
Practical approach to access the impact of global
variables on program parallelism

Thu-Trang Nguyen∗, Hue Nguyen∗, Quang-Cuong Bui∗,
Pham Ngoc Hung∗, Dinh-Hieu Vo∗, and Shigeki Takeuchi†

∗ University of Engineering and Technology, Vietnam National University, Hanoi
Email:{trang.nguyen, 17021156, bqcuong, hungpn, hieuvd}@vnu.edu.vn

† GAIO TECHNOLOGY CO., LTD., Tokyo, Japan
Email: takeuchi.s@gaio.co.jp

Abstract—Global variables may have a significant impact on
preventing programs from automatic parallelism. This paper
introduces a practical approach to measure the effect of global
variables on program parallelism. First, we conduct static data
dependence analysis among program variables and represent
such dependencies by a Variable Dependence Graph. Then, we
analyze this graph for measuring and identifying which global
variables have a significant impact on program parallelism. To
evaluate this approach, we conduct experiments on 20 benchmark
programs and an industrial application. The experimental results
show that half of the studied programs contain large impact
variables which may be the cause of preventing programs from
parallel execution.

Index Terms—Global variables, parallelism, program analysis,
data dependence, variable dependence graph

I. INTRODUCTION

Nowadays, with the development of the infrastructure and
the requirement of performance improvement [1], the software
industry has been driven by the multi-core processors. Specif-
ically, in the automotive industry, the number of Electronic
Control Units (ECUs) in one car is exponentially increasing.
Initially, there were only 4 - 5 ECUs but currently, in modern
vehicles, they have been integrated hundreds of ECUs [2].

To adapt this growth and utilize these multi-core comput-
ing resources, companies are on-demand to parallelize their
programs [3] [4]. However, rewriting an application to enable
parallelization is time-consuming and painstaking. Addition-
ally, refactoring source code to create a parallel program is also
wearisome because it requires changes in various lines of code.
It is further error-prone and non-trivial because developers
must guarantee non-interference of parallel operations [5]. Par-
ticularly, refactoring large systems such as embedded systems,
which have a high demand for parallelization, is extremely
challenging [6]. Those systems often perform a large number
of computations and contain hundreds of thousands of code
statements.

One reason which prevents programs from executing in
parallel and makes it hard to refactor is data dependencies
between code blocks, which are often caused by global
variables. Global variables are used throughout the program,
frequently make the coupling between program functions and
increase risks of data concurrency problems [7], [8]. Using
global variables has much been debated upon. Nevertheless,

global variables are quite prevalent, especially in embedded
systems. It is because embedded applications often suffer from
limited memory available. Therefore, they often use global
variables to handle shared data that is referenced throughout
the application [9].

In the code statement perspective, if data dependencies
between code blocks are weak, it may be easier to refactor
and parallelize a program [10]. A solution to reduce data
dependencies and to enable parallelization of a program is
reducing dependencies caused by global variables. In order
to do that, it is necessary to measure the impact of global
variables on program dependence to figure out which variables
have a large impact on preventing the program from executing
in parallel. These large impact variables should be starting
points to aid developers in mining and refactoring source code.
However, it still lacks such studies.

Regarding this topic, Binkley et al. introduced a method to
measure the impact of global variables on program dependence
[11], as well as figure out which vertices in the System Depen-
dence Graph (SDG) lead to the mutually inter-dependencies
of a large number of program statements [12]. They called
such vertices are linchpin. This approach takes them 8 days to
analyze and point out linchpin vertices of a 30.000 line-of-code
program. However, that program is only a mid-sized program,
and 8 days to analyze a program is still quite long. So, it is
hard to apply this approach to analyze industrial programs.

In fact, in a program, two statements can not be executed
at the same time if one statement is directly or transi-
tively data-dependent on the other. In addition, statements
are implemented by operations on variables. Therefore, data
dependencies of program statements can be estimated by
analyzing data dependencies between variables in the program.
Furthermore, in a program, the number of variables is often
much fewer than the number of statements. Thus, analyzing
variable dependencies can help us save much time to find the
causes that prevent the program from executing in parallel.

To solve this problem, in this paper, we introduce a practical
approach to access the impact of global variables on program
parallelism. In our approach, we conduct static data depen-
dence analysis on the source code of the program. Then, data
dependencies between variables are represented by a Variable
Dependence Graph (VDG). In this graph, nodes are program

1 i n t x , y , a , b , c , d ;
2
3 void foo () {
4 a = x + y ;
5 b = s i n (a + x) ;
6 a = 2 ∗ b ;
7 c = cos (a ∗ y) ;
8 d = b − c ;
9 }

10
11 i n t main () {
12 x = s i n (7 0) ;
13 y = cos (2 3 0) ;
14 foo () ;
15 i n t e = b + d ;
16 p r i n t f (”%d ” , e) ;
17 re turn 0 ;
18 }

(a) Example source code

(b) Variable Dependence Graph

Fig. 1: Example of data dependencies between variables

variables and edges are data dependencies between variables.
The probability to run a program in parallel is estimated based
on dependencies between variables. If ignoring a variable’s
dependencies in a program, the higher parallelable probability
of the program increase, the larger impact that variable has on
program parallelism.

To demonstrate our approach, we conduct experiments on
20 benchmark programs and industrial automotive software.
Our experimental results show that half of the studied pro-
grams contain variables which have a considerable impact on
program parallelism. Also, in some programs, several variables
have extremely large influences.

In summary, in this paper, our main contributions are:
• An approach to approximate program data dependence

by VDG.
• A practical approach to measure the impact of global

variables on program parallelism.
• An empirical study showing the effectiveness and scala-

bility of this approach for industrial embedded systems.
The remainder of this paper is outlined as follows: Sec-

tion II introduces background of this research. Our proposed
approach to assess the impact of global variables on program
parallelism is shown in Section III. Next, Section IV discusses
our experimental results, and then related studies are reviewed
in Section V. Section VI shows the main threats of this work.
Finally, Section VII concludes our presentation.

II. BACKGROUND

The major concept of our work is program variables. Instead
of analyzing dependencies between statements, we estimate

the probability to execute a program in parallel by analyzing
data dependencies between variables.

Two variables are considered to have a data dependence re-
lationship if the value of one variable is potentially influenced
by the value of the other. We concern two kinds of relationship
influence and dependence. These are two common terms in
program analysis [13] [14], in this work, we define influence
and dependence as follows.

Given a program P, V is the set of all variables in P, and a
variable v ∈ V .

Definition 1: (Influence). We define influence function IS:
V → 2V , IS(v) = 〈 a set of variables which influence v 〉.
Formally, ∀vi, vj ∈ V, vi ∈ IS(v) if:
• vi is used to defined v or
• vi is used to defined vj and vj ∈ IS(v)
Definition 2: (Dependence). We define dependence function

DS: V → 2V , DS(v) = 〈 a set of variables which are dependent
on v 〉. Formally, ∀vi, vj ∈ V, vi ∈ DS(v) if:
• v is used to defined vi or
• vj is used to defined vi and vj ∈ DS(v)
Definition 3: (Variable Dependence Graph [15]). Variable

Dependence Graph (VDG) of program P is a directed graph
in which ∀v ∈ V are graph nodes and it exists an edge from
node vi to vj (i 6= j) if vi is used to defined vj , ∀vi, vj ∈ V .

Fig. 1 (a) shows a simple code snippet and its corresponding
VDG is represented in Fig. 1 (b). In this example, seven vari-
ables of the program V = {x, y, a, b, c, d, e} are represented
by seven nodes in the graph.

In the VDG, IS(v) is a set of nodes which has at least a
path from those nodes to node v. Besides, DS(v) is a set of
nodes which has at least a path from node v to those nodes.
For instance, the influence set of variable a is IS(a) = {x, y,
b}, since there are paths from x, y and b to a in the VDG. Its
dependence set is DS(a) = {b, c, d, e}, since there are paths
from a to these nodes.

In Fig. 1 (a), value of variable a is influenced by the values
of x and y, so we cannot define variables a, x and y at the
same time. In addition, the values of variables b, c, d, and
e are dependent on the value of variable a. This means that,
variables a, b, c, d, and e also cannot be defined at the same
time. Therefore, statement 12 (or 13), 4, 5, 6, 7, 8, and 15
cannot be executed in parallel.

Thus, DS(a) ∪ IS(a) = {x, y, b, c, d, e} is a set which
consists of variables that cannot be defined at the same time
with variable a. In other words, DS(a) ∪ IS(a) is a set of
unparallelable variables of a. As a result, statements that define
these variables cannot be parallelly executed with statements
that define variable a.

In this example, T = DS(x)∪ IS(x) = {a, b, c, d, e} is the
set of the unparallelable variables of x. V \T = {y} is the set
of variables that can be defined at the same time with x. So y
is considered as a parallelable variable of x. In fact, there is
no data-dependence between variables x and y. Consequently,
these two variables can be defined at the same time, or two
statements 12 and 13 can be executed in parallel.

(a) Calculating parallelable score of a program

(b) Measuring the impact of a global variable g on program parallelism

Fig. 2: Accessing the impact of global variables

Definition 4: (Parallelable Variables). Given a program P,
and the set of variables V, set of parallelable variables of v ∈ V
is K(v) = V \ (DS(v) ∪ IS(v) ∪ {v}).

The main idea of our approach is that for two variables
that do not have a dependence relationship (in terms of both
influence and dependence), then they are parallelable variables
of the other. Statements that define them can be executed in
parallel. We take the total number of parallelable variables
of all variables in the program to estimate the parallelable
probability (parallelable score) of the program. If the total
number of parallelable variables of variables in the program is
large enough, the program will have more chances to execute
in parallel.

Definition 5: (Parallelable Score). Given a program P and
the set of variables V

• Parallelable score of variable v: ϕ(v) = ‖V ‖ − ‖K(v)‖.
• Parallelable score of program P: γ(P) =

∑
v∈V ϕ(v)

To measure the impact of a global variable g on program
parallelism, we compare the parallelable score of the program
with and without the presence of g.

Definition 6: (Impact of a Global Variable on Program
Parallelism). Given a program P and G is the set of its global
variables, impact of a global variable g ∈ G on program
parallelism is δ(g) = γ(P \ {g}) − γ(P), where P \ {g}
is the program P without the presence of g.

In practice, δ(g) may be a negative number, in this case,
g is not the cause which prevents the program from being
executed in parallel. Since γ(P \ {g}) may be smaller than
γ(P) when variable g is a parallelable variable of most of the
remaining variables in the program, then removing g from the
program may reduce parallelable score of those variables. In
fact, reducing such variables does not affect the probability to
execute the program in parallel.

III. ACCESSING THE IMPACT OF GLOBAL VARIABLES ON
PROGRAM PARALLELISM

This section introduces our proposed approach. The
approach overview is shown in Fig. 2. Fig. 2 (a) demonstrates
how to calculate parallelable score of a program. Fig. 2 (b)
shows our approach to measure impact of a global variable
on program parallelism. Detail of each step will be briefly

described below.

Calculating parallelable score of a program
In order to calculate the parallelable score of a program, the

process consists of several steps, they are: building VDG from
source code, identifying IS and DS for each variable, and then
calculating the parallelable score.

For a program, to build a VDG, first, we conduct data
dependence analysis and identify data-dependent variables of
each variable. In this step, we leverage srcSlice which is
a lightweight slicing tool [16] [17]. VDG is generated by
creating a directed graph. Each variable in the program is a
node in the graph, V is the set of nodes. For each v ∈ V , we
construct a directed edge from v ∈ V to v′ ∈ V if v′ is in
the list of data-dependent variables of v, which is obtained by
srcSlice.

In order to identify the influence set (IS) and dependence
set (DS) of each node in the VDG, the VDG is analyzed to
detect strongly-connected components (SCC) first. Then, all
nodes in an SCC is replaced by a single representative node.
In fact, any influence set or dependence set that consists of
a node in an SCC will include all the others from that SCC.
Therefore, replacing all nodes in an SCC by a representative
node will help to reduce redundant work.

IS and DS of nodes are identified using graph traversal
techniques. The IS(v) of node v ∈ V is the set of nodes that
are reachable from v. And, the DS(v) of node v ∈ V is the
set of nodes that have at least a path to v.

According to Definition 5, parallelable score of a variable
v ∈ V is ϕ(v) = ‖V ‖ − ‖K(v)‖. Then, parallelable score
of the program is the total number of variables that can
be parallely defined with each variable in the program,
γ(P) =

∑
v∈V ϕ(v).

Measuring the impact of a global variable g on program
parallelism

Given a program P and its set of global variables G, in
order to measure the impact of a global variable g ∈ G on
program parallelism, we compare the parallelable score of
the program with and without the presence of variable g. To
estimate parallelable score of the program without the presence

of g (P \{g}), variable g and all of its in-out edges are removed
from the VDG. The obtained graph is called V DG \ {g}.

Following, IS and DS of each remaining variables are
calculated in this V DG \ {g} graph. Next, parallelable score
of each variable and the parallelable score of the program
P \ {g} can be obtained. The impact of this variable on
program parallelism is δ(g) = γ(P \ {g})− γ(P).

If g is ignored from the VDG and the program’s parallelable
score increases, it means that removing g from the source code
increases chances to execute the program in parallel. The more
parallelable score increases, the more impact g has on the
program parallelism. In other words, the higher δ(g) is, the
more likely g is the cause that prevents program components
from executing in parallel.

In order to find out variables that tighten program functions
and make them hard to run in parallel, we identify the impact
of each global variable on program parallelism and figure out
which variables have a large impact. In fact, this approach
can be done for all variables in the program, however, local
variables seem to have less influence on connecting program
functions than global variables due to their scope. So, to reduce
redundant work, we only concern global variables.

IV. EXPERIMENTS AND DISCUSSION

To evaluate this approach, we conduct experiments on a set
of benchmark source code and an industrial program to answer
the following research questions:
• RQ1: Overall quantitative impact of global variables.

Over all programs, how many global variables have a
considerable impact on program parallelism?

• RQ2: Quantitative programs containing large impact
global variables. Whether large impact global variables
occur in most of the programs or they are only used in
some special cases? (This question makes more sense
with the results for RQ1.)

• RQ3: Causes of the large impact of the global variable on
program parallelism. What patterns are found on program
dependencies with and without the presence of the large
impact global variable?

• RQ4: About time complexity How long does this approach
take to measure the impact of a global variable?

A. Subject system

Experiments were conducted on 20 programs, all written
in C. They are used as benchmark source code in related
studies [11], [18]. We obtained these programs from online
repositories such as Free Software Directory1 and Source
Code2. Their size range from 6KLOC to 81KLOC. Table I
briefly introduces these 20 programs. In this table, LoC is
lines of code which is counted by the UNIX utility wc; SLOC
is none-comment non-blank lines of code which is counted by
the utility sloc [19]; and Variables column is the number of
variables in the program.

1https://directory.fsf.org/wiki/MainP age
2https://source-code.com

TABLE I: The 20 subject programs studied

Program LoC SLoC Variables Brief Description

a2ps 63,600 40,222 3658 ASCII to Postscript

acct-6.3 10,182 6,764 435 Process monitoring
utilities

barcode 5,926 3,975 427 Barcode generator
bc 16,763 11,173 906 Calculator

ctags 18,663 14,298 1450 C tagging
diffutils 19,811 12,705 1483 File differencing

ed 13,579 9,046 460 Line text editor
empire 58,539 48,800 8313 Conquest Game

EPWIC-1 9,579 5,719 1137 Wavelet image
encoder

findutils 18,558 11,843 1155 File finding utilities

flex2-5-4 21,543 15,283 991 Lexical Analyzer
Builder

gnuchess 17,775 14,584 1045 Chess player
gnugo 81,652 68,301 9361 Go player
indent 6,724 4,834 433 Text formatter

snns 79,170 52,798 7634 neural network
analyzer

termutils 7,006 4,908 292 Unix terminal
emulation

time-1.7 6,965 4,185 135 CPU resource measure
userv 8,009 6,132 912 Access control utility

wdiff.0.5 6,256 4,112 174 Diff front end
which 5,407 3,618 180 Unix utility
sum 475,707 343,000 40,581

average 23,785 17,165 2029

In addition, we also show the effectiveness and scalability of
our approach by conducting an experiment on the industrial
embedded program provided by our partner3. This program
size is approximately 300KLOC, it contains 6197 functions
and 39770 variables, in which 3611 are global variables.

B. Experiment on benchmark source code

According to Definition 6, the unit of the impact of a
global variable on program parallelism is the number of
variables, i.e., the number of parallelable variables. So,
whether the impact of a variable is considered to be large
or not, it much depends on the program size. For ease of
comparison, this paper uses the percentage of increased
parallelable variables over the program’s parallelable score.
For instance, a program P, impact of a global variables g ∈ V
is δ(g) =

γ(P \ {g})− γ(P)
γ(P)

.

RQ1: Overall quantitative impact of global variables
In 20 programs, we evaluated the impact of totally 3682

global variables on their program parallelism. Most single
globals do not have a significant impact, even removing them
from the program, the probability to execute the program in
parallel do not change. However, more importantly, there do
exist some global variables that have a considerable impact
on connecting other variables in the program. Specifically,
reducing their dependencies will dramatically increase the
chance to execute program components in parallel.

Fig. 3 shows 16 global variables of different programs
which have highly significant impact. The y-axis shows how

3https://www.gaio.com/

Fig. 3: Impact of ignoring dependencies for each single global variables on program parallelism

Fig. 4: The number of programs having large-impact variables for various largeness thresholds

the parallelable score of each program is increased if the
dependencies of each variable shown on the x-axis are ignored.
In the x-axis, variables are indicated by the format Pro-
gramName VariableName. For example, with gnuchess board
means that after removing variable board in the program
gnuchess, the parallelable score of this program increased
more than 80%.

The answer to RQ1 is that not all global variables have
the same level of impact on program parallelism. There are
only several variables that have a considerable impact on
preventing program components from executing in parallel.
During refactoring source code to enable parallelization,
developers can consider reducing the dependencies of such
variables.

RQ2: Quantitative programs containing large impact
global variables

According to the answer of RQ1, there are only several
global variables that have a large impact on program paral-
lelism. Another question RQ2 is that whether such variables
occur in general or they are only used in some cases.

Fig. 4 shows a count of programs with large-impact vari-
ables for various largeness thresholds. The y-axis shows the
number of programs containing variables with the impact
shown on the x-axis. At an extreme a threshold of zero, all
20 programs contain variables that have an impact 0% on

program parallelism. Impact 0% means that removing each of
these variables from the program, the probability to execute
the program in parallel with and without their presence is
unchanged.

If the largeness threshold is set to be 10%, it means that
a global variable g is considered to have a large impact if
ignoring dependencies of g, then it will increase the program
parallelable score 10%. In this case, there are 12 out of 20
programs contain large impact global variables. More strictly,
if the largeness threshold is 20%, there are half of the programs
containing large impact global variables.

Specifically, there are four programs that contain variables,
which have an extremely large impact on program parallelism.
Removing each of them will help to increase more than
50% parallelable scores of the program. And, in 20 studied
programs, there do not exist any variables that have an impact
on parallelism larger than 82%.

RQ3: Causes of the large impact of the global variable
on program parallelism

The major purpose of this paper is to present the method to
access the impact of global variables. We also show evidence
to suggest that there are several single global variables that
have a detrimental effect on program parallelism.

This research question gives a glimpse consideration on
these large impact variables. The answer of this question can

(a)

(b)

Fig. 5: Impact of ignoring dependencies of variable board and File on IS and DS of other variables in program gnuchess and
ctags respectively

give some suggestions for future studies about techniques to
reduce the dependencies of these variables.

Fig. 5 shows the impact of ignoring dependencies of the
variable board in the program gnuchess and the variable File
in the program ctags, respectively. In these figures, the y-axis
shows the number of variables in DS and IS of each variable
whose id shown on the x-axis. The original program is shown
in dash line, and the program after removing variable board
(or variable File) is shown in the solid line.

In Fig. 5 (a), after removing variable board, the number of
variables in the DS and IS of the other variables (id from 676
to 1036) in the program gnuchess dramatically drop. Also, in
Fig 5 (b), after removing variable file, the number of variables
in the DS and IS of the other variables (id from 1156 to 1429)
in the program ctags fail significantly.

It demonstrates that there are many transitive dependencies
and transitive influences are created via variables board and
File in these two programs. In each Fig 5 (a) and 5 (b), at
points, the larger differences between these two lines (the

dash line and the solid line), the more transitive dependencies
and influences the corresponding variables have via the
ignoring variable.

RQ4: About time complexity
Table II shows the execution time that our experiment takes

to measure the impact of global variables in each program.
In this table, the time unit is second. Our approach analyses
various programs in less than 10 seconds, three programs (i.e,
a2ps, gnugo, and snns) take us several hundred seconds to
analyze their source code. Especially, program empire takes
us 1177 seconds to measure its global variables’ impact. On
average, it took us approximately 0.6 seconds to calculate the
impact of a global variable on its program parallelism.

Furthermore, the number of variables is often much fewer
than the number of statements so the number of nodes in
VDG will be much fewer than the number of nodes in SDG.
As a result, analyzing dependencies on the VDG helps us to
save a large amount of computation space and execution time

TABLE II: Execution time

Program Execution time (s) Program Execution time (s)

a2ps 109 acct-6.3 3
barcode 2 bc 5

ctags 14 diffutils 6
ed 2 empire 1177

EPWIC-1 8 findutils 5
flex2-5-4 4 gnuchess 10

gnugo 488 indent 4
snns 334 termutils 2

time-1.7 1 userv 5
wdiff.0.5 1 which 1

compared to previous studies.
Particularly, table I shows the number of statements (which

is approximately equal to SLoC) and the number of variables.
Each code statement is a node in the SDG and each variable
is a node in our VDG. As shown in this table, the number
of nodes in SDG is about 8 times higher than the number of
nodes in our VDG. Specifically, with wdiff.0.5 program, the
number of statements is 23 times higher than the number of
variables.

C. Experiment on industrial source code

This section discusses our experimental result on an indus-
trial program that is provided by our partner. This result also
shows the compliance with the experiments on benchmark
source code, most of the single global variables do not have
a significant impact on program parallelism. However, there
also does exist large impact global variables.

For instance, there is one global variable that ignoring
it causes the program’s parallelable score to increase 8%.
Specifically, there is one variable that has an extremely large
impact. After ignoring the dependencies of this variable, the
parallelable score of the program increased by 61%. Due to
the security policy of industrial programs, we cannot provide
more details about these variables.

About time complexity, it took us about 25414 seconds
to analyze the program and measure the impact of 1377
global variables. Thus, it is practical and scalable to apply
this approach to industrial source code.

In practice, the current compiler cannot automatically exe-
cute this program in parallel. Our partner is required to refactor
this source code to parallelize it. However, with large source
code, it is hard for developers to figure out which are the
reasons preventing this program from automatic parallelization
and which code block should be refactored.

Our solution suggests a method to access the impact of
global variables and we can rank variables according to their
impact on program parallelism. Large impact variables can
be starting points to examine. Based on this suggestion,
developers can consider reducing dependencies of large impact
variables in the source code refactoring process.

V. RELATED WORK

There are several studies were conducted to measure depen-
dencies among code statements. Binkley et al. [12], [11], [20]

already introduced a solution to assess the impact of a global
variable in program dependence and showed a method to figure
out causes of large dependence clusters. A dependence cluster
is a set of statements that all of them are mutually dependent
on the others. However, this method works based on analyzing
SDG so it costs a large amount of time and unscalable. In
addition, removing a global variable to break dependence
clusters into smaller ones can help to reduce dependencies
between program functions but it is not enough to guarantee
the parallelization of the program.

In order to deal with global variables in the parallelization
problem of C/C++ programs, Sankaranarayanan et al. [7]
proposed a method to localize global variables and then
pass them as corresponding parameters of functions. Their
tool transforms every global variable into locals. However,
not every global variable prevents program parallelism. So
refactoring all global variables causes the redundant changes
of many statements, but indeed they do not need to change to
be executed in parallel.

Similar to this idea, Smith et al. [21] also introduced an
approach to localize global variables. In this research, they
focus on localizing globals to make C programs thread-safe.
However, users need to manually categorize global variables
and then their tool will automatically localize globals variables
in some categories to make them thread-safe.

VI. THREATS TO VALIDITY

This section considers the threats to the internal and external
validity of the experiment results in Section IV.

One of the primary external threat arises from the possibility
that the selected programs are not representative of programs
in general. The studied source code contains various kinds
of programs such as applications, utilities, and games. In
addition, these programs’ source code are used as benchmark
for evaluation in other related research [11], [18]. So, it could
be pretty confident in the obtained result. However, it would be
premature to infer this result to other programming languages,
because studied programs are all written in C.

An internal threat comes from identifying data-dependent
variables of given variables. In other words, the threat may
come from potential faults of the dependence analysis tool.
In this experiment, srcSlice is employed. It is a lightweight
tool, so it is fast, scalable, however less accurate. Alomari et.
al. [17] has demonstrated their tool works well regarding the
accuracy of slices when compare with CodeSurfer4, a mature
commercial slicing tool. To estimate the impact of global
variables in program parallelism and the trade-off between
effectiveness, scalability, and accuracy, it is reasonable to
apply srcSlice in our dependence analysis step.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a practical approach to access the
impact of single variables on program parallelism. Our ap-
proach analyzes data dependencies on the VDG to figure out

4https://www.grammatech.com/codesurfer-binaries

which variables may be the cause of preventing the program
from automatic parallelism. This approach approximates data
dependencies between statements by data dependencies be-
tween variables. So, this approach can reduce a large amount
of analyzing time compared to previous studies, but it may be
less accurate than analyzing the SDG. However, in terms of
analyzing to find out the reasons to support other tasks such
as program comprehension or source code refactoring, it is
scalable and acceptable to apply this approach in the industry.

Our experimental result shows that most of the single
variables do not have a significant impact, while few vari-
ables have a considerable impact on program parallelism. In
addition, although there are few large impact variables, many
programs (half of the studied programs) have at least one
large impact global variable. Reducing dependencies of such
variables may dramatically increase the chance to execute the
programs in parallel.

Further work will consider patterns of variables that have
a large impact. Also, we will research techniques to suggest/-
support to reduce data dependencies of large impact variables
to enable parallelization.

ACKNOWLEDGMENT

This research has been supported by GAIO TECHNOL-
OGY CO., LTD (https://www.en.gaio.co.jp).

This work has been partly supported by VNU University of
Engineering and Technology under project number CN20.26.

REFERENCES

[1] R. Leupers, M. A. Aguilar, J. Castrillon, and W. Sheng, “Software com-
pilation techniques for heterogeneous embedded multi-core systems,” in
Handbook of Signal Processing Systems. Springer, 2019, pp. 1021–
1062.

[2] M. Dendaluce, “System-on-chip-based highly integrated powertrain con-
trol unit for next-generation electric vehicles: harnessing the potential
of hybrid embedded platforms for advanced model-based control al-
gorithms,” World Electric Vehicle Journal, vol. 7, no. 2, pp. 311–323,
2015.

[3] R. Stewart, B. Berthomieu, P. Garcia, I. Ibrahim, G. Michaelson, and
A. Wallace, “Graphical program transformations for embedded systems,”
in Proceedings of the 34th ACM/SIGAPP Symposium on Applied Com-
puting, 2019, pp. 647–649.

[4] Z. Han, G. Qu, B. Liu, and F. Zhang, “Task decomposition and
parallelization planning for automotive power-train applications,” in
2019 IEEE Intl Conf on Parallel & Distributed Processing with Ap-
plications, Big Data & Cloud Computing, Sustainable Computing &
Communications, Social Computing & Networking (ISPA/BDCloud/So-
cialCom/SustainCom). IEEE, 2019, pp. 398–404.

[5] D. Dig, “A refactoring approach to parallelism,” IEEE software, vol. 28,
no. 1, pp. 17–22, 2010.

[6] A. A. B. Baqais and M. Alshayeb, “Automatic software refactoring: a
systematic literature review,” Software Quality Journal, pp. 1–44, 2019.

[7] H. Sankaranarayanan and P. A. Kulkarni, “Source-to-source refactoring
and elimination of global variables in c programs,” 2013.

[8] G. Zheng, S. Negara, C. L. Mendes, L. V. Kalé, and E. R. Rodrigues,
“Automatic handling of global variables for multi-threaded mpi pro-
grams,” in 2011 IEEE 17th International Conference on Parallel and
Distributed Systems. IEEE, 2011, pp. 220–227.

[9] N. Nguyen, A. Dominguez, and R. Barua, “Memory allocation for
embedded systems with a compile-time-unknown scratch-pad size,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 8,
no. 3, pp. 1–32, 2009.

[10] J. Rafael, I. Correia, A. Fonseca, and B. Cabral, “Dependency-based
automatic parallelization of java applications,” in European Conference
on Parallel Processing. Springer, 2014, pp. 182–193.

[11] D. Binkley, M. Harman, Y. Hassoun, S. Islam, and Z. Li, “Assessing
the impact of global variables on program dependence and dependence
clusters,” Journal of Systems and Software, vol. 83, no. 1, pp. 96–107,
2010.

[12] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and Z. Li,
“Efficient identification of linchpin vertices in dependence clusters,”
ACM Trans. Program. Lang. Syst., vol. 35, no. 2, Jul. 2013. [Online].
Available: https://doi.org/10.1145/2491522.2491524

[13] J. M. P. Cardoso, J. G. de Figueiredo Coutinho, and P. C. Diniz,
Embedded Computing for High Performance: Source code analysis and
instrumentation. Morgan Kaufmann, 2017.

[14] M. S. Sadi, L. Halder, and S. Saha, “Variable dependency analysis of
a computer program,” in 2013 International Conference on Electrical
Information and Communication Technology (EICT). IEEE, 2014, pp.
1–5.

[15] M. Matsubara, K. Sakurai, F. Narisawa, M. Enshoiwa, Y. Yamane, and
H. Yamanaka, “Model checking with program slicing based on variable
dependence graphs,” Electronic Proceedings in Theoretical Computer
Science, vol. 105, 12 2012.

[16] H. W. Alomari, M. L. Collard, J. I. Maletic, N. Alhindawi, and
O. Meqdadi, “srcslice: very efficient and scalable forward static slicing,”
Journal of Software: Evolution and Process, vol. 26, no. 11, pp. 931–
961, 2014.

[17] C. D. Newman, T. Sage, M. L. Collard, H. W. Alomari, and J. I. Maletic,
“srcslice: A tool for efficient static forward slicing,” in 2016 IEEE/ACM
38th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 2016, pp. 621–624.

[18] M. Harman, D. Binkley, K. Gallagher, N. Gold, and J. Krinke, “De-
pendence clusters in source code,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 32, no. 1, pp. 1–33, 2009.

[19] D. A. Wheeler, “Sloc count user’s guide, 2005,” 2015.
[20] D. Binkley and M. Harman, “Identifying ’linchpin vertices’ that cause

large dependence clusters,” in 2009 Ninth IEEE International Working
Conference on Source Code Analysis and Manipulation, 2009, pp. 89–
98.

[21] A. R. Smith and P. A. Kulkarni, “Localizing globals and statics to
make c programs thread-safe,” in Proceedings of the 14th international
conference on Compilers, architectures and synthesis for embedded
systems, 2011, pp. 205–214.

