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Abstract—In this paper, an economic model is proposed to

jointly optimize profits for participants in a heterogeneous IoT
wireless-powered backscatter communication network. In the
network under considerations, a power beacon and IoT devices
(with various communication types and energy constraints) are
assumed to belong to different service providers, i.e., energy ser-
vice provider (ESP) and IoT service provider (ISP), respectively.
To jointly maximize the utility for both service providers in terms
of energy efficiency and network throughput, a Stackelberg game
model is proposed to study the strategic interaction between the
ISP and ESP. In particular, the ISP first evaluates its benefits
from providing IoT services to its customers and then sends
its requested price together with the service time to the ESP.
Based on the request from the ISP, the ESP offers an optimized
transmission power that maximizes its utility while meeting
energy demands of the ISP. To study the Stackelberg equilibrium,
we first obtain a closed-form solution for the ESP and propose
a low-complexity iterative method based on block coordinate
descent (BCD) to address the non-convex optimization problem
for the ISP. Through simulation results, we show that our
approach can significantly improve the profits for both providers
compared with those of conventional transmission methods, e.g.,
bistatic backscatter and harvest-then-transmit communication
methods.

Index Terms—Stackelberg game, bistatic backscatter, low-
power communications, heterogeneous IoT networks.

I. INTRODUCTION

Emerging Internet of Things (IoT) converges various tech-
nologies to connect diverse smart devices to the Internet and
enables ubiquitous information/data collecting and sharing.
Over the last decade, with rapid development, IoT has found
its application in almost every corner of life, e.g., smart
city, home, agriculture, healthcare, and transportation [1].
To meet low-cost and lightweight requirements, IoT devices
are usually powered by batteries. However, regular battery
recharging/replacing for a massive number of such IoT devices
is ineffective because it is costly, inconvenient, and impractical
in some cases (e.g., biomedical implants) [2]. The emerging
wireless-powered backscatter communication (WPBC) can be
a great potential solution to tackle this problem [3]-[5].

A WPBC network integrates two well-known technolo-
gies seamlessly, which are Harvest-then-Transmit (HTT) [6]
and backscatter communications [7]. In a WPBC network, a
wireless-powered device (WPD) can perform either backscat-
ter communications (i.e., passive transmissions) or transmis-
sions using its radio frequency (RF) circuit (i.e., active trans-
missions) and the energy harvested from a power beacon (PB).

Most existing work on the WPBC optimizes time allo-
cation for devices to perform energy harvesting, active and

passive transmissions under the time-division multiplexing
(TDM) framework with the assumption of homogeneous IoT
devices [3]-[5]. In practice, various types of WPDs with
different hardware capabilities and configurations, e.g., per-
forming backscattering or HTT or both can co-exist. More-
over, a large number of IoT devices can belong to an IoT
service provider (ISP) who is required to pay for energy
to operate its service (e.g., a contractor that provides data
collecting/monitoring services for smart cities). In such a case,
the energy cost/negotiation between the ISP and an energy
service provider (ESP) should be taken into account while
optimizing the scheduling of IoT devices.

Our work in this paper aims to address the above by
studying the strategic interaction between the ISP and ESP (via
the PB) and its implication on optimizing the energy trading
and time scheduling for a heterogeneous WPBC (HWPBC)
network. Specifically, we use the Stackelberg game to capture
the strategic interaction between the PB and the IoT de-
vices [4]-[5]. Under such a game, the ISP that acts as the leader
can proactively select an energy service by sending its energy
request with a price and charging time. It is due to the fact
that an ISP has more than one option to select an ESP. Thus, it
takes the advantage to initiate the game. The ESP modeled as
the follower then finds the optimal transmission power which
can maximize its benefits while meeting requirements from
the ISP. A quadratic price model for energy trading [8] is
developed to optimize the profit of the ESP, i.e., the follower,
achieved by selling energy based on the requested price and
operation time of the ISP, i.e., the leader. The profit of the ISP
is the difference between the revenue from providing services
(i.e., collecting data) and the energy cost. The maximization
of the ISP’s profit is a non-convex problem with respect to
the requested price, and operation times of the PB and IoT
devices. To maximize this profit, we propose an iterative
algorithm developed based on the block coordinate descent
(BCD) method [9]. As a result, our proposed approach can
guarantee to always achieve the local Stackelberg equilibrium
(SE). Numerical results then verify the efficiency of the
proposed approach compared with other baseline methods (i.e.,
bistatic backscatter communication mode (BBCM) [10] and
HTT communication mode (HTTCM) [6]).

II. SYSTEM MODEL

A. Network Setting
As illustrated in Fig. 1(a), we consider the HWPBC consist-

ing of two service providers, i.e., the ISP and ESP. At the ISP,
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Fig. 1: (a) System model (b) Time frame for the IoT service.

we consider three types of low-cost IoT devices with dissimilar
hardware configurations that can support two functions: i.e.,
the BBCM and/or HTTCM. The first set of IoT devices
represented by A ∆

= {AWPDa|∀a = {1, . . . , A}} is active
wireless-powered IoT devices (AWPDs) that are equipped with
energy harvesting and wireless transmission circuits. With this
configuration, the AWPDs can operate in the HTTCM only. In
addition, we denote P∆

={PWPDp|∀p= {1, . . . , P}} to be the
set of passive wireless-powered IoT devices (PWPDs) that are
designed with a backscattering circuit to perform the BBCM
only. Finally, hybrid wireless-powered IoT devices (HWPDs)
belonging to the set H ∆

= {HWPDh|∀h = {1, . . . ,H}} are
equipped with all hardware components to support both afore-
mentioned operation modes. On the other hand, the ESP
utilizes a dedicated PB to supply energy for the IoT devices.

The IoT service is operated over two consecutive working
periods of the PB, i.e., emitting period β and sleeping period
(1−β) as shown in Fig. 1(b). For simplicity and efficiency
in time resource allocation for multiple IoT devices, the
TDM framework is adopted here to avoid collisions among
transmissions. We denote θ ∆

= (θ1, . . . , θp, . . . , θP)
T and τ ∆

=

(τ1, . . . , τh, . . . , τH)
T as the backscattering time vectors for

the PWPDs and HWPDs in the emitting period of the PB,
respectively. Similarly, ν ∆

= (ν1, . . . , νa, . . . , νA)
T and µ ∆

=
(µ1, . . . , µh, . . . , µH)

T are the transmission time vectors for
AWPDs and HWPDs in the idle period of the PB, respectively.
When the PB is in the emitting period, it transmits unmodu-
lated RF signals, and thus the IoT devices (i.e., PWPDs and
HWPDs) with the capability of backscattering can passively
transmit their data by leveraging such signals. Meanwhile, the
AWPDs and HWPDs equipped with energy harvesting circuits
can harvest energy for their active transmissions in the sleeping
period of the PB. Note that, an AWPDa can execute energy
harvesting in the entire emitting period (i.e., β), while the
harvesting time of an HWPDh is (β− τh) because it must
backscatter in the time slot τh. In the sleeping period of the PB,
the AWPDs and HWPDs can perform active transmissions to

deliver their data to the gateway based on the TDMA protocol.

B. Network Throughput Analysis
1) Emitting period of the PB: Assume that the achievable

backscatter rates (in bits/s) of the PWPDp and HWPDh are
Wp and Wh, respectively. The total throughput obtained by
backscatter communications in the emitting period of the PB
is Rbb=

∑P
p=1 γpWpθp+

∑H
h=1 γhWhτh, where γp and γh are

the backscattering efficiency coefficients [10] of the PWPDp
and HWPDh, respectively.

2) Sleeping period of the PB: As mentioned in the previous
subsection, only AWPDs and HWPDs are able to communicate
with the gateway in this period by using their RF transmission
circuits. The amount of harvested energy of the AWPDa and
HWPDh from the PB are calculated as follows:{

Ea = βPRa ,
Eh = (β − τh)PRh ,

(1)

where PRa = ϕaPS
GTGR

a λ
2

(4πda)2
and PRh = ϕhPS

GTGR
h λ

2

(4πdh)2
are the

received power at the AWPDa and HWPDh, respectively [11].
PS and GT are the transmission power and antenna gain of
the energy transmitter (i.e., the PB), respectively. {ϕa, ϕh}
and {GRa , GRh } are the harvesting efficiency coefficients and
antenna gains of the AWPDa and HWPDh, respectively. λ is
the wavelength of the RF signal, da and dh are the distances
from the PB to the AWPDa and HWPDh, respectively. We
consider the energy consumption by active transmissions of
the AWPDs and HWPDs as the dominant energy consumption
and ignore the energy consumed by electronic circuits. Hence,
all harvested energy of the AWPDs and HWPDs is utilized to
transmit data in the sleeping period of the PB, and the trans-
mission power of the AWPDa and HWPDh are P ta =Ea/νa
and P th=Eh/µh, respectively. Then, the total throughput Rst
achieved by active transmissions of the AWPDs and HWPDs
in the sleeping period of the PB is determined by:

Rst=

A∑
a=1

νaφaΩlog2

(
1+ρa

P ta
N0
a

)
+

H∑
h=1

µhφhΩlog2

(
1+ρh

P th
N0
h

)

=

A∑
a=1

νaκalog2

(
1+δa

βPS
νa

)
+

H∑
h=1

µhκhlog2

[
1+δh

(β−τh)PS
µh

]
,

(2)

where κa = φaΩ, κh = φhΩ, ηa = ρa/N
0
a , ηh = ρh/N

0
h ,

δa=ηaϕa
GTGR

a λ
2

(4πda)2
and δh=ηhϕh

GTGR
h λ

2

(4πdh)2
. {φa, φh} ∈ (0, 1)

are the transmission efficiency coefficients of the AWPDa
and HWPDh, respectively. Ω is the bandwidth, {ρa, ρh} and
{N0

a , N
0
h} are the channel gains and White noise of the

communication channels from the AWPDa and HWPDh to
the gateway, respectively.

Finally, the network throughput (Rsum) can be determined
as in (3) and modeled as the achieved profit of the ISP to
jointly maximize the benefits of both service providers.

Rsum(θ,ν, τ ,µ)= Rbb+Rst

=

P∑
p=1

γpWpθp+

A∑
a=1

νaκalog2

(
1+δa

βPS
νa

)

+

H∑
h=1

{
γhWhτh+µhκhlog2

[
1+δh

(β−τh)PS
µh

]}
.

(3)



III. JOINT ENERGY TRADING AND TIME SCHEDULING
BASED ON STACKELBERG GAME

A. Game Formulation
1) Leader payoff function: The achievable benefit of the

ISP is defined as follows:

UL(pl, β,ψ) = prRsum − plβPS , (4)

where pr is the benefit per bit transmitted by IoT devices, and
pl is the energy price paid by the ISP to the ESP. The leader
maximizes its utility function UL w.r.t. the energy price pl,
operation time β, and time scheduling ψ ∆

= (θ,ν, τ ,µ).
2) Follower utility function: In this game, the PB is the

follower and it optimizes its transmission power based on
the requested energy price and operation time from the ISP.
The utility function of the follower is determined based on its
profit obtained from the ISP and its cost incurred during the
operation time:

UF (PS) = β [ plPS − F (PS)] , (5)

where F (x) = amx
2 + bmx is a quadratic function which is

applied for the operation cost of the PB [8].

B. Solution to the Stackelberg Game
The definition of the Stackelberg equilibrium (SE) is stated

below.

Definition 1. The optimal solution (P ∗
S , p

∗
l , β

∗,ψ∗) is the SE
if the following conditions are satisfied [12]:{

UL(P ∗
S , p

∗
l , β

∗,ψ∗) ≥ UL(P ∗
S , pl, β,ψ) ,

UF (P ∗
S , p

∗
l , β

∗,ψ∗) ≥ UF (PS , p
∗
l , β

∗,ψ∗) .
(6)

We adopt the backward induction technique to obtain the
Stackelberg game solution. Firstly, given a strategy of the
leader (i.e., ISP), the follower (i.e., ESP) can obtain a unique
optimal closed-form solution P ∗

S = pl−bm
2am

since the follower’s
utility is a quadratic function. Then, given the optimal trans-
mission power P ∗

S of the ESP, the leader payoff function can
be rewritten in (7). Then, the maximum profit of the leader is
expressed as follows:

max
(pl,β,ψ)

UL(pl, β,ψ) , (8)

s.t. 0 ≤ PS ≤ PmaxS , (8a)

βPRa ≤ νaPmax
a , (8b)

(β − τh)PRh ≤ µhPmax
h , (8c)

Emina ≤ βPRa ≤ Emaxa , (8d)

Eminh ≤ (β − τh)PRh ≤ Emaxh , (8e)

0≤
∑P

p=1
θp+

∑H

h=1
τh≤β ≤ 1,∀θp,∀τh≥0, (8f)

0≤
∑A

a=1
νa+

∑H

h=1
µh≤1−β≤1,∀νa,∀µh≥0, (8g)

where PS = (pl−bm)
2am

, PRa = δa(pl−bm)
2ηaam

, PRh = δh(pl−bm)
2ηham

.
Firstly, the transmission power of the PB must satisfy the
FCC Rules [13] as shown in the constraint (8a). For the IoT
devices, the transmission power of AWPDs and HWPDs must
follow the constraints (8b)-(8c). Moreover, the total energy
harvested by the AWPDs and HWPDs must also satisfy the

constraints (8d)-(8e). Finally, the constraints (8f)-(8g) are time
constraints for IoT devices.

However, the problem (8) is a non-concave problem due to
its non-convex constraints (8d)-(8d). Note that the game with
non-concave utility-maximization problem is often referred to
as non-convex or non-concave game that is challenging. In
this case, one tends to relax the equilibrium concept to quasi-
equilibrium [14]-[16]. In our case, a quasi-SE (QSE) can be
defined as a solution of a variational inequality [17] equivalent-
problem obtained under the Karush–Kuhn–Tucker (K.K.T.)
optimality conditions of the non-cave problem. However, in
our work, we adopt the concept of local SE that is defined as
follows [18]-[19]:

Definition 2. Let χ ∆
= (pl, β,ψ) be the variable tuple of the

problem (8) and Sχ be the constraint set determined by the
constraints (8a)-(8f). A pair (P ∗

S , χ̂
∗) is a local SE of the

proposed Stackelberg game if there exists a neighborhood Ŝχ
around χ̂∗ so that for all χ ∈ Ŝχ ⊂ Sχ, we have:

UL (χ̂∗, P ∗
S) ≥ UL (χ, P ∗

S) . (9)

IV. ITERATIVE ALGORITHM TO FIND THE LOCAL
STACKELBERG EQUILIBRIUM

To address the non-convex optimization problem (8), we
propose an iterative algorithm exploiting the BCD technique to
divide the variable tuple χ into 3 different blocks of variables,
i.e., the energy price pl, the emitting time β, and the scheduling
times ψ. In particular, the algorithm starts by initializing an
initial solution {pl(0), β(0),ψ(0)}. The following three steps
are repeated until convergence: (i) optimize the energy price
pl

(n) from the last optimal output {p(n−1)
l , β(n−1),ψ(n−1)};

(ii) obtain the emitting time of the PB β(n) by keeping the
{pl(n),ψ(n−1)} fixed; (iii) find the optimal scheduling times
ψ(n) of the IoT devices with the fixed pl(n) and β(n). These
sub-problems are then proved to be convex and solved in
sequence at each loop.

A. Optimal Energy Price Offered for the PB
In this subsection, we first obtain the optimal requested

price pl based on the optimal solution from the previous step
{p(n−1)
l , β(n−1),ψ(n−1)}. Note that, the time constraints in

the problem (8) are eliminated because the time variables are
constant and set by the previous optimal vector ψ(n−1). Then,
the original optimization problem (8) can be transformed into:

max
pl

Gt,1(pl) = G̃t,1(pl) + C1, (10)

s.t. 0 ≤ pl − bm ≤ 2amP
max
S , (10a)

ct,1a,2 (pl − bm) ≤ ηaPmaxa , (10b)

ct,1h,4 (pl − bm) ≤ ηhPmaxh , (10c)

ηaE
min
a ≤ct,1a,2ν(n−1)

a (pl − bm)≤ηaEmaxa , (10d)

ηhE
min
h ≤ct,1h,4µ

(n−1)
h (pl − bm)≤ηhEmaxh , (10e)

where
G̃t,1(pl) =

A∑
a=1

ct,1a,1log2

[
1 + ct,1a,2 (pl − bm)

]
+

H∑
h=1

ct,1h,3log2

[
1+ct,1h,4 (pl−bm)

]
−ct,15 pl(pl−bm),

(11)



UL(pl, β,ψ)=pr

{
P∑
p=1

γpWpθp+

A∑
a=1

νaκalog2

[
1+δa

β(pl−bm)

2νaam

]
+

H∑
h=1

[
γhWhτh+µhκhlog2

(
1+δh

(β−τh)(pl−bm)

2µham

)]}
−plβ(pl−bm)

2am
. (7)

C1 =pr

(
P∑
p=1

γpWpθ
(n−1)
p +

H∑
h=1

γhWhτ
(n−1)
h

)
= const., (12)

ct,1a,1 =prν
(n−1)
a κa, c

t,1
a,2 = δaβ

(n−1)

2ν
(n−1)
a am

, ct,1h,3 = prµ
(n−1)
h κh,

ct,1h,4 =
δh

(
β(n−1)−τ(n−1)

h

)
2µ

(n−1)
h am

, and ct,15 = β(n−1)

2am
.

Lemma 1. The objective function Gt,1 is a concave function
w.r.t. pl satisfying the linear constraints in (10a)-(10e), and
the optimal solution for the single variable sub-problem (10)
can be obtained by line search methods.

Proof. The detailed proof is presented in [20].

B. Optimal Emitting Time of the PB

Similar to the sub-problem (10), the time constraints and
transmission power constraint of the PB are always satisfied
with the fixed {p(n)

l ,ψ(n−1)}, thus they can be totally ignored.
The optimal emitting time β of the PB in the n-th iteration
can be obtained by solving the following sub-problem:

max
β

Gt,2 (β) = G̃t,2 (β) + C1, (13)

s.t. 0 ≤ β ≤ 1, (13a)

ct,2a,2β ≤ ηaPmaxa , (13b)

ct,2h,4

(
β − τ (n−1)

h

)
≤ ηhPmaxh , (13c)

ηaE
min
a ≤ct,2a,2ν(n−1)

a β≤ηaEmaxa , (13d)

ηhE
min
h ≤ct,2h,4µ

(n−1)
h

(
β − τ (n−1)

h

)
≤ηhEmaxh , (13e)

where

G̃t,2 (β) =

A∑
a=1

ct,2a,1log2

(
1 + ct,2a,2β

)
+

H∑
h=1

ct,2h,3log2

[
1+ct,2h,4

(
β−τ (n−1)

h

)]
−ct,25 β,

(14)

ct,2a,1 =prν
(n−1)
a κa, c

t,2
a,2 =

δa
(
p
(n)
l −bm

)
2ν

(n−1)
a am

, ct,2h,3 =prµ
(n−1)
h κh,

ct,2h,4 =
δh

(
p
(n)
l −bm

)
2µ

(n−1)
h am

, and ct,25 =
p
(n)
l

(
p
(n)
l −bm

)
2am

.

Lemma 2. The objective function Gt,2 is a concave function
w.r.t. β satisfying the linear constraints in (13a)-(13e), and the
optimal solution for the single variable sub-problem (13) can
be obtained by line search methods.

Proof. The detailed proof is presented in [20].

C. Optimal Time Resource Allocation
In this subsection, we investigate the scheduling times ψ(n)

based on the given {p(n)
l , β(n)}. The original optimization

problem (8) is simplified into:

max
ψ

Gt,3 (ψ) = G̃t,3 (ψ)− C2, (15)

s.t. ct,3a,1 ≤ ηaνaPmaxa , (15a)

ct,3h,2 − c
t,3
h,3τh ≤ ηhµhPmaxh , (15b)

ηhE
min
h ≤ ct,3h,2 − c

t,3
h,3τh ≤ ηhEmaxh , (15c)

0≤
∑P

p=1
θp+

∑H

h=1
τh≤β(n),∀θp,∀τh≥0, (15d)

0≤
∑A

a=1
νa+

∑H

h=1
µh≤1−β(n),∀νa,∀µh≥0, (15e)

where
G̃t,3(ψ) = pr

{
P∑
p=1

γpWpθp+

A∑
a=1

νaκalog2

(
1 +

ct,3a,1
νa

)

+

H∑
h=1

[
γhWhτh+µhκhlog2

(
1+

ct,3h,2−τhc
t,3
h,3

µh

)]}
,

(16)

C2 =
p

(n)
l β(n)

(
p

(n)
l − bm

)
2am

= const., (17)

ct,3a,1 =
δaβ

(n)
(
p
(n)
l −bm

)
2am

, ct,3h,2 =
δhβ

(n)
(
p
(n)
l −bm

)
2am

, and ct,3h,3 =
δh

(
p
(n)
l −bm

)
2am

.
Note that, the energy constraints for AWPDs are removed
because they always be satisfied with the fixed {p(n)

l , β(n)}.
To obtain the optimal solution for the sub-problem (15), we
have the following Lemma 3.

Lemma 3. The objective function Gt,3 is a concave function
w.r.t. ψ satisfying the linear constraints in (15a)-(15e), and
the optimal solution for the sub-problem (15) can be obtained
by the interior-point method.

Proof. The detailed proof is presented in [20].

Then, the proposed iterative algorithm is summarized in the
Algorithm 1. Its convergence is provided in the following
Theorem.

Theorem 1. The Algorithm 1 is guaranteed to converge to the
local optimal solution of the ISP’s maximization problem.

Proof. The detailed proof is presented in [20].

Finally, a local SE of the proposed Stackelberg game can
be obtained, formally stated in the following Theorem.

Theorem 2. A local SE (P ∗
S , χ̂

∗) obtained by the closed-form
solution of the ESP’s maximization problem and the Theorem 1
satisfies the Definition 2.

Proof. From the Theorem 1, we have the output χ̂∗ of the
Algorithm 1 is a locally optimal solution of the problem (8).
It means that UL(χ̂∗, P ∗

S)≥UL(χ, P ∗
S) in the neighborhood



Algorithm 1 The iterative algorithm to solve the non-convex
optimization problem in (8).

1: Input: The previous output {pl(n−1), β(n−1),ψ(n−1)}.
2: Initialize: n = 1, {pl(0), β(0),ψ(0)}, tolerance ξ > 0.
3: Compute: the leader’s utility UL

(
pl

(0), β(0),ψ(0)
)
.

4: Repeat:
5: Obtain pl(n) from {pl(n−1), β(n−1),ψ(n−1)} by solving (10);
6: Derive β(n) with fixed {pl(n),ψ(n−1)} by solving (13);
7: For given {pl(n),β(n)},ψ(n) is obtained by solving (15);
8: If:
9:

∣∣UL(pl(n), β(n),ψ(n)
)
−UL

(
pl

(n−1), β(n−1),ψ(n−1)
)∣∣<ξ;

10: Then:
11: Set {p̂∗l, β̂∗, ψ̂∗} = {pl(n), β(n),ψ(n)} and terminate.
12: Otherwise:
13: Update n← n+ 1 and continue.
14: Output: The optimal solution χ̂∗ = {p̂∗l , β̂∗, ψ̂∗}.

of χ̂∗. Thus, the pair (P ∗
S , χ̂

∗) is a local SE of the proposed
Stackelberg game that satisfying the Definition 2.

V. NUMERICAL RESULTS

In this section, numerical simulations are provided to eval-
uate the performance of the proposed scheme which jointly
controls transmission power of the PB and schedules time
resources for the IoT devices. We consider the carrier fre-
quency of RF signals at 2.4 GHz. The bandwidth of the RF
signals and the antenna gain of the PB are 10 MHz and 6 dBi,
respectively. The IoT devices (i.e., AWPDs and HWPDs) have
the antenna gains of 6 dBi [21]. Unless otherwise specified,
the default backscatter rate of backscatter devices is set at
10 kpbs. In our setup, both the AWPDs and HWPDs have the
energy harvesting and data transmission efficiency coefficients
of ϕ = 0.6 and φ = 0.5, respectively. For the benchmark, other
conventional methods, i.e., the BBCM, HTTCM, and TDMA
mechanism are utilized to compare with the proposed scheme.
It is worth noting that, all IoT devices are allocated with
identical time resources in the TDMA mechanism. Besides,
the BBCM only requires the PB to transmit its RF signals in
the whole time-frame with the lower and fixed transmission
power (i.e., 13 dBm) [10].

A. Identical Number of Devices for each IoT Devices’ Set

We first evaluate the performance of the proposed scheme
under the setting that the number of devices in each IoT
devices’ type are equal, (i.e., N = 10). In Fig. 2, we show
the variation of the leader’s payoff (i.e., the ISP) as the
backscatter rate increases in the range of 5 kbps to 50 kbps.
In general, the utilities of the leader obtained by the proposed
scheme, BBCM, and TDMA increase as the backscatter rate
increases. Considering the backscatter rate under 45 kbps, the
proposed scheme attempts to schedule more time resources
for the IoT devices to transmit data actively, and thus the
total profit corresponding with Rst is higher than Rbb as
illustrated in Fig. 2. Nonetheless, for a higher backscatter
rate (i.e., more than 45 kbps), the benefit contributed by the
backscatter communications is increased, thus all IoT devices
with backscattering circuits are imposed on using the BBCM

only to achieve the better utility greedily. Note that, in such a
circumstance, the PB will transmit its signals at 13 dBm. This
result exposes a noticeable strategy for the ISP. By contrast,
due to the equal allocation of time resources among all IoT
device types in the TDMA mechanism, the leader’s payoff
increases linearly together with the backscatter rate.

The backscatter rate is now set by default (i.e., 10 kbps)
under different numbers of devices for all three IoT devices’
sets (i.e., N = {5, 7, 9}). Fig. 3 demonstrates the relation
between the emitting time of the PB and the energy price
offered by the ISP for backscattering signal and harvesting
energy. It can be seen that the offered price is maximum at
10 (price unit) when the emitting time of the PB is short (i.e.,
smaller than 0.25). The reason is that if the PB transmits its
signal in a short time, it must emit at high power to guarantee
that the AWPDs and HWPDs can harvest enough energy for
their operations in the idle period of the PB. When the emitting
time of the PB is long, the IoT devices only need a lower
transmission power from the PB to maximize its profit. For
N = 9, the offered price pl will be smaller than other cases
(i.e., N = {5, 7}) when the emitting time of PB is higher than
0.35. It is due to the fact that the more AWPDs and HWPDs,
the more profit achieved by them at the same emitting time. A
similar result can be obtained when the emitting time is higher
than 0.475, i.e., the offered price pl for the case of N = 7 is
smaller than the case of N = 5.

As shown in Fig. 4, the computing efficiency of the pro-
posed BCD method in the Algorithm 1 is investigated by
varying the number of devices for all three IoT devices’ sets
(i.e., N = {5, 7, 9}). The runtime of the proposed algorithm
increases according to the number of devices. For the case of
9 devices, it only takes a maximum of less than 6 seconds
and an average of less than 4 seconds to converge to the SE
point after 1000 tests. Whilst the average runtime in the cases
of N = 5 and N = 7 are 2.6 and 3.1 seconds, respectively.

B. Different Number of Devices for each IoT Devices’ Set

We then investigate the leader’s payoff of the proposed
scheme by altering the number of devices for one type from
2 to 20, while keeping these figures for other types fixed
at 10. As shown in Fig. 5, the proposed scheme achieves
the highest profit compared with the others in the first two
cases (Fig. 5(a), Fig. 5(b)) when the number of IoT devices is
higher than 6 for HWPDs, and 4 for AWPDs, respectively. The
reason is that when the numbers of HWPDs and AWPDs are
small, more time is allocated for PWPDs in the emitting period
which will boost the profit of the TDMA mechanism compared
to the proposed scheme. When these numbers increase, then
the proposed scheme can outperform the TDMA mechanism.
However, as the numbers of HWPDs and AWPDs are higher
than 10, there is no more profit added to the proposed scheme,
and HTTCM as shown in Fig. 5(a) and Fig. 5(b) because the
power constraints of IoT devices (i.e., AWPDs and HWPDs)
are violated. In addition, as illustrated in Fig. 5(c), the increase
in the number of PWPDs causes no impact on the profit of
the proposed scheme due to the low level of backscatter rate.
By contrast, due to sharing the time resources for PWPDs, the
profit of the TDMA mechanism reduces linearly.
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VI. SUMMARY

In this paper, we have studied the Stackelberg game to
maximize the profits of both service providers in heteroge-
neous IoT wireless-powered communication networks. Then,
the local Stackelberg equilibrium presented the proper price for
the energy service, the optimal emitting time of the PB, and the
optimal scheduling times for the IoT service has been obtained
via the closed-form and the proposed iterative algorithm that
exploits the BCD technique. Numerical analyses have shown
the fast convergence and computing efficiency of the proposed
iterative algorithm. Simulation results have shown that the
achievable profit of the proposed scheme always outperforms
other baseline methods.
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