Abstract
Penta-graphene, a new monolayer of carbon atoms, has been synthesized with ideal strength and temperature resistance. However, the mechanical behavior of penta-graphene has not been fully investigated yet. This paper presents an analytical investigation on the nonlinear large amplitude vibration of imperfect three-dimensional (3D) penta-graphene plates subjected to uniformly distributed external pressure with simply supported and immovable edges in thermal environments. The elastic constants and the thermal expansion coefficients of the 3D penta-graphene plate are determined using the density functional theory. The motion and compatibility equations are established based on the Reddy’s higher-order shear deformation plate theory in which the effect of von Karman nonlinear terms, the initial imperfection and the Pasternak elastic foundation are taken into consideration. The Galerkin method is applied to determine the closed-form expressions of linear frequency and nonlinear to linear frequency ratio while the dynamic response of the plate is obtained by using the fourth-order Runge–Kutta method. The Bees Algorithm is used to determine the optimum value of the natural frequency which depends on five variables including the thickness, the length and the width of penta-graphene plates and two stiffness coefficients of elastic foundations. The numerical results show the effects of width-to-thickness ratio, elastic foundations coefficients, initial imperfection parameter and temperature increment on the nonlinear vibration of the 3D penta-graphene plates.
This is a preview of subscription content, log in to check access.
Abbreviations
- \(C_{ij} \,(ij=11,12,22,44,55,66)\) :
-
Elastic constants of 3D penta-graphene
- \(\alpha _{11} ,\,\alpha _{22} \) :
-
Thermal expansion coefficients of 3D penta-graphene
- u, v, w :
-
Displacement components parallel to the coordinates \(\left( {x,y,z} \right) \)
- \(\phi _{x} ,\phi _{y} \) :
-
Rotations of the transverse normal about the y and x axes at \(z=0\)
- \(\varepsilon _{x}^{0} ,\varepsilon _{y}^{0} ,\gamma _{xy}^{0} ,\gamma _{xz}^{0} ,\gamma _{yz}^{0} \) :
-
Strain components at the middle surface
- \(\varepsilon _{x} ,\varepsilon _{y} ,\gamma _{xy} ,\gamma _{xz} ,\gamma _{yz} \) :
-
Strain components at the distance z from the mid-plane
- \(\sigma _{xx} ,\sigma _{yy} ,\sigma _{xy} ,\sigma _{xz} ,\,\sigma _{yz}\) :
-
Stress components at the distance z from the mid-plane
- \(\Delta T\) :
-
Temperature increment of the environment
- \(k_{1} ,\,k_{2} \) :
-
Elastic foundations stiffness
- a :
-
Length of the 3D penta-graphene plate
- b :
-
Width of the 3D penta-graphene plate
- h :
-
Thickness of the 3D penta-graphene plate
- f :
-
Airy’s stress function
- \(\varepsilon \) :
-
Viscous damping coefficient
- q :
-
External pressure
- m, n :
-
Modes of vibration
- \(W,\Phi _{x} ,\Phi _{y}\) :
-
Amplitude of the deflection and rotation angles
- \(w^{*}\) :
-
Initial imperfection function of the 3D penta-graphene plate
- \(\mu \) :
-
Imperfect function parameter
- \(\omega _\mathrm{L}\) :
-
Linear frequency
- \(\alpha \) :
-
Frequency ratio
- \(\xi \) :
-
Amplitude deflection
References
- 1.
Bhimaraddi, A.: Large amplitude vibrations of imperfect antisymmetric angle-ply laminated plates. J. Sound Vib. 162, 457–470 (1993). https://doi.org/10.1006/jsvi.1993.1133
- 2.
Lim, C.W., Kitipornchai, S., Liew, K.M.: Numerical aspects for free vibration of thick plates part II: numerical efficiency and vibration frequencies. Comput. Methods Appl. Mech. Eng. 156, 31–44 (1998). https://doi.org/10.1016/S0045-7825(97)00198-9
- 3.
Srinivas, S., Joga Rao, C.V., Rao, A.K.: An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates. J. Sound Vib. 12, 187–199 (1970). https://doi.org/10.1016/0022-460X(70)90089-1
- 4.
Kolahchi, R., Safari, M., Esmailpour, M.: Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium. Compos. Struct. 150, 255–265 (2016). https://doi.org/10.1016/j.compstruct.2016.05.023
- 5.
Wang, Z.X., Shen, H.S.: Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos. B Eng. 43, 411–421 (2012). https://doi.org/10.1016/j.compositesb.2011.04.040
- 6.
Zhou, W., Li, Y., Shi, Z., Lin, J.: An analytical solution for elastic buckling analysis of stiffened panel subjected to pure bending. Int. J. Mech. Sci. 105024, 161–162 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105024
- 7.
Singh, P.N., Sundararajan, V., Das, Y.C.: Large amplitude vibration of some moderately thick structural elements. J. Sound Vib. 36, 375–387 (1974). https://doi.org/10.1016/S0022-460X(74)80217-8
- 8.
Mishra, D., Yoon, S., Seo, Y., Pak, Y.E.: Analytical solutions of electroelastic fields in piezoelectric thin-film multilayer: applications to piezoelectric sensors and actuators. Acta Mech. (2020). https://doi.org/10.1007/s00707-019-02582-w
- 9.
Azmi, M., Kolahchi, R., Bidgoli, M.R.: Dynamic analysis of concrete column reinforced with \(\text{ SiO }_{2}\) nanoparticles subjected to blast load. Adv. Concrete Const. 7, 51–63 (2019). https://doi.org/10.12989/acc.2019.7.1.051
- 10.
Keshtegar, B., Jamali, M., Kolahchi, R., Trung, N.T.: Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory. J. Comput. Appl. Math. 369, 112625 (2020). https://doi.org/10.1016/j.cam.2019.112625
- 11.
Hajmohammad, M.H., Kolahchi, R., Zarei, M.S., Nouri, A.H.: Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory. Int. J. Mech. Sci. 153–154, 391–401 (2019). https://doi.org/10.1016/j.ijmecsci.2019.02.008
- 12.
Kolahchi, R., Zhu, S.P., Keshtegar, B., Trung, N.T.: Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial. Aerosp. Sci. Tech. 98, 105656 (2020). https://doi.org/10.1016/j.ast.2019.105656
- 13.
Arbabi, A., Kolahchi, R., Bidgoli, M.R.: Experimental study for ZnO nanofibers effect on the smart and mechanical properties of concrete. Smart Struct. Syst. 25, 97–104 (2020). https://doi.org/10.12989/sss.2020.25.1.097
- 14.
Motezaker, M., Kolahchi, R.: Seismic response of concrete columns with nanofiber reinforced polymer layer. Comput. Concrete 20, 361–368 (2017). https://doi.org/10.12989/cac.2017.20.3.361
- 15.
Motezaker, M., Kolahchi, R.: Seismic response of \(\text{ SiO }_{\rm 2 }\) nanoparticles-reinforced concrete pipes based on DQ and newmark methods. Comput. Concrete 19, 745–753 (2017). https://doi.org/10.12989/cac.2017.19.6.745
- 16.
Chen, L.W., Doong, J.L.: Large amplitude vibration of an initially stressed moderately thick plate. J. Sound Vib. 89, 499–508 (1983). https://doi.org/10.1016/0022-460X(83)90351-6
- 17.
Wang, Z.X., Shen, H.S.: Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. Comput. Mater. Sci. 50, 2319–2330 (2011). https://doi.org/10.1016/j.commatsci.2011.03.005
- 18.
Zhang, S., Zhou, J., Wang, Q., Chen, X., Kawazoe, Y., Jena, P.: Penta-graphene: a new carbon allotrope. Proc. Natl. Acad. Sci. USA 112, 2372–2377 (2015). https://doi.org/10.1073/pnas.1416591112
- 19.
Sun, H., Mukherjee, S., Singh, C.V.: Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study. Phys. Chem. Chem. Phys. 18, 26736–26742 (2016). https://doi.org/10.1039/c6cp04595b
- 20.
Naseri, M.: Investigation on the stability and electronic properties of Penta-XP5 (\(\text{ X }=\text{ Al, } \text{ Ga, } \text{ In } \)) monolayer semiconductors by using first principles calculations. Chem. Phys. Lett. 706, 99–106 (2018). https://doi.org/10.1016/j.cplett.2018.05.067
- 21.
Dai, X.S., Shen, T., Feng, Y., Liu, H.C.: Structure, electronic and optical properties of Al, Si, P doped penta-graphene: a first-principles study. Phys. B Condens. Matter. 574, 411660 (2019). https://doi.org/10.1016/j.physb.2019.411660
- 22.
Chen, D., Zhang, X., Tang, J., Cui, H., Chen, Z., Li, Y.: Different doping of penta-graphene as adsorbent and gas sensing material for scavenging and detecting SF6 decomposed species. Sustain. Mater. Technol. (2019). https://doi.org/10.1016/j.susmat.2019.e00100
- 23.
Berdiyorov, G.R., Dixit, G., Madjet, M.E.: Band gap engineering in penta-graphene by substitutional doping: first-principles calculations. J. Phys. Condens. Matter. 28, 475001 (2016). https://doi.org/10.1088/0953-8984/28/47/475001
- 24.
Tien, N.T., Thao, P.T.B., Phuc, V.T., Ahuja, R.: Electronic and transport features of sawtooth penta-graphene nanoribbons via substitutional doping. Phys. E Low Dimens. Syst. Nanostruct. 114, 113572 (2019). https://doi.org/10.1016/j.physe.2019.113572
- 25.
Tu, W., Wang, K., Qin, L., Sun, Z., Chen, J.: Intrinsic mechanical properties and fracture mechanism of monolayer penta-graphene investigated by nanoindentation: a molecular dynamics study. Comput. Mater. Sci. 169, 109145 (2019). https://doi.org/10.1016/j.commatsci.2019.109145
- 26.
Han, T., Cao, S., Wang, X., Xue, Z., Zhang, X.: Mechanical behaviours of penta-graphene and effects of hydrogenation. Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab1dae
- 27.
Duc, N.D., Lam, P.T., Quan, T.Q., Quang, P.M., Van Quyen, N.: Nonlinear post-buckling and vibration of 2D penta-graphene composite plates. Acta Mech. (2019). https://doi.org/10.1007/s00707-019-02546-0
- 28.
Ferrari, R., Froio, D., Rizzi, E., Gentile, C., Chatzi, E.N.: Model updating of a historic concrete bridge by sensitivity- and global optimization-based latin hypercube sampling. Eng. Struct. 179, 139–160 (2019). https://doi.org/10.1016/j.engstruct.2018.08.004
- 29.
Bartoli, N., Lefebvre, T., Dubreuil, S., Olivanti, R., Priem, R., Bons, N., Martins, J.R.R.A., Morlier, J.: Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design. Aerosp. Sci. Technol. 90, 85–102 (2019). https://doi.org/10.1016/j.ast.2019.03.041
- 30.
Ameri, E., Aghdam, M.M., Shakeri, M.: Global optimization of laminated cylindrical panels based on fundamental natural frequency. Compos. Struct. 94, 2697–2705 (2012). https://doi.org/10.1016/j.compstruct.2012.04.005
- 31.
Xing, J., Luo, Y., Zhan, J., Kang, Z.: Global shape optimization of fixtures to suppress wrinkles in large-displacement membrane structures. Int. J. Solids Struct. 144–145, 301–312 (2018). https://doi.org/10.1016/j.ijsolstr.2018.05.016
- 32.
Pham, D.T., Castellani, M.: The bees algorithm: modelling foraging behaviour to solve continuous optimization problems. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 223, 2919–2938 (2009). https://doi.org/10.1243/09544062JMES1494
- 33.
Dat, N.D., Anh, V.M., Quan, T.Q., Duc, P.T., Duc, N.D.: Nonlinear stability and optimization of thin nanocomposite multilayer organic solar cell using Bees algorithm. Thin Walled Struct. (2019). https://doi.org/10.1016/j.tws.2019.106520
- 34.
Pham, D.T., Castellani, M.: A comparative study of the Bees algorithm as a tool for function optimisation. Cogent Eng. 2, 1–28 (2015). https://doi.org/10.1080/23311916.2015.1091540
- 35.
Pham, D.T., Castellani, M.: Benchmarking and comparison of nature-inspired population-based continuous optimisation algorithms. Soft Comput. 18, 871–903 (2014). https://doi.org/10.1007/s00500-013-1104-9
- 36.
Baronti, L., Zhang, B., Castellani, M., Pham, D.T.: Machine learning of electro-hydraulic motor dynamics. SN Appl. Sci. (2020). https://doi.org/10.1007/s42452-019-1889-y
- 37.
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. (2009). https://doi.org/10.1088/0953-8984/21/39/395502
- 38.
Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., et al.: Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter. (2017). https://doi.org/10.1088/1361-648x/aa8f79
- 39.
Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- 40.
Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- 41.
De Jong, M., Chen, W., Angsten, T., Jain, A., Notestine, R., Gamst, A., Sluiter, M., Ande, C.K., Van Der Zwaag, S., Plata, J.J., Toher, C., Curtarolo, S., Ceder, G., Persson, K.A., Asta, M.: Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data. 2, 1–13 (2015). https://doi.org/10.1038/sdata.2015.9
- 42.
Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)
- 43.
Brush, D.D., Almroth, B.O.: Buckling of Bars, Plates and Shells. Mc. Graw-Hill, New York City (1975)
- 44.
Dawe, D.J., Horsington, R.W., Kamtekar, A.G., Little, G.H.: Aspects of the Analysis of Plate Structures. Clarendon Press, Oxford (1985)
Acknowledgements
This work is funded through National Foundation for Science and Technology Development of Vietnam—NAFOSTED under Grant Number 107.02-2019.01.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A
Appendix B
Appendix C
Rights and permissions
About this article
Cite this article
Dat, N.D., Quan, T.Q., Tran, P. et al. A first-principle study of nonlinear large amplitude vibration and global optimization of 3D penta-graphene plates based on the Bees Algorithm. Acta Mech 231, 3799–3823 (2020). https://doi.org/10.1007/s00707-020-02706-7
Received:
Revised:
Published:
Issue Date: