
Generate Test Data from C/C++ Source Code using
Weighted CFG and Boundary Values
Tran Nguyen Huong∗†, Do Minh Kha†‡, Hoang-Viet Tran†, Pham Ngoc Hung†

∗National College for Education, Hanoi, Vietnam
†VNU University of Engineering and Technology, Hanoi, Vietnam

Email: {17028005, 17020827, 15028003, hungpn}@vnu.edu.vn
‡Corresponding author

Abstract—This paper presents two test data automatic gener-
ation methods which are based on weighted control flow graph
(named WCFT) and boundary values of input parameters (named
BVTG). Firstly, WCFT method generates a CFG from a given
unit function, updates weight for it, then generates test data
from the greatest weight test paths. In the meantime, WCFT
can find dead code that can be used for automatic source
code errors fix. Secondly, BVTG method generates test data
from boundary values of input parameters of the given unit
function. The combination of the two generated test data sets
from these two methods will improve the error detection ability
while maintaining a high code coverage. An implemented tool
(named WCFT4Cpp) and experimental results are also presented
to show the effectiveness of the two proposed methods in both
time required to generate test data and error detection ability.

Index Terms—Unit testing, test data generation, static testing,
concolic testing, bounded testing, SMT-Solver.

I. INTRODUCTION

Nowadays, generating test data automatically from source
code has been an important subject in both software engineer-
ing and industry. Most of methods and articles which have
been published to address this problem use the symbolic exe-
cution method [9] to generate test data by solving the constraint
expressions based on an SMT-Solver. In those methods, source
code is analyzed to generate the control flow graph (CFG)
which will be used to generate test data. There are two main
approaches in generating test data from a given CFG: dynamic
and static. Dynamic test data generation is a process which
generates test data bases on the combination of a source code
analyzer and a test driver [2], [3], [6], [14]. Dynamic testing
contains two main methods: Execution Generated Testing
(EGT) and Concolic Testing. EGT method is applied in such
automatic test data generation tool as KLEE [3] - a well
known tool for its effectiveness. The key idea of EGT is to
generate test data directly when running the program. This
method proves its effectiveness when finding hidden errors
because EGT checks every possibilities which may happen.
One of EGT’s disadvantages is its low performance when the
function under testing has loops with large loop number or
has recursive calls. The second method is concolic testing. The
initial idea of concolic testing was mentioned in DART [6] and
was officially introduced in CUTE [12]. Later, this method has
been continuously improved in such tools as PathCrawler [14],
CUTE [12], CAUT [13], and CREST [2] which have been

being used a lot in real software projects in practice. The
key idea of this method is to generate next test data from its
previous ones. This method is known for its high coverage and
effective error detection ability. However, its disadvantage is
when the program under testing has non deterministic behav-
iors, imprecise symbolic representations, incomplete theorem
proving, etc. To our knowledge, dynamic test data generation
methods are time consuming, especially with a great amount
of test data, because the method must continuously execute
the program under testing for each test data. In the meantime,
static test data generation is a process which generates test data
based on the given program structure. This method is not only
less time consuming in comparison with the dynamic one but
also can generate a smaller number of test data with higher
coverage. However, statically generating test data faces the dif-
ficulty of big source code and complex data structure. Current
researches have focused on improving the source code analysis
to fully support the syntax of the programming language,
finding test paths, optimizing the constraint expressions, and
selecting suitable SMT-Solver, etc., to generate test data for
complex unit functions. Among these researches, the most
effective ones are researches which are based on test paths
because they come directly from the source code of software.
There are many improvements on finding test paths methods in
which the researches to find infeasible test paths has gained the
most focus. According to Hedley and Hennell [8], up to 12,5%
test paths are infeasible in unit functions. Removing these
test paths can dramatically improve the test data generation
process. Symbolic execution is one of the method to find
infeasible test paths from source code [11] [4]. However,
symbolic execution causes the test data generation time to
increase while it can only find out a small part of infeasible test
paths [5] [1] [7]. Although these researches have gained very
good results, some functions inside the Genetic Algorithm are
still done manually which cause a lot of effort. Duc-Anh et
al. improved the test path generation process from CFG. In
his method, source code is parsed to get its corresponding
CFG. Then, the CFG is traversed to find test paths by using
a backtracking algorithm [10] (in this paper, we refer to this
method as STCFG). In the step of finding test paths, at decisive
vertices, the feasibility of the test path from the initial vertex
to the decisive vertex is checked. This method prevents us
from generating infeasible test paths (if a test path contains an



infeasible part, it becomes infeasible). The main disadvantage
of this method is that it costs a lot of time in solving the
constraint expressions when the given CFG has many decisive
vertices and a few infeasible paths. This method has not given
the causes of infeasible paths.

Both static and dynamic testing have the same purpose of
generating a smaller set of test data with greater coverage. Both
methods generate test data based on the source code analysis,
generating constraint expressions, and retrieving test data using
SMT-Solvers. It is the fact that those solvers generate random
values in the input parameter value ranges which cannot be
their boundary values. Those values can satisfy the required
coverage but cannot find out errors in boundary values. For
high quality software, even when the coverage is satisfied,
black box testing is required to find errors. In practice, to find
test data from boundary values, we need to read the software
specification. This process is hard to be done automatically
because software specification is normally in natural language.
To solve this problem, we base on the source code to generate
test data from boundary values. In our opinion, the set of
boundary points found from source code always contains the
set of boundary points from specification thanks to the tuning
process from requirement to design, and to source code. As a
result, boundary values related to test data found from source
code can find errors in source code and software specification
which is greatly needed in software companies.

This paper proposes two methods to generate test data
statically which can deal with disadvantages of the above
previous researches. The first method is to use weighted CFG
(named WCFT - Weighted Control Flow Testing) to select
test paths which are the most weighted ones and have not
been visited to reduce the test data generation time while
finding infeasible test paths. The second method (named
BVTG - Boundary Values Test data Generation) is to find
out boundary values of input parameters based on branch
statements. These values will be used to generate test data
which can find errors caused by boundary values. The test
data set which combines test data generated from these two
proposed method will have higher error detection ability with
the same code coverage. Experiments are performed with the
implemented tool called WCFT4Cpp to show the effectiveness
of the proposed methods.

The rest of this paper is organized as follows. Section II
presents the method to generate test data from a weighted
CFG. The method to generate test data from boundary values is
presented in Section III. Experiments of two proposed methods
with results are shown in Section IV. Finally, the paper is
concluded in Section V.

II. GENERATE TEST DATA FROM WEIGHTED CONTROL
FLOW GRAPH

In this paper, control follow graph (CFG), test path, and
path are important concepts which can be found in Duc-Anh
et al.’s paper [10]. We give two other main concepts which
are used in this paper.

1.	Generate
CFG

2.	Initalize
weighted	CFG

4.	Choose	a
satisfied	test
path	randomly

5.	Obtain	test	data
for	test	path	by
SMT-Solver	Z3

	3.	Are	there	satisfied	
test	paths?

	6.	Is	there	a	
test	data?

7.	Update
CFG

8.	Find	dead
paths

No
Yes

9.	Finish	and
report

No

Yes
Function Coverage

criteria

Figure 1: An overview of WCFT test data generation method.

Definition 1 (Dead path): In a given CFG, a path which is
not covered by any test data is call a dead path.

Definition 2 (Dead code): A piece of code which is not
covered by any test data is called dead code.

A. Generate CFG for a Unit Function

Recently, a well-known method to generate test data stat-
ically which guarantees the statement coverage (C1), branch
coverage (C2), and MC/DC coverage (C3) is to generate from
the CFG generated from a given source code. From this CFG,
test paths can be found. Then, test data can be generated by
using a strategy from longest to shortest test paths or vice
versa. To satisfy the C1, C2, C3 coverages, that strategy is
good enough. However, to find out the infeasible paths and
dead code, we need a better strategy. For this reason, this
paper proposes a method (named WCFT) to generate test
data statically satisfying a given coverage with an appropriate
strategy. The overview of the proposed method is shown in
Figure 1.

Given a unit function and a specific coverage criteria, the
required CFG will be generated using the method proposed
by Duc-Anh et al. [10] (step 1). Then, the weight for every
edges of this CFG is initialized and all vertices are marked
as not visited (step 2). In the third step, we check if there is
any test path satisfies the following two conditions: the test
path which has the greatest weight and has not been visited.
If no satisfied test path, we come to the step 8. Otherwise, we
come to step 4. In the forth step, if there are many satisfied test
paths, the process randomly chooses one. From the selected
test path, the constraint expression is generated [10] and passed
to the SMT-Solver Z3 (step 5). In the meantime, the test path
is marked as visited. In the sixth step, if the solution exists
for that test path, we come to step 7 which is to update the
weight for the CFG and store the solution of the test path
under processing. Then, we come to step 3. If the solution
does not exist, we also come to step 3. In step 8, we have a
CFG whose weight has been updated, (called UCFG - Updated
Control Flow Graph). From this UCFG, we can find dead path
(if exists). The first vertex of dead path is the branch statement
which makes the CFG have infeasible paths. Other vertices of
a dead path, except the last one, are corresponding to dead
code. The test data generation for loop is done the same as
described in Duc-Anh et al.’s paper [10] and is not related to
the weighted CFG.



Generating the corresponding CFG of the unit function
under testing is the first step in the proposed method. Details
of the CFG generation algorithm are described in Algorithm 1.
The input of the algorithm are source code of a unit function
written in C/C++ language f and a coverage criterion t. The
output is a CFG graph satisfying the given coverage criterion.
The algorithm starts by initializing graph to be an empty

Algorithm 1: CFG generation
input : f : source code

t: coverage criterion
output : graph: CFG

1: graph = an empty graph
2: B = a list of blocks by dividing f
3: G = a graph by linking all blocks in B to each other
4: Update graph by replacing f with G
5: if G contains return/break/continue statements then
6: Update the destination of return/break/continue pointers

to destinations
7: end if
8: for each block M in B do
9: if block M can be divided into smaller blocks then

10: call Algorithm 1 (M , t)
11: end if
12: end for

graph (line 1). The given source code f is divided into a list of
blocks named B: block0, block1, ..., blockn−1, blockn (line 2).
In this case, the type of each block may be a statement, or a
control block. Subsequently, a graph G describing the order
execution of all above blocks is generated (line 3). CFG graph
is then updated by replacing the vertices of f with the graph G
(line 4). After that, if graph G contains vertices corresponding
to break/continue/return statements (line 5), CFG graph
continues to be updated by pointing these vertices right to
destinations (line 6). Next, each block M of the list B is
checked whether it can continue being divided into smaller
blocks (line 9). If it can, this means that block M has not
satisfied the given coverage criterion. CFG graph is then
updated by parsing these smaller blocks by calling Algorithm 1
itself for M and t (line 10). Otherwise, B satisfies the given
coverage criterion. The algorithm terminates when all blocks
in graph cannot be divided into smaller blocks.

B. Generate Test Paths From a CFG

When we have the generated CFG from a given unit
function, we can obtain the list of test paths from that CFG.
From these test paths, test data can be generated as described
in sections below. Because this is a static method to generate
test data, we need a method to process loops appropriately. In
the proposed method, we allow user to specify the maximum
number of loop times when generating the corresponding CFG
of a unit function. This number is called depth and used as a
parameter to the algorithm which generates test paths. Details
of the test paths generation process are shown in Algorithm 2.
The algorithm accepts the first vertex v of CFG and the
maximum number of loop times depth as input parameters.
path is a global parameter which is used to store test paths

Algorithm 2: Generate test paths from a CFG
input : v The first vertex of the CFG corresponding to C3

coverage
depth: the maximum number of iterations for a loop
path: a global variable to store a test path

output : P : a list of feasible test paths
1: if v == NULL or v is the end vertex then
2: Add path to P
3: else if the occurrence number of v in path <=depth then
4: Add v to the end of path
5: for each adjacent vertex u of v do
6: call Algorithm 2 (u, depth, path)
7: end for
8: Remove the latest vertex added in path from it
9: end if

while traversing the CFG. At first, the algorithm check if v
is the last vertex of the CFG or is NULL. If yes, path is
added to P (line 2). Otherwise, if the number of times v
appears in path is not greater than depth, v is added to path
(line 4). Later, the adjacent vertices of v will be visited by
calling Algorithm 2 itself (line 5 to 7). Finally, the last vertex
added to path is removed in order to visit other vertices of
the CFG. Algorithm 2 is based on the Algorithm 2 - CFG
Traverse presented in [10] in which the step of checking the
feasibility of a test path when checking the decisive vertex is
removed.

C. Update Weight For a CFG and Generate Test Data

The next step of the proposed method is to update weight
for a CFG. From this updated CFG, we can generate required
test data. These two steps are integrated in one algorithm
shown in Algorithm 3. Algorithm 3 returns the list of test data

Algorithm 3: Generate test data and update weight for a
CFG

input : graph: a given CFG
output : S: The list of test data corresponding to graph;

UCFG: The weight updated CFG
1: Initialize weight for every edges of the CFG to be 1 and set all

test paths to be not visited
2: while graph has a not visited test path do
3: t := test path which has the greatest sum of weights and is

not visited
4: constraint := constraint expression generated from t
5: solution = solution of constraint from SMT-Solver Z3
6: if (solution is not null) then
7: S.append(solution)
8: Update test path t in graph by adding 1 to all its edges
9: end if

10: Mark t to be visited
11: end while
12: UCFG = graph

stored in S which guarantees the given coverage criteria and a
weight updated CFG after generating test data. The algorithm
accepts graph which is the generated CFG from a given unit
function. Algorithm 3 starts by initializing all weights of its
edges to be 1, and setting all vertices to be not visited (line 1).



After that, the algorithm checks if graph has any not visited
test path (line 2)? If there is no such test path, UCFG is set
to be the updated graph and the algorithm stops (line 12).
If there exist test paths which are not visited, the test path
which has the greatest sum of weight is selected, denoted by
t (line 3). Then, the algorithm generates t’s corresponding
constraint expression (line 4) and uses SMT-Solver Z3 to solve
the newly generated expression (line 5). In line 6, the algorithm
checks if the constraint expression of t has a solution? If yes,
the solution is added to S and 1 is added to all edges of the
test path (line 7 to 8). Later, the algorithm marks the path t to
be visited (line 10). Finally, the algorithm comes back to line 2
to generate test data and update graph until the condition is
false. From UCFG, we can find out dead code from dead paths
which have edges whose weights are not updated.

D. Find Dead Paths

In unit functions, we cannot avoid errors when executing
condition statements where there exist condition expressions
which are always true or always false. Those expressions

Algorithm 4: Dead path detection
input : UCFG: a given UCFG
output : paths: a list of dead path

1: for (Each testPath in UCFG) do
2: deadPath := ∅
3: for (Each edge ∈ testPath) do
4: if (edge.getWeight() == 1) then
5: deadPath.append(edge)
6: else
7: if (deadPath <> ∅) and deadPath 6∈ paths then
8: paths.append(deadPath)
9: end if

10: deadPath := ∅
11: end if
12: end for
13: if (deadPath <> ∅ ) and (deadPath 6∈ paths) then
14: paths.append(deadPath)
15: end if
16: end for

make the corresponding statements always be executed or
not. This leads to errors and difficulties when maintaining
the projects. As a result, automatically detecting such dead
code is important in reducing the errors debugging and source
code maintaining time. This paper presents a method to
automatically detect dead code by using the UCFG. To find
dead code, we need to find out the dead paths, i.e., no test
case can cover. The first vertex of a dead path is the statement
which causes the infeasible path. All other vertices of that dead
path, except the first and the last vertices, are corresponding
to its dead code. The proposed method to find infeasible paths
paths is included in Algorithm 4. With each of the test paths
of UCFG (line 1), the algorithm checks each of its edges edge
(line 3) to find a set of adjacent edges which have weights of 1.
If edge’s weight is 1, it will be added to deadPath (line 5).
Otherwise, the algorithm checks if deadPath contains any edge
and if paths contains deadPath or not (line 7). If yes, deadPath

is added to paths (line 8) and reset to be an empty path in order
to find another dead path (line 10). If the last edge of a test
path has weight of 1, the algorithm comes to line 13 to line 15
where deadPath is added to paths. When the algorithm stops,
paths contains all dead paths of the given UCFG.

III. GENERATE TEST DATA FOR BOUNDARY VALUES

To test a unit function with boundary values, a tester needs
to read the function’s specification. Then, he divides the valid
value ranges of each input parameters into equivalence class
partitions and generates test data from the boundaries values
of those partitions. This manual task often costs a lot of
effort, but contains many errors. This paper proposes a fully
automatic method (named BVTG) to generate test data for
boundary values corresponding to equivalence class partitions
of input parameters which are in primitive types and for
conditional statements. Initially, we generate the required CFG
using Algorithm 1 with C3 coverage in order to separate
compound conditions into single conditions.

The inputs of Algorithm 5 are the first vertex v of the CFG
corresponding to C3 coverage, the maximum number of loop
times for loops statements depth, a global variable path which
stores visited test paths, lower boundary value start, upper
boundary point end, and the step which is used to generate
test data for boundary values. The output of the algorithm is
S which contains all boundary test data. Initially, we check
if v is not NULL, not the last vertex of the given CFG, and
the appearance number of v is not greater than depth (line 1).
If v does not satisfy the above condition, the algorithm stops.
Otherwise, the algorithm adds v to path (line 2). If v represents
a “if, else” condition statement (line 3), the algorithm backs
up condition for later use (line 4). After that, the statement is
assigned to condition variable (line 5). The algorithm replaces
the comparison operator of this condition with “==” operator
(line 6). If the two sides of the condition are in boolean type,
the algorithm assigns the solution of path to testData and
adds a random value of the rest input parameters to testData
(line 8, line 9). Otherwise, the algorithm finds the solution
from the first vertex to v by adding i to the right side of
condition, where i is from start to end and the step is step
(line 10, line 13). Then, the generated solution is stored in
testData (line 14). Later, the algorithm adds random values of
the missing input parameters to testData (line 16) and adds
this testData to S (line 17). After that, the algorithm restores
the condition statement (line 21) with the backed up value in
line 4. Finally, if the current path is feasible (line 23), the
algorithm continues calling itself with all adjacent vertices of
v to find all boundary test data.

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed methods, we
implemented them in a tool named WCFT4Cpp which is based
on CFT4CUnit [10] and the SMT-Solver Z3. The tool has
already contained implementation for STCFG and Concolic
methods which are implemented by Duc-Anh [10]. We per-
formed two experiments to evaluate the proposed methods



Algorithm 5: Boundary test data generation
input : v: The first vertex of CFG corresponding to C3

coverage
depth: the maximum number of iterations for a loop
path: a global variable used to store a discovered

test path
start: lower boundary for the input parameter
end: upper boundary for the input parameter
step: the step when generate test data from

boundary values
output : S: a list of test data

1: if (v != NULL) and (v is not the end vertex) and (the
appearance times of v in path <= depth) then

2: path.add(v)
3: if v is a decisive vertex corresponding to if, else statements

then
4: Backup condition
5: condition = the condition statement corresponding to v
6: path.normalize(v) /* Replace condition operator in v by

“==” operator */
7: if condition has two sides in boolean type then
8: testData = the solution of path
9: Add random value of the rest input parameters to

testData
10: Add testData to S
11: else
12: for i from start to end where step is step do
13: Add i to the right side of condition
14: testData= the solution of path
15: if testData !=NULL then
16: Add random value of the missing input

parameters to testData
17: Add testData to S
18: end if
19: end for
20: end if
21: Restore condition using the backed up value in line 4
22: end if
23: if path is feasible then
24: for u is the adjacent vertex of v do
25: Call Algorithm 5 (u, depth, path, start, end, step)
26: end for
27: end if
28: Remove the last added vertex in path
29: end if

Table I: Comparison of STCFG with WCFT

Input WCFT STCFG Branch
Coverfunction depth LOCs Time (s) Time (s)

leapYear 0 6 0.19 0.14 100%
isTriangle 0 6 0.16 0.13 100%
PDF 0 6 0.15 0.11 100%
divisionTest 0 7 0.17 0.14 100%
CheckValiday 0 9 0.47 0.87 100%
TriType 0 12 1.61 2.92 100%
Grade 0 13 0.35 0.73 100%
foo 0 15 0.34 0.32 88%
calculateZodiac 0 60 1.36 5.65 100%

simpleWhileTest 1
4 6 0.17

0.27
0.1
0.62

100%
100%

GCD 0
4 14 0.68

18.79
3.6
49.7

100%
100%

Average 1
4 14 1.19

10.5
0.96

23.34
100%
100%

Table II: Error detection comparison of BVTG, STCFG, and
Concolic methods

Function BVTG STCFG Concolic
Test
data

Detected
error

Test
data

Detected
error

Test
data

Detected
error

divisionTest 3 1/2 2 1/2 45 0/2
Grade 21 5/5 6 1/5 8 0/5
PDF 6 3/4 2 1/4 2 1/4
isTriangle 9 2/2 2 1/2 2 1/2
Tritype 28 3/3 16 2/3 30 2/3
leapYear 4 1/1 2 0/1 2 1/1

with existing methods: compare WCFT with STCFG [10] and
compare BVTG with Concolic testing [6], [12]. We performed
each of test functions 20 times. The average results of all tests
are shown in Table I, Table II. Experiments are performed
on a machine which runs Windows 10, Intel Core i5, 8250U,
1.60 GHz, and 8GB RAM using Mingw32 in IDE Dev-Cpp
4.9. The implemented tool and tested functions are available
on this web page https://testdatakse.herokuapp.com/.

A. Comparison between WCFT and STCFG

In this experiment, we compare the required time to generate
test data using C2 coverage criteria between the two methods:
WCFT and STCFG. With each test cases, inputs are unit
functions under testing and the maximum number of loop
times for loop statements shown in column “depth”. The
number of lines of code for each functions is shown in column
“LOCs”. The time required to generate test data of WCFT
and STCFG is shown in “Time (s)” corresponding to each
method names. The result C2 coverage is shown in column
“Branch coverage”. The corresponding output is the list of
test data. If the function does not have loop statement, depth
is set to 0. The comparison of test data generation time
is shown on Table I.Unit functions Tritype, Grade, Average,
GCD are retrieved from the research of Duc-Anh et al. [10],
these functions leapYear, isTriangle, CheckValidDay, caculate-
Zodiac are collected from the internet, and foo, divisionTest,
PDF, simpleWhileTest are made by ourselves.

Table I shows that the C2 coverage results of the two
methods are the same while there are much difference in the
time required to generate test data. It takes WCFT more time
to generate test data than STCFG in the following cases:

• Simple functions with no loop and few branch statements
such as leapYear, isTriangle, divisionTest, PDF, foo.

• Functions with single loops and small depth (mentioned
in Algorithm 5) such as simpleWhileTest.

This is because the corresponding CFGs of those functions
have smaller number of vertices. This leads to a fast test paths
generation speed. With the same test paths generation time,
it takes WCFT some more time to update weight for each
of generated test paths. These results show that STCFG has
better performance than WCFT to generate test data for simple
functions. However, in real projects in practice, we usually
have more complex functions with which WCFT shows better
performance.

https://testdatakse.herokuapp.com/


It takes WCFT less time to generate test data than STCFG
in the following cases:

• Functions which have many condition statements such as
CheckValidDay, TriType, Grade, calculateZodiac.

• Function which have loops with big depth such as
GCD, Average (especially, the bigger depth is, the slower
STCFG is).

The reason for this is that the corresponding CFGs of those
functions have many decisive points. This required STCFG to
use SMT-Solver more times to solve the feasibility of test paths
from the first vertex of CFG until the vertex under checking. In
some cases, this checking process is redundant when the CFG
have few or do not have any feasible test paths. These results
implies that WCFT has better performance than STCFG to
generate test data for more complex functions which usually
appear in projects in practice.

B. Error Detection Comparison of BVTG, STCFG, and Con-
colic methods

To compare error detection ability of three methods BVTG,
STCFG, and Concolic, we have added errors to functions
divisionTest, Grade, PDF, isTriangle, Tritype, leapYear and
tested them with those testing methods. Experimental results
are shown in Table II. In this experiment, for those unit
functions which have not got any loop, we set the value of
depth to 0. The input values for Algorithm 5’s parameters
start, end, step are -1,1,1, respectively. The coverage for all
three methods is C2. In Table II, the number of generated
test data for each methods is shown in column “Test data”
corresponding to the method names. The ratio of the number
of detected errors to number of added errors is shown in
column “Detected error” corresponding to the method’s name,
too. From experimental results shown in Table II, we have the
following observations.

• In all cases, BVTG generates more test data than STCFG.
However, it can detect more errors than STCFG.

• In 2 out of 6 cases (divisionTest and Tritype), BVTG can
generates fewer test data than Concolic method. However,
BVTG can detect more errors than Concolic method.

• In 4 out of 6 cases (Grade, PDF, isTriangle, and
leapYear), BVTG can generate more test data while it
can detect more errors than Concolic method.

Experimental results show that BVTG outperforms STCFG
and Concolic methods in the error detection ability. The
combination of the generated test data from these two proposed
methods will have higher error detection ability with the same
code coverage. This is one of the key value for the two methods
to be applied successfully in practice.

V. CONCLUSION

The paper proposed two methods for generating test data
from source code WCFT and BVTG. WCFT method is to
generate test data by using static testing bases on the weighted
CFG of a given unit function under testing. In this method,
we generate the weighted CFG and select the test path with

greatest weight to generate test data. With this improvement,
the test data generation time is reduced, infeasible test path
and dead code can be found. This results in several methods
which optimize source code based on weighted CFG. BVTG
method is to generate test data bases on boundary values. The
combination of the generated test data from these two methods
can detect potential errors in boundary values while maintain-
ing its high code coverage. The two methods are implemented
in a tool named WCFT4Cpp. Experiments results for some
common source code in research community show that the
two methods outperform STCFG and Concolic methods in test
data generating time and in detecting boundary values related
errors.

ACKNOWLEDGMENTS

This research is supported by the research project No.
CN.20.26 granted by University of Engineering and Technol-
ogy, Vietnam National University, Hanoi (VNU-UET).

REFERENCES

[1] M. A. Ahmed and I. Hermadi. GA-Based multiple paths test data
generator. Comput. Oper. Res., 35(10):3107–3124, Oct. 2008.

[2] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation.
In Proc. of the 2008 23rd IEEE/ACM Int. Conf. on Automated Softw.
Eng., ASE ’08, page 443–446, USA, 2008. IEEE Computer Society.

[3] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proc. of the 8th USENIX Conf. on Operating Systems Design and Imple-
mentation, OSDI’08, page 209–224, USA, 2008. USENIX Association.

[4] M. Delahaye, B. Botella, and A. Gotlieb. Infeasible path generalization
in dynamic symbolic execution. Information and Softw. Technol., 58, 08
2014.

[5] A. S. Ghiduk. Automatic generation of basis test paths using variable
length genetic algorithm. Inf. Process. Lett., 114(6):304–316, June 2014.

[6] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated ran-
dom testing. In Proc. of the 2005 ACM SIGPLAN Conf. on Programming
Language Design and Implementation, PLDI ’05, page 213–223, New
York, NY, USA, 2005. Association for Computing Machinery.

[7] D. Gong, W. Zhang, and X. Yao. Evolutionary generation of test
data for many paths coverage based on grouping. J. Syst. Softw.,
84(12):2222–2233, Dec. 2011.

[8] D. Hedley and M. A. Hennell. The causes and effects of infeasible paths
in computer programs. In Proc. of the 8th Int. Conf. on Softw. Eng.,
ICSE ’85, page 259–266, Washington, DC, USA, 1985. IEEE Computer
Society Press.

[9] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, July 1976.

[10] D. Nguyen, P. N. Hung, and V. Nguyen. A method for automated unit
testing of C programs. In 2016 3rd National Foundation for Science
and Technol. Development Conf. on Information and Computer Science
(NICS), pages 17–22, 2016.

[11] M. Papadakis and N. Malevris. A symbolic execution tool based on the
elimination of infeasible paths. In Proc. of the 2010 Fifth Int. Conf.
on Softw. Eng. Advances, ICSEA ’10, page 435–440, USA, 2010. IEEE
Computer Society.

[12] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine
for C. In Proc. of the 10th European Softw. Eng. Conf. Held Jointly
with 13th ACM SIGSOFT Int. Symposium on Foundations of Softw. Eng.,
ESEC/FSE-13, page 263–272, New York, NY, USA, 2005. Association
for Computing Machinery.

[13] Z. Wang, X. Yu, T. Sun, G. Pu, Z. Ding, and J. Hu. Test data generation
for derived types in C program. In Proc. of the 2009 Third IEEE
Int. Symposium on Theoretical Aspects of Softw. Eng., TASE ’09, page
155–162, USA, 2009. IEEE Computer Society.

[14] N. Williams, B. Marre, P. Mouy, and M. Roger. PathCrawler: Automatic
generation of path tests by combining static and dynamic analysis. In
Proc. of the 5th European Conf. on Dependable Computing, EDCC’05,
page 281–292, Berlin, Heidelberg, 2005. Springer-Verlag.


	Introduction
	Generate Test Data From Weighted Control Flow Graph
	Generate CFG for a Unit Function
	Generate Test Paths From a CFG
	Update Weight For a CFG and Generate Test Data
	Find Dead Paths

	Generate Test Data for Boundary Values
	Experiments
	Comparison between WCFT and STCFG
	Error Detection Comparison of BVTG, STCFG, and Concolic methods

	Conclusion
	References

