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ABSTRACT
This paper focuses on the influence of CNTs, porosity, mechanical and thermal loading on the
vibration and dynamic response of the sandwich functionally graded carbon nanotube-reinforced
composite (FG-CNTRC) composite plate. The plate is made by three layers in which the core layer
is porous FGM materials, bottom and top surfaces are FG-CNTRC. The motion equations are given
based on Hamilton’s principle, TSDT, Galerkin method and the fourth-order Runge–Kutta method.
The numerical illustration is shown to examine the influence of various parameters such as poros-
ity distribution, CNTs volume fraction, geometrical parameters, elastic foundations, temperature,
mechanical loads on the dynamic behaviors of the plate.

HIGHLIGHTS

� The FG-CNTRC plates with porous core layer
� The vibration and nonlinear dynamic analysis
� Elastic foundation and temperature
� Analytical solutions, Hamilton’s principle with the high-order shear deflection theory is used
� Galerkin method and the fourth-order Runge–Kutta method are applied
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1. Introduction

With the advantages of advanced functionally graded carbon
nanotube-reinforced composite (FG-CNTRC) materials such
as light, heat-resistant, scientists’ interest in them has
increased significantly over the past two decades through
peer-reviewed and published articles with different methods
and theories [1–5]. Over the past few years, carbon nano-
tubes with advanced mechanical properties such as hard,
light, and high-temperature resistance has become one of
the ingredients that enhances heat resistance, increasing the
durability of composite materials. Lin et al. investigated
aeroelastic characteristics and nonlinear response of FG-
CNTRC panel considering the transient heat. Shen, Liew,
Kiani and other authors [6–16] studied different modelings
of FG-CNTRC plates and shells resting on elastic founda-
tions under thermal and mechanical loads along with the
influence geometrical parameter, imperfection, volume frac-
tion CNTs by higher order shear theory. To evaluate the
role of volume fraction and distribution of CNTs on the
natural frequency of composite conical panels made of a
polymeric matrix reinforced, the first order shear deform-
ation shell theory (FSDT) and the Donnell’s theory were
used by Kiani [17]. Lei et al. [18] analyzed the free vibration

behaviors of functionally graded carbon nanotube (FG-
CNT) reinforced composite thick straight-sided quadrilateral
plates resting on Pasternak foundations by using IMLS-Ritz
method. Zhang et al. [19] used Reddy’s third-order shear
deformation theory (HSDT), the Hamilton’s principle and
the state-space Levy method to obtain the results about the
natural frequencies and vibration of FG-CNT reinforced
composite plates subjected to in-plane loads. Qin et al. [20]
combined the unified Fourier series with the first-order
shear deformation theory (FSDT) in order to solve the
vibration problem of FG-CNTRC cylindrical shells, conical
shells and annular plates subjected to general boundary con-
ditions. The used method in Qin’s paper has been verified
for its advantages, precision and convergence by numerical
examples. Jiao et al. [21] considered the effect of five types
of carbon nanotubes (CNTs) distribution on the dynamic
buckling behavior of FG-CNTRC cylindrical shell under
dynamic displacement load by using a semi-analytical. By
the Budiansky–Roth criterion, the dynamic critical buckling
condition of FG-CNTRC cylindrical shell is determined and
compared with different published papers. Khoa ND et al.
[22] researched the nonlinear dynamic response and vibra-
tion of FG-CNTs-reinforced composite cylindrical panels
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with the support elastic foundations subjected to mechanical,
thermal, and damping loads based on Reddy’s higher order
shear deformation shell theory.

In fact, the material manufacturing process has the appear-
ance of micro holes in the surface as well as inside the material.
This porosity factor directly affects the mechanical properties
of the material such as Young modulus, density. Therefore,
recently, there have been many studies focusing on investigat-
ing the effect of porosity on the static and dynamic response of
structures such as Foroutan et al. [23] investigated the nonlin-
ear dynamic and static hygrothermal buckling analysis of
imperfect functionally graded porous (FGP) cylindrical shells
under hygrothermal loading using the analytical and semi-ana-
lytical solutions. In order to find the nonlinear dynamic hygro-
thermal buckling responses, the fourth-order Runge–Kutta
method is used. Due to the pore-network modeling needs
much less computational resources, while still retaining essen-
tials of the pore-structure information. So, a dynamic pore-net-
work model of air–water flow with phase change has been
developed with drainage processes through thin porous layers,
in which liquid water is the nonwetting phase was studied by
Qin et al. [24]. Jalaei and Thai [25] used Navier, Bolotin’s meth-
ods along with quasi-3D sinusoidal shear deformation plate
theory as well as nonlocal strain gradient theory (NSGT) to cal-
culate the dynamic instability of viscoelastic porous functionally
graded (FG) nanoplates under biaxial oscillating loading and
longitudinal magnetic field. Metal tailings porous concrete
(MTPC) not only holds good mechanical and physical proper-
ties but also reduces the environmental pollution caused by the
disposal of waste metal tailings. Thus, Li et al. [26] systematic-
ally investigated the strain rate effect on the dynamic mechan-
ical properties of MTPC. By using both Euler Bernoulli and
Timoshenko beam theories as well as a finite element method
(FEM), the free and forced vibration analyses of FGP beam
type structures were analyzed by Wu et al. [27]. Jalaei et al. [28]
presented dynamic instability of viscoelastic porous function-
ally graded (FG) nanobeam embedded on visco-Pasternak
medium subjected to an axially oscillating loading as well as a
magnetic field. In order to solve the problem and obtain the
results, employing Eringen’s differential law, Timoshenko beam
theory (TBT) and Bolotin’s method are approached. Chen et al.
[29] focused on the analysis of dynamic response and energy
absorption of closed-cell metal foams with different porosity
distributions by using FEM. By using the Reddy’s higher order
shear deformation theory and Galerkin method, the buckling
and post-buckling behavior of FG plates with the effect of por-
osity distribution characteristics (Porosity-I and Porosity-II)
along with the influence of geometrical parameters, elastic
foundations, material properties were investigated by Cong
et al. [30]. In order to investigate the influence of porosity and
temperature on the instabilities of porous FGM box beams,
Ziane et al. [31] proposed an analytical method as well as
Galerkin method and the commercial FEM code Abaqus to
verify the accuracy of the obtained results. Demirhan and
Taskin [32] studied the bending and free vibrationof FG plate
with the influence of porosity distribution on the property’s
material FG through the thickness of the structure by using
Hamilton principle and State-space approach.

Besides single-layer materials, laminated FG-CNTRC
material is attracting the attention of scientists in the world.
Safaei et al. [33] considered the modeling which is made
from one porous polymeric core and two carbon nanotube
(CNT)/polymer nanocomposite outer layers under thermal
gradient and mechanical loads. Eshelby–Mori–Tanaka’s
approach and a mesh-free method are used to observe ther-
moelastic static responses of Safaei’s modeling and it indi-
cated that the deflection of porous nanocomposite sandwich
plates did not change significantly when adding 5% of CNTs
volume fraction. Dynamic response of auxetic honeycomb
plates integrated with agglomerated CNT-reinforced face
sheets subjected to blast load based on visco-sinusoidal the-
ory was proposed by Hajmohammad et al. [34]. Natarajan
et al. [35] mentioned the application of the higher-order
structural theory to bending and free vibration analysis of
sandwich plates with CNT reinforced composite face sheets.
Nonlinear vibration and bending of sandwich plates with
nanotube-reinforced composite face sheets were investigated
by Wang and Shen in [36]. Saidi et al. [37] presented the
vibration and stability analysis of porous plates reinforced
by graphene platelets under aerodynamic loading.

From literature review, the modeling which has not been
proposed from previous studies: the sandwich plate is made by
three layers in which the core layer is porous functionally
graded material (FGM), bottom and top surfaces are FG-
CNTRC. In order to achieve the set goals of this study as the
effect of porosity and CNTs on the dynamic response and
vibration of FG-CNTRC sandwich plates, analytical solutions,
Reddy’s third-order shear deformation plate theory and
Galerkin method are used. The natural frequencies of the por-
ous sandwich plate (PSP) are obtained by applying the fourth-
order Runge–Kutta method. Moreover, the influence of geo-
metrical parameters, temperature, elastic foundations and
imperfections are indicated. The obtained results also indicated
that porosity is a defect of the material and reduces material
properties but it will be limited by the reinforcement of two
layers of CNTs. Especially, in order to increase the reliability of
using the analytical method, the obtained results are assessed
by comparison with the results of other author’s publications.

The other novelty of this work also is using the analytical
method while other authors often used the FEM, so vibra-
tion frequencies and dynamic responses are expressed expli-
citly through the initial parameters and thus changing these
parameters we can actively control the vibration and
dynamic behaviors of the structures.

2. Modeling of the PSP with CNTRC face sheets

2.1. The configuration of modeling

The space coordinate system and geometrical configuration
of modeling are shown in Figure 1a and b. Considering the
modeling is made by three layers in which middle layers is
the porous core, top and bottom are FGM is reinforced by
CNTs with

a : length, b : width,
h ¼ hc þ 2hf : total thickness, core thickness and thickness

of face layers respectively, k1 is Winkler foundation modulus,
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k2 is the shear layer foundation stiffness of Pasternak model,
u, v, w are displacement components corresponding to the

coordinates ðx, y, zÞ, /x,/y are the slopes of the transverse
normal about the x and y axes at z ¼ 0, respectively.

2.1.1. Porous core
Assume that the middle layer of the modeling is made by FGP
material and it shows in Figure 2. The variation of elastic
modulus, the density and thermal expansion coefficient
through the thickness direction of the PSP are shown as [38]:

Ec ¼ E1 1� e0kðzÞ½ �,
qc ¼ q1 1� emkðzÞ½ �,
ac ¼ a1 1� emkðzÞ½ �:

(1)

in which

kðzÞ ¼

k Uniform distribution

cos
pz
hc

� �
Non� uniform symmetric porosity distribution type 1

cos
pz
2hc

þ p
4

� �
Non� uniform asymmetric porosity distribution type 2

:

8>>>>><
>>>>>:

e0 and em denotes the coefficient of porosity and mass dens-
ity and can determine as [38]:

e0 ¼ 1� E2
E1

¼ 1� G2

G1
; 0 � e0 � 1ð Þ,

em ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffi
1� e0

p
:

(2)

with G1,G2 is maximum and minimum value of shear’s
modulus for non-porosity distribution, Eiði ¼ 1, 2Þ are the
corresponding extremum values of elastic modulus.

In the case of uniform porosity distribution, the elastic
modulus will be constant. In other words, the elastic modu-
lus will not change according to the thickness of the core
layer and will be determined by the following Eq. (3) and is
shown in Figure 2a.

k ¼ 1
e0

� 1
e0

2
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1� e0

p � 2
p
þ 1

� �2

: (3)

From Figure 2, it can be seen that the porous (type 1)
will be distributed more on the two surfaces of the core
layer and the porous will decrease when near the middle
surface of the core layer (symmetrical through the x-axis).
In other words, it can be described that the elastic modulus

reaches the highest value E1 at the surface of the core layer
and decreases with Eq. (2) and elastic modulus reaches the
minimum value E2 at the middle surface of the core layer.
The distribution of the porosity type 2 is not the same as
the distribution of the porosity type 1, the porosity type 2
will be distributed more on one surface and gradually
reduced to the other surface according to Eq. (2). It can be
described that the elastic modulus reaches the highest value
E1 at the surface of the core layer and reaches the minimum
value E2 at the other surface.

For the homogeneous core layer, the titanium alloy
(Ti–6Al–4V) is chosen with the material properties are
assumed to express as a nonlinear function of temperature
expects for Position ratio and mass density.

�1 ¼ 0:29, q1 ¼ 4429kg=m3,E1 ¼ 122:56ð1� 4:586� 10�4TÞGPa,
a1 ¼ 7:5788 1þ 6:638� 10�4T þ 3:147� 10�6T2ð Þ � 10�6=K:

(4)

2.1.2. Face sheets

In this study, the face sheets (top face-sheet and bottom
face-sheet) is an FG reinforced by nanocarbon tubes with
the purpose of increasing the structural strength, called FG-
CNTRC material. Currently, FG-CNTRC material is divided
into five categories namely FG-O, FG-V, FG-X, UD and
FG-A based on the distribution of nanotubes according to
the thickness as shown in Figure 3. The distribution of
nanocarbon tubes in the FG material is shown in Figure 4
and the volume change is shown in the equation below [39]:

FG-AV: top face-sheet is made by the FG-V type carbon
nanotube-reinforced composite and bottom face-sheet is
made by FG-A type carbon nanotube reinforced composite

VCNTðzÞ ¼

� z � h1
h0 � h1

�
2V�

CNT bottom face

0 middleface� h2 � z
h2 � h3

�
2V�

CNT topface

,

8>>>><
>>>>:

VmðzÞ ¼ 1� VCNTðzÞ:
FG-OO: both face sheets are made by FG-O type carbon

nanotube-reinforced composite

Figure 1. (a) PSP with three layers: FG-CNTRC bottom face sheet, core layers and top face sheet. (b) PSP resting on elastic foundations is placed on a space coordin-
ate system ðx, y, zÞ:
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VCNTðzÞ ¼
2

�
1�

���� h0 þ h1 � 2z
h0 � h1

����
�
V�
CNT bottom face

0 middle face

2

�
1�

���� h3 þ h2 � 2z
h2 � h3

����
�
V�
CNT topface

,

8>>>>><
>>>>>:

VmðzÞ ¼ 1� VCNTðzÞ:

FG-XX: both face sheets is made by FG-X type carbon
nanotube -reinforced composite

VCNTðzÞ ¼
2ðj h0 þ h1 � 2z

h0 � h1
jÞV�

CNT bottom face

0 middle face

2ðj h2 þ h3 � 2z
h2 � h3

jÞV�
CNT topface

,

8>>>><
>>>>:

VmðzÞ ¼ 1� VCNTðzÞ:

(5)

with

V�
CNT ¼ wCNT

� qCNT
qm

wCNT þ wCNT þ qCNT=qmð Þ : (6)

in which wCNT is the mass fraction of CNTs, qCNT is the
density of CNTs, qm is the density of matrix.

According to Refs. [6–11], the properties of the FG-
CNTRC material as Young’s modulus and shear modulus
dependent on Young’s and shear modulus of the CNT

ECNT11 , ECNT11 ,GCNT
12 , mechanical properties of the matrix

Em,Gm, the volume fractions of the CNT VCNT and the vol-
ume matrix Vm and the CNT efficiency parameters giði ¼
1, 3Þ: It is determined as:

g2=E22 ¼ VCNT=E
CNT
22 þ Vm=Em,

E11 ¼ g1VCNTE
CNT
11 þ VmEm,

g3=G12 ¼ VCNT=G
CNT
12 þ Vm=Gm:

(7)

Thematerial properties of thematrix are determined as [6–11]:

�m ¼ 0:34,Em ¼ ð3:52� 0:0034TÞGPa,
am ¼ 45 1þ 0:0005DTð Þ � 10�6=K:

(8)

with T ¼ T0 þ DT, DT is the temperature increment in the
environment and T0 ¼ 300K (room temperature).

For the carbon nanotubes, the material properties of
(10,10) SWCNTs as Elastic modulus ECNT11 ECNT22 , Shear
modulus GCNT

12 and aCNT11 , aCNT22 thermal expansion coeffi-
cients are obtained with temperature change. According to
Shen and Xiang [9], these properties at five certain tempera-
ture levels, i.e. T ¼ 300, 400, 500, 700, 1000 are shown in
Table 1 with h ¼ 0:067m and �CNT12 ¼ 0:175:

By matching the properties of FG-CNTRC material as
the shear modulus G12 and Young’s modulus E11 and E22,
the CNT efficiency parameters giði ¼ 1, 3Þ used in Eq. (7)
are estimated. For three different volume fractions of CNTs,
these parameters are determined in Table 2 [6–11].

The effective Poisson’s ratio is defined as function on
temperature change and position [6–11]:

�12 ¼ V�
CNTv

CNT
12 þ Vm�m: (9)

where �CNT12 is the Poisson’s ratio of the CNT,�m is the
Poisson’s ratio of the matrix.

The thermal expansion coefficients in the longitudinal
and transverse directions of the CNTRCs are expressed by
Refs. [6–11]

a11 ¼ ECNT11 VCNTaCNT11 þ EmVmam
ECNT11 VCNT þ EmVm

,

a22 ¼ Vmað1þ �mÞm þ VCNTa
CNT
22 ð1þ �CNT12 Þ � �12a11:

(10)

with aCNT11 , aCNT22 is the thermal expansion coefficients of the
CNT, am is the thermal expansion coefficients of the matrix.

Figure 2. Different porosity distribution in porous cores.

Figure 3. Configurations of CNTRCs: FG-A, FG-V, FG-X, FG-O and UD.
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2.2. Basic equations

In order to analyze the mechanical behavior of PSP with
supported by elastic foundations under thermal load and
mechanical load, Reddy’s third-order shear deformation
plate theory is proposed to use.

2.2.1. Displacements and strains
The displacement of PSP in three direction are ðx, y, zÞ,
respectively. In z¼ 0 of PSP, /x,/y show angle of rotation
about y and x, respectively. The normal strains are shown
in Eq. (11) via displacements u, v, w and angle of rotation
/x,/y according to Ref. [17]

e0x
e0y

c0xy

2
664

3
775 ¼

@u
@x

þ 1
2

@w
@x

� �2

@v
@y

þ 1
2

@w
@y

� �2

@u
@y

þ @v
@x

þ @w
@x

@w
@y

2
666666664

3
777777775
,

c0xz
c0yz

" #
¼ �3c1

@w
@x

þ /x

@w
@y

þ /y

2
6664

3
7775:

(11)

According to von Karman nonlinear terms and Reddy’s
third order shear deformation plate theory (TSDT), the
strain–displacement relations are given as [17]

ex
ey
cxy

2
664

3
775 ¼

e0x
e0y

c0xy

2
664

3
775þ z

k1x
k1y
k1xy

2
664

3
775þ z3

k3x
k3y
k3xy

2
664

3
775,

cxz
cyz

" #
¼ c0xz

c0yz

" #
þ z2

k2xz
k2yz

" #
:

(12)

with

k1x
k1y
k1xy

2
664

3
775 ¼

@/x

@x
@/y

@y

@/x

@y
þ @/y

@y

2
666666664

3
777777775
,

k3x
k3y
k3xy

2
664

3
775 ¼ �c1

@/x

@x
þ @2w

@x2

@/y

@y
þ @2w

@y2

@/x

@y
þ @/y

@y
þ 2

@2w
@x@y

2
666666664

3
777777775
,

k2xz
k2yz

" #
¼ �3c1

@w
@x

þ /x

@w
@y

þ /y

2
6664

3
7775:

(13)

2.2.2. Motion equations and Hook’s law
The geometrical compatibility equation for an imperfect PSP
is written as [17]

e0x, yy � c0xy, xy þ e0y, xx ¼
@2w
@x@y

2

� w2
, xxw

2
, yy

þ 2w2
, xyw

�2
, xy �

@2w
@x2

@2w�

@y2
� w2

, yyw
�2
, xx:

(14)

in which imperfection function w�ðx, yÞ denotes initial small
imperfection of PSP.

According to the Hooke’s law, the relationships between
stress and strain for the porous core take into account the
effect of temperature are shown as [22]

Figure 4. The face sheets are reinforced with various types of CNTs.

Table 1. Temperature-dependent material properties for (10, 10) SWCNTs.

TðKÞ 300 400 500 700 1000

aCNT22 ð�10�6=KÞ 5.1682 5.0905 5.0189 4.8943 4.7532
aCNT11 ð�10�6=KÞ 3.4584 4.1496 4.5361 4.5361 4.2800
ECNT22 ðTPaÞ 7.0800 6.9814 6.9348 6.8641 6.6220
GCNT
12 ðTPaÞ 1.9445 1.9703 1.9643 1.9644 1.9451

ECNT11 ðTPaÞ 5.6466 5.5679 5.5308 5.4744 5.2814

Table 2. The CNT efficiency parameters for (10, 10).

V�
CNT

Rule of mixture

g1 g2 g3
0.12 0.137 1.022 0.715
0.17 0.142 1.626 1.138
0.28 0.141 1.585 1.109

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 5



rxx
ryy
rxy
rxz
ryz

2
6666664

3
7777775
C

¼

CC
11 CC

12 0 0 0

CC
12 CC

22 0 0 0

0 0 CC
66 0 0

0 0 0 CC
44 0

0 0 0 0 CC
55

2
66666664

3
77777775

exxð ÞC � a11DT

eyyð ÞC � a22DT

exyð ÞC
exzð ÞC
eyzð ÞC

2
66666664

3
77777775
:

(15a)

where

CC
11 ¼ CC

22 ¼
EC

1� vCð Þ2 ,C
C
12 ¼

vCEC

1� vCð Þ2 ,

CC
66 ¼ CC

44 ¼ CC
55 ¼

EC

2 1þ vCð Þ :

The relationship stress and deformation of an FG-
CNTRC with temperature-dependent properties are
expressed through Hooke’s law as [17]

rxx
ryy
rxy
rxz
ryz

2
66664

3
77775
f

¼

C11 C12 0 0 0
C12 C22 0 0 0
0 0 C66 0 0
0 0 0 C44 0
0 0 0 0 C55

2
66664

3
77775
f

exxð Þf � a11DT
eyyð Þf � a22DT

exyð Þf
exzð Þf
eyzð Þf

2
6666664

3
7777775
:

(15b)

where

C12 ¼ �21E11
1� �12�21

C11 ¼ E11
1� �12�21

,C44 ¼ G12,

C44 ¼ G23,C55 ¼ G13,C22 ¼ E22
1� �12�21

:

and we assume that G13 ¼ G12 and G23 ¼ 1:2G12:
The force and moment resultants of PSP are expressed by

Ni,Mi, Pið Þ ¼
ð�h2
2

�h2
2 �h3

rfi 1, z, z3ð Þdz þ
ðh22
�h2

2

rCi 1, z, z3ð Þdz

þ
ðh2

2 þh1

h2
2

rfi 1, z, z3ð Þdz, i ¼ x, y, xy,

Qi,Rið Þ ¼
ð�h2
2

�h2
2 �h3

rfizð1, z2Þdz þ
ðh22
�h2

2

rCizð1, z2Þdz

þ
ðh2

2 þh1

h2
2

rfizð1, z2Þdz, i ¼ x, y:

(16)

The nonlinear equations of motion for the PSP are [17]

@Nx

@x
þ @Nxy

@y
¼ K1

@2u
@t2

þ K2
@2/x

@t2
� K3

@3w
@t2@x

, (17a)

@Nxy

@x
þ @Ny

@y
¼ K�

1
@2v
@t2

þ K�
2

@2/y

@t2
� K�

3
@3w
@t2@y

, (17b)

@Qx

@x
þ @Qy

@y
� 3c1

@Rx

@x
þ @Ry

@y

� �
þ c1

@2Px
@x2

þ 2
@2Py
@x@y

þ @2Py
@y2

 !

þ Nx

Rx
þ Ny

Ry
þ qþ Nx

@2w
@x2

þ 2Nxy
@2w
@x@y

þ Ny
@2w
@y2

� k1wþ k2r2w

¼ K1
@2w
@t2

þ 2eK1
@w
@t

þ K3
@3u
@t2@x

þ K5
@3/x

@t2@x

þ K�
3

@3v
@t2@y

þ K�
5

@3/y

@t2@y
� c21K7

@4w
@t2@x2

þ @4w
@t2@y2

 !
,

(17c)

@Mx

@x
þ @Mxy

@y
� Qx þ 3c1Rx � c1

@Px
@x

þ @Pxy
@y

� �

¼ K2
@2u
@t2

þ K4
@2/x

@t2
� K5

@3w
@t2@x

,

(17d)

@Mxy

@x
þ @My

@y
� Qy þ 3c1Ry � c1

@Pxy
@x

þ @Py
@y

� �

¼ K�
2
@2v
@t2

þ K�
4

@2/y

@t2
� K�

5
@3w
@t2@y

:

(17e)

in which e is the viscous damping coefficient and

K1,K2,K3,K4,K5,K7ð Þ

¼
ð�hc=2

�hf�hc=2

qf ðzÞ 1, z, z2, z3, z4, z6ð Þdz

þ
ðhc=2

�hc=2

qcðzÞ 1, z, z2, z3, z4, z6ð Þdz

þ
ðhc=2þhf

hc=2

qf ðzÞ 1, z, z2, z3, z4, z6ð Þdz,

K1 ¼ K1, K2 ¼ K2 � c1K4, K3 ¼ c1K4,

K4 ¼ K3 � 2c1K5 þ c21K7, K5 ¼ c1K5 � c21K7:

(18)

Substitution of Eqs. (12) into Eqs. (15) and the result
into Eqs. (16) yields the constitutive relations as

Nx ¼ T11e
0
x þ T12e

0
y þH11k

1
x þH12k

1
y þ L11k

3
x þ L12k

3
y � U1,

Ny ¼ T12e
0
x þ T22e

0
y þH12k

1
x þH22k

1
y þ L12k

3
x þ L22k

3
y � U2,

Nxy ¼ T66c
0
xy þH66k

1
xy þ L66k

3
xy,

Mx ¼ H11e
0
x þ H12e

0
y þ K11k

1
x þ K12k

1
y þ Y11k

3
x þ Y12k

3
y � U3,
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My ¼ H12e
0
x þH22e

0
y þ K12k

1
x þ K22k

1
y þ Y12k

3
x þ Y22k

3
y � U4,

Mxy ¼ H66c
0
xy þ K66k

1
xy þ Y66k

3
xy,

Px ¼ L11e
0
x þ L12e

0
y þ Y11k

1
x þ Y12k

1
y þ O11k

3
x þ O12k

3
y � U5,

Py ¼ L12e
0
x þ L22e

0
y þ Y12k

1
x þ Y22k

1
y þ O12k

3
x þ O22k

3
y � U6,

Pxy ¼ L66c
0
xy þ Y66k

1
xy þ O66k

3
xy,

Qx ¼ T44c
0
xz þ K44k

2
xz,Qy ¼ T55c

0
yz þ K55k

2
yz,

Rx ¼ D44c
0
xz þ F44k

2
xz,Ry ¼ D55c

0
yz þ F55k

2
yz,

(19)

in which

ðTkl,Dkl, FklÞ ¼
ð�hc=2

�hf�hc=2

Cijð1, z2, z4Þdz þ
ðhc=2

�hc=2

Cijð1, z2, z4Þdz

þ
ðhc=2þhf

hc=2

Cijð1, z2, z4Þdz, kl ¼ 44, 55,

Tij,Hij,Kij, Lij,Yij,Oij
� 	

¼
ð�hc=2

�hf�hc=2

Cijð1, z, z2, z3, z4, z6Þdz

þ
ðhc=2

�hc=2

Cijð1, z, z2, z3, z4, z6Þdz

þ
ðhc=2þhf

hc=2

Cijð1, z, z2, z3, z4, z6Þdz, ij ¼ 11, 12, 22, 66,

U1 ¼
ð�hc=2

�hf�hc=2

C11a11DTdz þ
ð�hc=2

�hf�hc=2

C12a22DTdz

þ
ðhc=2

�hc=2

C11a11DTdz þ
ðhc=2

�hc=2

C12a22DTdz

þ
ðhfþhc=2

hc=2

C11a11DTdz þ
ðhfþhc=2

hc=2

C12a22DTdz,

U2 ¼
ð�hc=2

�hf�hc=2

C12a11DTdz þ
ð�hc=2

�hf�hc=2

C22a22DTdz

þ
ðhc=2

�hc=2

C12a11DTdz þ
ðhc=2

�hc=2

C22a22DTdz

þ
ðhfþhc=2

hc=2

C12a11DTdz þ
ðhfþhc=2

hc=2

C22a22DTdz:

U3 ¼
ð�hc=2

�hf�hc=2

C11a11zDTdz þ
ð�hc=2

�hf�hc=2

C12a22zDTdz

þ
ðhc=2

�hc=2

C11a11zDTdz þ
ðhc=2

�hc=2

C12a22zDTdz

þ
ðhfþhc=2

hc=2

C11a11zDTdz þ
ðhfþhc=2

hc=2

C12a22zDTdz,

U4 ¼
ð�hc=2

�hf�hc=2

C12a11zDTdz þ
ð�hc=2

�hf�hc=2

C22a22zDTdz

þ
ðhc=2

�hc=2

C12a11zDTdz þ
ðhc=2

�hc=2

C22a22zDTdz

þ
ðhfþhc=2

hc=2

C12a11zDTdz þ
ðhfþhc=2

hc=2

C22a22zDTdz,

U5 ¼
ð�hc=2

�hf�hc=2

C11a11z
3DTdz þ

ð�hc=2

�hf�hc=2

C12a22z
3DTdz

þ
ðhc=2

�hc=2

C11a11z
3DTdz þ

ðhc=2
�hc=2

C12a22z
3DTdz

þ
ðhfþhc=2

hc=2

C11a11z
3DTdz þ

ðhfþhc=2

hc=2

C12a22z
3DTdz,

(20)

U6 ¼
ð�hc=2

�hf�hc=2

C12a11z
3DTdz þ

ð�hc=2

�hf�hc=2

C22a22z
3DTdz

þ
ðhc=2

�hc=2

C12a11z
3DTdz þ

ðhc=2
�hc=2

C22a22z
3DTdz

þ
ðhfþhc=2

hc=2

C12a11z
3DTdz þ

ðhfþhc=2

hc=2

C22a22z
3DTdz:

2.2.3. Conversion equation
The Airy’s stress function wðx, y, tÞ is defined as [22]

Nx ¼ w, yy,Ny ¼ w, xx,Nxy ¼ �w, xy: (21)

From the constitutive relations (20) with Eq. (21), one
can write:
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e0x ¼ K11w, xx � K12w, xx þ K13/x , xx þ K14/y , xx � c1K15ðw, xx þ /x , xxÞ
�c1K16ðw, y þ /y , yÞ þ K17U1 þ K18U2,

e0y ¼ K21w, xx � K12w, yy þ K23/x , x þ K24/y , y � c1K25ðw, xx þ /x , xÞ
�c1K26ðw, yy þ /y , yÞ þ K27U1 þ K28U2,

c0xy ¼ �K31w, xy þ K32ð/x , y þ /y , xÞ � c1K33ð2w, xy þ /x , y þ /y , xÞ:
(22)

with

D ¼ T11T22 � T2
12,K11 ¼

T22

D
,K12 ¼

T12

D
,

K13 ¼
H12T12 �H11T22

D
,

K14 ¼
H22T12 �H12T22

D
,K15 ¼

L12T12 � L11T22

D
,

K16 ¼
L22T12 � L12T22

D
,

K17 ¼
T22

D
,K18 ¼ �T12

D
,K21 ¼

T11

D
,

K23 ¼
H11T12 �H12T11

D
,K24 ¼

H12T12 � H22T11

D
,

K25 ¼
L11T12 � L12T11

D
,K26 ¼

L12T12 � L22T11

D
,

K27 ¼ �T12

D
,K28 ¼

T11

D
,

K31 ¼
1
T66

,K32 ¼ �H66

T66
,K33 ¼ � L66

T66
:

(23)

Imposing Eq. (21) into Eqs. (17a) and (17b) yields

@2u
@t2

¼ �K2

K1
/x, tt þ

K3

K1
w, ttx, (24a)

@2v
@t2

¼ �K�
2

K�
1

/y, tt þ
K�

3

K�
1

w, tty: (24b)

By substituting Eqs. (24a) and (24b) into Eqs. (17c)–(17e)
leads to

@Mx

@x
þ @Mxy

@y
� Qx þ 3c1Rx � c1

@Px
@x

þ @Pxy
@y

� �

¼ K�
3
@2/x

@t2
� K�

5
@3w
@t2@x

,

(25a)

@Qx

@x
þ @Qy

@y
� 3c1

@Rx

@x
þ @Ry

@y

� �

þ c1
@2Px
@x2

þ 2
@2Pxy
@x@y

þ @2Py
@y2

 !
þ w, yy

@2w
@x2

� 2w, xy
@2w
@x@y

þ w, xx
@2w
@y2

þ q� k1wþ k2r2w

¼ K1
@2w
@t2

þ 2eK1
@w
@t

þ K5
@3/x

@t2@x
þ K�

5

@3/y

@t2@y

þ K7
@4w

@t2@x2
þ K�

7
@4w

@t2@y2
,

(25b)

@Mxy

@x
þ @My

@y
� Qy þ 3c1Ry � c1

@Pxy
@x

þ @Py
@y

� �

¼ K�
3

@2/y

@t2
� K�

5
@3w
@t2@y

:

(25c)

in which

K3 ¼ K4 � K2

� 	2
=K1 ,K

�
3 ¼ K�

4 � K�
2

� �2
=K�

1 ,

K5 ¼ K5 � K2K3=K1 ,

K�
5 ¼ K�

5 � K�
2K

�
3=K

�
1 ,K7 ¼ K3

� 	2
=K1 � c21K7,

K�
7 ¼ K�

3

� �2
=K�

1 � c21K7

(26)

Inserting Eqs. (11), (12) into Eq. (19) and then into Eqs.
(25) gives

SA11ðwÞ þ SA12 /xð Þ þ SA13 /y
� 	þ SA14ðwÞ

þ SA w,wð Þ þ q ¼ K1w, tt þ 2eK1w, t

þ K5/x, ttx þ K�
5/y, tty þ K7w, ttxx þ K�

7w, ttyy,

SA21ðwÞ þ SA22 /xð Þ þ SA23 /y
� 	

þ SA24ðwÞ ¼ K3/x, tt � K5w, ttx,

SA31ðwÞ þ SA32 /xð Þ þ SA33 /y
� 	

þ SA34ðwÞ ¼ K�
3/y, tt � K�

5w, tty:
(27)

in which linear parameters SAijði ¼ 1, 3; j ¼ 1, 4Þ, SA and the
detail of coefficients TB1iði ¼ 1, 12Þ,TB2jðj ¼ 1, 8Þ,TB3kðk ¼
1, 8Þ are defined in Appendix A.

For an imperfect PSP, Eqs. (27) may be transformed to
the form as

SA11ðwÞ þ SA12 /xð Þ þ SA13 /y
� 	þ SA14ðwÞ

þ SA w,wð Þ þ SA�
11ðw�Þ þ SA�ðw�,wÞ

þ q ¼ K1w, tt þ 2eK1w, t þ K5/x, ttx

þ K�
5/y, tty þ K7w, ttxx þ K�

7w, ttyy,

SA21ðwÞ þ SA22 /xð Þ þ SA23 /y
� 	þ SA24ðwÞ

þ SA�
21ðw�Þ ¼ K3/x, tt � K5w, ttx,

SA31ðwÞ þ SA32 /xð Þ þ SA33 /y
� 	þ SA34ðwÞ

þ S�31ðw�Þ ¼ K�
3/y, tt � K�

5w, tty:

(28)

in which

SA�
11ðw�Þ ¼ TB11w

�
, xxþTB12w

�
, yy,

SA� w�,wð Þ ¼ w, yyw
�
, xx � 2w, xyw

�
, xy þ w, xxw

�
, yy,

SA�
21ðw�Þ ¼ TB21w

�
, x, SA

�
31ðw�Þ ¼ T31w

�
, y:

(29)

Introduction of Eqs. (22) into Eq. (14) gives the compati-
bility equation of the imperfect PSP as
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K21w, xxxx þ K11w, yyyy þ V1w, xxyy þ V2/x, xxx þ V3/x, xyy þ V4/y, yyy

þ V5/y, yxx � c1K25w, xxxx � c1K16w, yyyy þ J6w, xxyy

� @2w
@x@y

2

þ 2
@2w
@x@y

@2w�

@x@y
� @2w

@x2
@2w
@y2

� @2w
@x2

@2w�

@y2
� @2w

@y2
@2w�

@x2

 !
¼ 0:

(30)

where

V1 ¼ �2K12 þ K31,V2 ¼ �c1K25 þ K23,

V6 ¼ 2c1K33 � c1K15 � c1K26,

V4 ¼ �c1K16 þ K14,V5 ¼ c1K33 þ K24 � c1K26 � K32,

V3 ¼ c1K33 þ K13 � c1K15 � K32:

(31)

In order to research vibration and dynamic response of
imperfect PSP, nonlinear Eqs. (28) and (30) are used with
w,/x,/y and w are variables.

2.3. Nonlinear dynamic response

2.3.1. Boundary conditions
The four edges of imperfect PSP are assumed to be immov-
able and simply supported. Thus, the boundary conditions
are determined as [22]

/x x, y, tð Þ
w x, y, tð Þ
/y x, y, tð Þ

8>><
>>:

9>>=
>>; ¼

UxðtÞ 0 0

0 WðtÞ 0

0 0 UyðtÞ

2
64

3
75

�
cos kmx sin dny

sin kmx sin dny

sin kmx cos dny

8><
>:

9>=
>;:

(32)

in which km ¼ mp=a, dn ¼ np=b, and m, n are mode of the
buckling; Ux,Uy are amplitude of the angel of rotation;W is
amplitude of the defection. In this assumption, the initial
geometry imperfection w� is introduced, it is defined same
as form of deflection, i.e.

w� x, y, tð Þ ¼ W0 sin kmx sin dny: (33)

where W0 ¼ lh is amplitude of the small imperfect func-
tion, and 0 � l � 1 is imperfection parameter.

Replacing Eqs. (32), (33) into Eq. (30) and solving
obtained equation for stress functionwðx, y, tÞ leads to:

w x, y, tð Þ ¼ X1ðtÞ cos 2kmxþ X2ðtÞ cos 2dny
þ X3ðtÞ sin kmx sin dnyþ 1

2
Ny0x

2 þ 1
2
Nx0y

2:

(34)

with

X1 ¼ d2n
32I21k

2
m

WðW þ 2lhÞ,X2 ¼ k2m
32I11d

2
n

WðW þ 2lhÞ,

(35)

X3 ¼ F1W þ F2Ux þ F3Uy: (35)

and

F1 ¼ c1K25k
4
m þ c1K16d

4
n � V6k

2
md

2
n

P
,

F2 ¼ �ðV2k
3
m þ V3kmd

2
nÞ

P
, F3 ¼ �ðV4d

3
n þ V5k

2
mdnÞ

P
,

P ¼ K21k
4
m þ V1k

2
md

2
n þ K11d

4
n:

(36)

Replacing Eqs. (32–34) into Eq. (28) and then applying
Galerkin method to the resulting equation yields

sa11W þ sa12Ux þ sa13Uy þ sa14ðWþ lhÞUx þ sa15ðWþ lhÞUy

þ y1 � Nx0k
2
m � Ny0d

2
n

h i
ðW þ lhÞ þ y2WðW þ lhÞ

þ y3WðW þ 2lhÞ þ y4WðW þ lhÞðW þ 2lhÞ

þ y5q ¼ K0W, tt þ 2eK1W, t � kmK5
@2Ux

@t2
� dnK

�
5

@2Uy

@t2
,

sa21Wþ sa22Ux þ sa23Uy þ y6ðW þ lhÞ þ y7WðW þ 2lhÞ

¼ K3Ux, tt � kmK5
@2W
@t2

,

sa31Wþ sa32Ux þ sa33Uy þ y8ðW þ lhÞ þ y9WðW þ 2lhÞ

¼ K�
3Uy, tt � dnK

�
5
@2W
@t2

:

(37)

in which the detail of coefficients sa1iði ¼ 1, 5Þ, sajkðj ¼
2, 3, k ¼ 1, 3Þ, ymðm ¼ 1, 9Þ may be found in Appendix B.

2.3.2. Nonlinear vibration of PSP under thermal loadings
A simply supported PSP with immovable edges under ther-
mal loads are considered. The condition expressing the
immovability on the edges u ¼ 0 on x ¼ 0, a and v ¼ 0 on
y ¼ 0, b is fulfilled on the average sense as [22]

ðb
0

ða
0

@u
@x

dxdy ¼ 0,
ða
0

ðb
0

@v
@x

dydx ¼ 0: (38)

From Eqs. (11) and (22), one can obtain the following
expressions in which Eq. (21)

@u
@x

¼ K11
@2f
@y2

� K12
@2f
@x2

þ K13
@/x

@x
þ K14

@/y

@y
� c1K15

@2w
@x2

þ @/x

@x

� �

� c1K16
@2w
@y2

þ @/y

@y

 !
þ K17U1 þ K18U2 �

1
2

@w
@x

� �2

� @w
@x

@w�

@x
,

@v
@y

¼ K21
@2f
@x2

� K12
@2f
@y2

þ K23
@/x

@x
þ K24

@/y

@y
� c1K25

@2w
@x2

þ @/x

@x

� �

� c1K26
@2w
@y2

þ @/y

@y

 !
þ K27U1 þ K28U2 �

1
2

@w
@y

� �2

� @w
@y

@w�

@y
:

(39)

For to have Eq. (40), Eqs. (32–34) are used together with
Eq. (38), the obtained results into Eq. (38). We have

Ny0 ¼ f1W þ f4 Wþ 2lhð ÞWþ f2Ux þ f3Uy þ f5U1 þ f6U2,
Nx0 ¼ g1W þ g4 Wþ 2lhð ÞWþ g2Ux þ g3Uy þ g5U1 þ g6U2:

(40)

in which parameters fiði ¼ 1, 6Þ, giði ¼ 1, 6Þ are noted in
Appendix C.
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sa11W þ sa12Ux þ sa13Uy þ sa114ðWþ lhÞUx

þ sa115ðWþ lhÞUy þ y11ðW þ lhÞ
þ y12WðW þ lhÞ þ y3WðW þ 2lhÞ
þ y14WðW þ lhÞðW þ 2lhÞ

þ y5q ¼ K0
@2W
@t2

þ 2eK1
@W
@t

� kmK5
@2Ux

@t2
� dnK

�
5

@2Uy

@t2
,

sa21Wþ sa22Ux þ sa23Uy þ y6ðW þ lhÞ

þ y7WðW þ 2lhÞ ¼ K3
@2Ux

@t2
� kmK5

@2W
@t2

,

sa31Wþ sa32Ux þ sa33Uy þ y8ðW þ lhÞ þ y9WðW þ 2lhÞ

¼ K�
3

@2Uy

@t2
� dnK

�
5
@2W
@t2

:

(41)

In order to obtain Eq. (41), Eq. (40) is replaced into Eqs.
(37) and in which sa114, sa

1
15, y

1
1, y

1
2, y

1
4 are noted in

Appendix C.
Equation (41) is the basic equation governing of the non-

linear vibration for imperfect PSP supported by elastic foun-
dations in thermal environment. To solve this equation, the
fourth-order Runge–Kutta method is used.

2.3.3. Natural frequency
In the case of q ¼ 0, the natural frequencies of the perfect
can be determined by solving the following equation

sa11 þ y1
1
þ K0x2 sa12 � kmK5x

2 sa13 � dnK
�
5x

2

sa21 þ y6 � kmK5x
2 sa22 þ K3x

2 sa23

sa31 þ y8 � dnK
�
5x

2 sa32 sa33 þ K�
3x

2

�������
������� ¼ 0:

(42)

3. Results and discussion

After establishing Eqs. (41–42) for the dynamic response
and natural frequency of the PSP with the influence of geo-
metrical parameters, imperfection, elastic foundations, the
volume fraction of CNTs and type of porosity distribution.
The numerical results will be presented in this section. For
the face sheets, the nano carbon tubes are arranged in the
matrix, are made of poly (methyl methacrylate), mentioned
as PMMA; PmPV or Ti–6Al–4V. Based on [40], the material
properties of the three materials are shown in Table 3.

3.1. Validation of modeling

In order to increase the authenticity of this study, cross-
checking the results is considered as one of the important
parts. Table 4 shows the numerical results of this paper are
compared to the results of Wang [36] and Natarajan et al.

[35] based on the higher-order structural theory with varia-
bles value as core to face sheet thickness hc=hf and CNTs
volume fraction VCNT : It can be observed from Table 3 that
the discrepancy in the dimensionless frequencies in three
cases is not significant. In the case of comparison with
Wang and Shen [36], the largest difference is about 0.0808%
with hc=hf ¼ 4 and VCNT ¼ 0:17: In the case of comparison
with Natarajan et al. [35], the largest difference is about
0.1105% with hc=hf ¼ 4 and VCNT ¼ 0:28: Besides, Table 4
has remarkable value with hc=hf ¼ 6 and VCNT ¼ 0:17, the
dimensionless frequencies are not changed.

Next, with the effect of CNTs volume fraction, mode ðm, nÞ
and distribution of CNTs, the comparison of the non-dimen-
sionless frequencies with Shen and Wang [8] based on a higher-
order shear deformation plate theory and Zhu et al. [7] based on
the first-order shear deformation plate theory are tabulated in
Table 5. Generally, the nondimensionless frequencies are not too
different, it can explain due to used methods. Furthermore, the
nondimensionless frequencies will increase when the CNTs vol-
ume fraction, mode ðm, nÞ raise. Among two types: FG-O and
FG-X, the nondimensionless frequencies with FG-X give a higher
value than the non-dimensionless frequencies with FG-O.

According to the above comments and Tables 4 and 5;
we can see that the results of this paper are quite similar to
the existing results. Therefore, it demonstrates that the
approach, present method and the obtained results in this
research are reliable and accurate.

3.2. Natural frequency

The influence of distribution of CNTs, width to total thick-
ness ratio b=h and temperature changes on the natural fre-
quencies are presented in Table 6. The natural frequencies
of PSP will decrease when the temperature or ratiob=h raise.
In addition, FG-V will have the highest natural frequency in
three cases: FG-OO, FG-AV and FG-XX. In contrast, the
lowest natural frequency will be the case FG-OO.

The natural frequencies of PSP with the effect of porosity
distribution, length to weight ratio a=b and core to face
sheet thickness hc=hf are recognized in Table 6. It can be
seen that the ratio a=b raises results in natural frequencies
of PSP decrease. It is interesting that the type porosity dis-
tribution has the positive effect on the modelings.
Specifically, the porosity distribution is nonuniform symmet-
ric will give the natural frequencies value higher than the
remaining two porosity distribution types. Uniform distribu-
tion will obtain the lowest natural frequencies in three cases:
Uniform distribution, nonuniform symmetric porosity distri-
bution, nonuniform asymmetric porosity distribution.

Table 7 shows the influence of CNTs volume fraction
VCNT , the coefficient of porosity e0 and elastic foundations
on the natural frequencies of PSP. The natural frequencies
of modelings will raise when CNTs volume fraction VCNT ,

Table 3. The properties of material, is selected for the matrix.

Material E (GPa) qðkg=m3Þ v a=K

PmPV ð3:51� 0:0047TÞ 1150 0:3 45ð1þ 0:0005DTÞ � 10�6

PMMA ð3:52� 0:0034TÞ 1150 0:34 45ð1þ 0:0005DTÞ � 10�6

Ti–6Al–4V 122:56ð1� 0:004568TÞ 4429 0:29 7:5788ð6:638� 10�4T � 3:147� 10�6T2Þ

10 N. D. DAT ET AL.



the coefficient of porosity e0 or elastic foundations increase.
Elastic foundations are one remarkable point in Table 8
because elastic foundations have a significant influence on
the natural frequencies of PSP than CNTs volume fraction
VCNT , the coefficient of porosity e0: Especially, the natural
frequencies of modelings will raise about three times when
PSP is associated with Winkler foundation and Pasternak
foundations.

The influence of matrix material and mode ðm, nÞ on the
natural frequencies of PSP are depicted in Table 9. It is clear
that Ti–6Al–4V has the largest elastic modulus (Table 3)
because the matrix material Ti–6Al–4V will give the highest
natural frequencies value. Moreover, the face sheet FG-AV
has effect beneficial than FG-XX and FG-OO on the natural
frequencies. In contrast, in three types of face sheets, FG-
OO has the worst influence. The natural frequencies of PSP
also raise when mode ðm, nÞ increases.

3.3. Dynamic responses

3.3.1. The effect of volume fraction CNTs, porous distribu-
tion and material of matrix

A study on the influence of matrix materials are carried out
and remarkable results are shown in Figure 5. Three matrix
materials are considered as PMMA; PmPV or Ti–6Al–4V. It
can be seen that Ti–6Al–4V denotes positive influence on
the amplitude deflection–time curve of PSP because elastic
modulus of Ti–6Al–4V is the biggest. In this case, T¼ 0,
modulus of Ti–6Al–4V is 122.56GPA much bigger modulus
of PmPV and PMMA are 3.51 and 3.52GPA, respectively.

In order to consider the effect of CNT on the amplitude
deflection–time curve of PSP, we consider the effect of CNT
volume fractions with value as 0.12, 0.17 and 0.28 in
Figure 6. Under the same conditions, increasing of CNT vol-
ume fractions results in the amplitude deflection decreases.
It demonstrates that the volume fractions of CNT have an
important contribution in reducing the vibration of PSP.

The vibration of PSP with the effect of coefficient of por-
osity is shown in Figure 7. It indicates that when the coeffi-
cient of porosity increases results in the amplitude of
vibration increases. It demonstrates that materials with
many porous will not adversely affect the amount
of material.

The effect of porous distribution like uniform distribu-
tion, nonuniform distribution 1 (symmetric) and nonuni-
form distribution 2 (asymmetric) on the vibration of PSP
are recognized in Figure 8. The Figure 8 indicates that the
nondistribution has a positive influence and in nonuniform
distribution, the symmetric has a higher influence with
deflection reduces about 3.57% (it compared to the influence
of uniform distribution) while the effect of Asymmetric is
negligible. It can be seen that the amplitude deflection with
the influence of uniform distribution and asymmetric is
almost similar. Therefore, in the figures, this paper chose
the symmetric (nonuniform distribution 1) to the investigate
dynamic behavior of PSP with another factor.

3.3.2. The influence of geometrical parameter, viscous
damping and elastic foundations

In order to investigate the geometrical parameter of PSP on
the dynamic response. Figures 9 and 10 show the influence

Table 4. Comparison of the dimensionless frequencies ~X ¼ Xða2=hÞ ffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
for sandwich plates with CNTRC face sheets in thermal environ-
ments ða=b ¼ 1, b=h ¼ 20Þ:
hc=hf Source VCNT ¼ 0:12 VCNT ¼ 0:17 VCNT ¼ 0:28

4 Wang and Shen [36] 4.6845 5.0763 5.7131
Natarajan et al. [35] 4.6808 5.0697 5.7025
Present 4.6819 5.0722 5.7088

6 Wang and Shen [36] 4.9119 5.1905 5.6569
Natarajan et al. [35] 4.9111 5.1881 5.6524
Present 4.9103 5.1881 5.6544

8 Wang and Shen [35] 5.0775 5.2927 5.6588
Present 5.0764 5.2909 5.6571

Table 5. Comparison of the nondimensionless frequencies ~x ¼
Xða2=hÞ ffiffiffiffiffiffiffiffiffiffiffi

q0=E0
p

of CNTRC plates ða=b ¼ 1, b=h ¼ 50, T ¼ 300KÞ:
V�
CN Mode Source Shen and Wang [8] Zhu et al. [7] Present

0.11 ð1, 1Þ FG-O 14.138 14.302 14.264
FG-X 23.143 22.984 23.024

ð1, 2Þ FG-O 18.950 19.373 19.249
FG-X 27.263 26.784 26.718

0.14 ð1, 1Þ FG-O 15.667 15.801 15.796
FG-X 25.831 25.555 25.670

ð1, 2Þ FG-O 20.184 20.563 20.478
FG-X 29.879 29.192 29.196

0.17 ð1, 1Þ FG-O 17.351 17.544 17.506
FG-X 28.625 28.413 28.421

ð1, 2Þ FG-O 23.283 23.783 23.659
FG-X 34.034 33.434 33.293

Table 6. The natural frequencies of PSP with the effect of type distribution of
CNTs, weight to total thickness ratio b=h and thermal loadings.

DT Face sheet b=h ¼ 10 b=h ¼ 15 b=h ¼ 20

0 FG-OO 12091.6 8182.9 6170.3
FG-AV 12168.3 8234.9 6209.7
FG-XX 12096.2 8185.8 6172.5

50 FG-OO 11445.4 7322.1 5040.1
FG-AV 11525.7 7379.7 5087.8
FG-XX 11450.3 7325.4 5042.8

100 FG-OO 10709.7 6256.1 3404.5
FG-AV 10795.0 6323.1 3474.2
FG-XX 10714.8 6257.0 3408.4

Table 7. The influence of CNTs volume fraction VCNT , the coefficient of poros-
ity e0 and elastic foundations on the natural frequencies of PSP.

e0 ðk1, k2Þ VCNT ¼ 0:12 VCNT ¼ 0:17 VCNT ¼ 0:28

0 ð0, 0Þ 6199.7 6461.9 6909.1
ð0:1, 0Þ 6409.0 6662.7 7097.0
ð0:1, 0:02Þ 17362.0 17452.3 17612.0

0.2 ð0, 0Þ 6209.7 6487.9 6960.9
ð0:1, 0Þ 6432.3 6701.2 7159.8
ð0:1, 0:02Þ 17866.8 17959.9 18124.1

0.4 ð0, 0Þ 6250.5 6548.3 7052.3
ð0:1, 0Þ 6489.7 6776.8 7264.6
ð0:1, 0:02Þ 18517.2 18613.6 18783.3
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of the core to face sheet thickness ratio and imperfection
parameter, respectively. As can be seen, the amplitude of
deflection increases when increasing of hc=hf ratio from
Figure 9. It can be explained that reducing of the stiffness of
core is a consequence of the hc=hf ratio increases. In add-
ition, Figure 10 indicates that the initial imperfection param-
eter ascends leads to increase the vibration of PSP.

Figures 11 and 12 depict vibration of PSP with the influ-
ence of the width to total thickness ratio b=h and the length
to width ratio a=b, respectively. The dynamic behavior of
PSP increases when the ratio b=h and a=b increase.
Specifically, PSP with conditions VCNT ¼ 0:12, e0 ¼
0:2,DT ¼ 0, a=b ¼ 1, k1 ¼ k2 ¼ 0, hc=hf ¼ 8,W0 ¼ 0 and
review time t ¼ 0, 0:03½ �ðsÞ, the width to total thickness ratio
b=h increases two times (from 10 to 20) results in amplitude
of deflection increases approximately 14 times while the
length to width ratio a=b increases from 1 to 2 leads to
vibration of PSP raise about 300% (three times). It demon-
strates that the influence of ratio b=h bigger than the influ-
ence of ratio a=b:

In this research, PSP is associated with elastic foundations
and the effect of elastic foundations: Winkler foundation
and Pasternak foundation on the amplitude deflection–time
is depicted in Figures 13 and 14, respectively. In these fig-
ures, this paper considers elastic foundations ðk1, k2Þ with
mode value. It can be seen that the elastic foundations have
positive effect on the PSP. In other words, the dynamic
behavior of PSP is enhanced by elastic foundations. In add-
ition, the effect of Winkler foundation is lower than the
influence of Pasternak foundation. The Winkler change
from 0 to 0.3 GPa/m leads to reduce amplitude deflection

about 27.3% while the Pasternak change from 0 to
0.03GPa m leads to reduce amplitude deflection about 25
times. This can be explained by the relationship between
Pasternak foundation and deflection are nonlinear. In con-
trast, the relationship between Winkler foundation and
deflection is linear.

The vibration of PSP with the viscous damping is shown
in Figure 15. It indicates that the viscous damping increase
results in the amplitude of vibration decreases but the
change was not great.

3.3.3. The influence of mechanical loadings and ther-
mal loadings

Besides imperfection, geometrical parameters, elastic founda-
tions, porosity distribution, CNT volume fraction, the influ-
ence of mechanical loads on the vibration of PSP is shown
in Figure 16. The amplitude deflection ascends when the
mechanical loads are intensified. Figure 17 shows the influ-
ence of thermal loads on the vibration of PSP with VCNT ¼
0:12, e0 ¼ 0:2,DT ¼ 0, a=b ¼ 1,b=h ¼ 20, k1 ¼ k2 ¼ 0,hc=hf ¼
8,W0 ¼ 0: It can be seen that the thermal loads have a nega-
tive influence on the deflection of PSP. Increasing the tem-
perature makes deflection raises significantly from 2.5 to
10.2mm (about 3.08 times).

Table 8. The natural frequencies of PSP with the effect of porosity distribution, length to width ratio a=b and core to face sheet
thickness of hc=hf :

hc=hf a=b Nonuniform symmetric porosity Nonuniform asymmetric porosity Uniform porosity

4 1 5757.1 5667.6 5652.3
1.5 3683.0 3608.8 3595.7
2 3029.2 2961.1 2949.1

6 1 6017.4 5904.2 5884.4
1.5 4021.4 3931.7 3915.8
2 3375.6 3295.1 3280.8

8 1 6209.6 6082.1 6059.7
1.5 4240.8 4141.9 4124.5
2 3592.6 3504.7 3489.2

Table 9. The influence of matrix material and mode ðm, nÞ on the natural fre-
quencies of PSP.

ðm, nÞ Face sheet PmPV PMMA Ti–6Al–4V

ð1, 1Þ FG-OO 4711.1 4789.4 6170.4
FG-AV 4852.2 4932.8 6209.6
FG-XX 4722.1 4800.0 6172.5

ð1, 2Þ FG-OO 6634.9 6860.5 14183.4
FG-AV 6740.8 6946.7 14201.4
FG-XX 6643.3 6868.5 14184.4

ð2, 1Þ FG-OO 15168.3 15580.5 17101.2
FG-AV 15651.0 16149.0 17319.7
FG-XX 15230.2 15640.2 17114.1

ð2, 2Þ FG-OO 16137.0 16641.4 24183.1
FG-AV 16584.4 17160.4 24336.6
FG-XX 16195.4 16697.5 24192.4

Figure 5. The effect of matrix materials on the amplitude deflection–time curve
of PSP.
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Figure 6. The influence of CNT volume fraction on the amplitude deflection–-
time curve of PSP.

Figure 7. Vibration of PSP with change of coefficient of porosity.

Figure 8. Vibration of PSP with change of porous distribution.

Figure 9. The influence of core to face sheet thickness ratio on the vibration
of PSP.

Figure 10. Amplitude of deflection–time with effect of initial imperfec-
tion parameter.

Figure 11. Dynamic behavior of PSP with the influence of ratio b=h:
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Figure 12. Dynamic behavior of PSP with the influence of ratio a=b:

Figure 13. The influence of Winkler foundation on the dynamic response of PSP.

Figure 14. The influence of Pasternak foundation on the dynamic response
of PSP.

Figure 15. Vibration of PSP with the effect of the viscous damping.

Figure 16. Vibration of PSP with the effect of mechanical loads.

Figure 17. Vibration of PSP with the effect of thermal loads.
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4. Conclusions

Because of the outstanding properties of advanced materials,
the advanced materials are widely used in aerospace engin-
eering so mechanical load capacity and temperature resist-
ance of materials play an important role. In this paper, the
influence of CNTs, porosity, geometrical parameters, mech-
anical and thermal loads on the vibration and dynamic
response of the FG-CNTRC sandwich plate is investigated.

The plate is made by three layers in which the core layer
is porous FGM materials, bottom and top surfaces are FG-
CNTRC and the sandwich plate is resting on elastic founda-
tions. Based on Hamilton’s principle and analytical solutions
the motion equation is given. In order to determine the
results of dynamic analysis, the Reddy’s TSDT and Galerkin
method are used. Furthermore, the natural frequencies of
structural are obtained by using the fourth-order
Runge–Kutta method. The remarkable points can
observe as:

� The present approach, methodology and obtained results
are verified as reliable and accurate by comparing the
obtained results with the existing results.

� In nonuniform distribution, the symmetric has a higher
influence with deflection reduces about 3.57% (it com-
pared to the influence of uniform distribution) while the
effect of asymmetric is negligible.

� Ti–6Al– 4V denotes a positive influence on the ampli-
tude deflection–time curve of PSP because the elastic
modulus of Ti–6Al–4V is the biggest.

� The volume fractions of CNT have an important contri-
bution in reducing the vibration of PSP. The volume
fractions of CNT increase results in deflection of
PSP decrease.

� The amplitude of deflection increases when increasing of
hc=hf ratio and initial imperfection parameter ascends
leads to increase vibration of PSP.

� The width to total thickness ratio b=h increases two
times (from 10 to 20) results in amplitude of deflection
increase approximately 14 times while the length to
width ratio a=b increases from 1 to 2 leads to vibration
of PSP raise about 300% (three times).

� The Winkler parameters change from 0 to 0.3 GPa/m
leads to reduce amplitude deflection about 27.3% while
the Pasternak parameters change from 0 to 0.03GPa m
leads to reduce amplitude deflection about 25 times.

� When increasing the viscous damping results in the amp-
litude of vibration decreases.

� The amplitude deflection ascends when the mechanical
loads are intensified.

� Increasing temperature makes deflection raised signifi-
cantly from 2.5 to 10.2mm (about 3.08 times).
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SA14ðwÞ ¼ TB110
@4w
@x4

þ TB111
@4w

@x2@y2
þ TB112

@4w
@y4

,

SA w,wð Þ ¼ @2w
@y2

@2w
@x2

� 2
@2w
@x@y

@2w
@y2

þ @2w
@x2

@2w
@y2

,

SA21ðwÞ ¼ TB21
@w
@x

þ TB22
@3w
@x3

þ TB23
@3w
@x@y2

,

SA22 /xð Þ ¼ TB21/x þ TB24
@2/x

@x2
þ TB25

@2/x

@y2
,

SA23 /y
� 	 ¼ TB26

@2/y

@x@y
, SA24ðwÞ ¼ TB27

@3w
@x3

þ TB28
@3w
@x@y2

,

SA31ðwÞ ¼ TB31
@w
@y

þ TB32
@3w
@x2@y

þ TB33
@3w
@y3

, SA32 /xð Þ ¼ TB34
@2/x

@x@y
,

SA33 /y
� 	 ¼ TB31/y þ TB35

@2/y

@x2
þ TB36

@2/y

@y2
, SA34ðwÞ ¼ TB37

@3w
@x2@y

þ TB38
@3w
@y3

:

TB11 ¼ T44 � 6c1K44 þ 9c21Y44,TB12 ¼ T55 � 6c1K55 þ 9c21Y55,TB13 ¼ �c21ðL11K15 þ L12K25 þ O11Þ,
TB14 ¼ �c21ð4L66K33 þ 4O66 þ L11K16 þ L12K26 þ 2O12 þ L12K15 þ L22K25Þ,
TB15 ¼ �c21ðL12K16 þ L22K26 þ O22Þ,TB16 ¼ c1ðL11K13 � c1L11K15 þ Y11 � c1O11 þ L12K23 � c1L12K25Þ,
TB17 ¼ c1ð2L66K32 � 2c1L66K33 þ 2K66 � 2c1O66 þ c1L12K13 � c1L12K15 þ Y12 � c1O12 þ L22K23 � c1L22K25Þ,
TB18 ¼ c1 L12K14 � c1L12K16 þ L22K24 � c1L22K26 þ Y22 � c1O22ð Þ,
TB19 ¼ c1ð2L66K32 � 2c1L66K33 þ 2Y66 � 2c1O66 þ L11K14 � c1L11K16 þ L12K24 � c1L12K26 þ Y12 � c1O12Þ,
TB110 ¼ �c1ðL11K12 � L12K21Þ,TB112 ¼ c1ðL12K11 � L22K12Þ,
TB111 ¼ �c1ð2L66K31 � L11K11 þ 2L12K12 � L22K21Þ,

TB21 ¼ �T44 þ 6c1K44 � 9c21F44,TB22 ¼ �c1ðH11K15 þ Y11 þ H12K25 � c1L11K15 � c1O11 � c1L12K25Þ,
TB23 ¼ �c1ðH11K16 þ H12K26 þ Y12 þ 2H66K33 þ 2Y66 � 2c1L66K33 � 2c1O66 � c1L11K16 � c1L12K26 � c1O12Þ,
TB24 ¼ H11K13 � c1H11K15 þ K11 � c1Y11 þ H12K23 � c1H12K25 � c1H11K13 þ c21L11K15 � c1Y11 þ c21O11

� c1L12K23 þ c21L12K25,

TB25 ¼ H66K32 � c1H66K33 þ K66 � c1Y66 � c1L66K32 þ c21L66K33 � c1Y66 þ c21O66,

TB26 ¼ H11K14 � c1H11K16 þ H12K24 � c1H12K26 þ K12 � c1Y12 þ H66K32 � c1H66K33 þ K66 � c1Y66 � c1L66K32

þ c21L66IK33 � c1Y66 þ c21O66 � c1L11K14 þ c21L11K16 � c1L12K24 þ c21L12K26 � c1Y12 þ c21O12,

TB27 ¼ �H11K12 þH12K21 þ c1L11K12 � c1L12K21,

TB28 ¼ H11K11 � H12K12 � H66K31 � c1L11K11 þ c1L12K12 þ c1L66K31,

TB31 ¼ �T55 þ 6c1K55 � 9c21Y55,

TB32 ¼ �c1ð2H66K33 þ 2Y66 þ H12K15 þ Y12 þ H22K25 � 2c1L66K33 � 2c1O66 � c1L12K15 � c1O12 � c1L22K25Þ,
TB33 ¼ �c1ðH12K16 þ H22K26 þ Y22 � c1L12K16 � c1L22K26 � c1O22Þ,
TB34 ¼ H66K32 � c1H66K33 þ K66 � c1Y66 þ H12K13 � c1H12K15 þ K12 � c1Y12 þH22K23

� c1H22K25 � c1L66K32 þ c21L66K33 � c1Y66 þ c21O66 � c1L12K13 þ c21L12K15 � c1Y12 þ c21O12 � c1L22K23

þ c21L22K25,

TB35 ¼ H66K32 � c1H66K33 þ K66 � c1Y66 � c1L66K32 þ c21L66K33 � c1Y66 þ c21O66,

TB36 ¼ H12K14 � c1H12K16 þ H22K24 � c1H22K26 þ K22 � c1Y22 � c1L12K14 þ c21L12K16 � c1L22K24

þ c21L22K26 � c1Y22 þ c21O22,

TB37 ¼ �H66K31 � H12K12 þ H22K21 þ c1L66K31 þ c1L12K12 � c1L22K21,

TB38 ¼ H12K11 � H22K12 � c1L12K11 þ c1L22K12:
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Appendix B

sa11 ¼ �k1 � k2 k2m þ d2n
� 	þ TB13k

4
m þ TB14k

2
md

2
n þ TB15d

4
n þ TB110P1k

4
m þ TB111P1k

2
md

2
n þ TB112P1d

4
n,

sa12 ¼ �TB11km þ TB16k
3
m þ TB17kmd

2
n þ TB110P2k

4
m þ TB111P2k

2
md

2
n þ TB112P2d

4
n,

sa13 ¼ �TB12dn þ TB18d
3
n þ TB19k

2
mdn þ TB110P3k

4
m þ TB111P3k

2
md

2
n þ TB112P3d

4
n,

sa14 ¼ 32P2kmdn
3ab

, sa15 ¼ 32P3kmdn
3ab

, y1 ¼ �TB11k
2
m � TB12d

2
n, y2 ¼

32P1kmdn
3ab

,

y3 ¼ � 8TB110kmdn
3abK21

� 8TB112kmdn
3abK11

, y4 ¼ � k4m
16K11

� d4n
16K21

, y5 ¼ 16
mnp2

,

sa21 ¼ �k3mðTB22 þ P1TB27Þ � kmd
2
nðTB23 þ P1T28Þ,

sa22 ¼ TB21 � TB24k
2
m � TB25d

2
n � TB27P2k

3
m � TB28P2kmd

2
n,

sa23 ¼ �TB26kmdn � TB27P3k
3
m � TB28P3kmd

2
n, y6 ¼ TB21km, y7 ¼ 8TB27dn

3abK21
, sa31 ¼ �d3nðTB33 þ P1TB38Þ

� k2mdnðTB32 þ P1TB37Þ, sa32 ¼ �TB34kmdn � TB38P2d
3
n � K37P2k

2
mdn, sa33 ¼ TB31 � TB35k

2
m � TB36d

2
n

� TB38P3d
3
n � TB37P3k

2
mdn, y8 ¼ TB31dn, y9 ¼ 8TB38km

3abK11
:

Appendix C

g1 ¼ K21a1 þ K12a4ð Þ
ab K12

2 � K11K21ð Þ
4

kmdn
, g4 ¼ � 1

8
K21k

2
m þ K12dn2

� 	
K12

2 � K11K21ð Þ , g2 ¼ K21a2 þ K12a5ð Þ
ab K12

2 � K11K21ð Þ
4

kmdn
,

g3 ¼ K21a3 þ K12a6ð Þ
ab K12

2 � K11K21ð Þ
4

kmdn
, g5 ¼ K17K21 þ K27K12ð Þ

K12
2 � K11K21ð Þ , g6 ¼ K18K21 þ K28K12ð Þ

K12
2 � K11K21ð Þ

f1 ¼ a1K12 þ K11a4ð Þ
ab K12

2 � K11K21ð Þ
4

kmdn
, f4 ¼ � 1

8
k2mK12 þ K11dn2
� 	
K12

2 � K11K21ð Þ f2 ¼ a2K12 þ K11a5ð Þ
ab K12

2 � K11K21ð Þ
4

kmdn
,

f3 ¼ a3K12 þ K11a6ð Þ
ab K12

2 � K11K21ð Þ
4

kmdn
, f5 ¼ K17K12 þ K11K27ð Þ

K12
2 � K11K21ð Þ , f6 ¼ K18K12 þ K11K28ð Þ

K12
2 � K11K21ð Þ

a1 ¼ �K11dn
2P1 þ K12P1km

2 þ c1K15k
2
m þ c1K16d

2
n

� 	
, a2 ¼ �K13 þ c1K15ð Þkm þ K12P2km

2 � K11P2dn
2

� 	
a3 ¼ �K14 þ c1K16ð Þdn þ P3K12km

2 � K11P3dn
2

� 	
, a4 ¼ �P1K21km

2 þ dn
2P1K12 þ c1K26d

2
n þ c1K25k

2
m

� 	
a5 ¼ �K23 þ c1K25ð Þkm þ K12P2dn

2 � K21P2km
2

� 	
, a6 ¼ �K24 þ c1K26ð Þdn þ K12P3dn

2 � K21P3km
2

� 	

sa114 ¼ s1a4 � k2mg2 � d2nf2
� 	

, sa115 ¼ sa15 � k2mg3 � d2nf3
� 	

, y11 ¼
y1 � k2mg5 þ d2nf5

� 	
U1

� k2mg6 þ d2nf6
� 	

U2

" #

y12 ¼ y2 � k2mg1 � d2nf1
� 	

, y14 ¼ y4 � k2mg4 � d2nf4
� 	
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