tional Neural Networks, Deep Belief Net, etc.), has outperformed others
conventional ML techniques as well as improved dramatically cutting-edge
real problems in recognition of object, speech recognition, object detec-
tion, language translation and several other areas such as self-driving car,
genomics, games, or drug discovery, etc. [24, 13].

Fig. 4 Relationships between DL, ML, and AI [8]

DL helps to discover convoluted structure in a large scale dataset by
using an optimization algorithm, called backpropagation, meaning “error
backward propagation". It specifies how a model changes its (up to billions
of) internal parameters. In each layer, these parameters are used to com-
pute the representation based on the last one [13]. Most contemporary DL
algorithms are based on Stochastic Gradient Descent (SGD) [8].



In addition, DL requires fairly manual engineering, as it can profit from
increases in the amount of available data and computation [13], thus suitable
for BDA. In consequence, several hidden features, that might not be seen
obviously by a human, can be exposed by using a DL model [19].

For the industry sector, in order to accelerate technologies toward smart
manufacturing, equipping intelligent and high-precision systems, is very
important because they affect straightly to efficiency of related products,
reinforced productivity, and also reduce operation costs as well as mainte-
nance expenses [19]. In this context, a DL model can play an essential role.
Indeed, a wide form of applications for industry as controlling robots, object
detection and tracking, visual inspection of product lines, fault diagnosis,
etc., can benefit by applying a DL model [19].

Luckow et al. [17] investigated visual inspection of product lines us-
ing Convolutional Neural Network architectures including AlexNet and
GoogLeNet over different DL platforms, such as: Tensorflow, Caffe, and
Torch. In this work, several vehicles images, along with their annotation,
in the assembly line are submitted to a DL system. Consequently, by using
Tensorflow platform, they achieved the best performance with accuracy of
94%.

Lee et al. [15] tackled with detection of faults found out in the pro-
cess of transferring geometric shapes on a mask to the surface of a silicon
wafer and classification problem in noisy settings by employing Stacked
Denoising Auto-Encoders (SdA). It helps to lower the noise contained in
descriptive sensory data, derived from electrically mechanic disturbances as
well as carry out classification of fault. Results of this paper showed that,
in comparison with other baseline methods (e.g., Support Vector Machine
or K-Nearest Neighbors), SdA drives to about 14% more accuracy in noisy
situations.

Another work involved SdA was of Yan et al. [31]. They performed
the detection of abnormal actions of a combustion gas turbines by apply-
ing extreme learning machines joint with SdA. Their results showed that
the features detected by SdA leaded to a more improved classification in
comparison with hand-crafted features.

Shao et al. [26] extracted features in a fault diagnosis system for ro-
tating devices with the input of vibration data by applying Deep Neural
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Networks. The authors combined Denoising Auto-Encoders with Contrac-
tive Auto-Encoders. To diagnose the fault, they refined the learned features
using Locality Preserving Projection, then put them into a softmax classifier.
Seven conditions were considered in their system, including: rubbing fault,
compound faults (rub and unbalance), 4 levels of imbalance faults as well
as normal operation. The device status is identified based on exploitation
of vibration data by the diagnosis system. It figures out whether the device
is in fault or normal condition. Their approach used on the experiments
to diagnose the fault of locomotive bearing devices and rotors was shown
that it can beat Convolutional Neural Network and other shallow learning
methods.

Lee [14] supported detection of faults belong to several defect types often
appear on headlight modules of cars in a setting of vehicle manufacturer
by proposing a Deep Belief Network (DBN) model together with a cloud
platform and an IoT deployment. The results showed that DBN model
outperformed two other baseline methods (i.e., Radial Basis Function, and
Support Vector Machine) with regard to error rate in test datasets.

4 Conclusion

In this chapter, we have reviewed two promising technologies for Industry
4.0, named BDA and ML. We focus on the data aspect of smart manufactur-
ing, which is fast and massive, and cannot be handled efficiently by conven-
tional approaches. Indeed, by employing BDA and ML, especially DL, a
wide range of industrial applications is proven to be accelerated. Although
few successful works were reported in the literature, we believe that an op-
timizing and fully automated production on a large scale could be achieved
in a very-near future because of these potential advanced technologies.
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