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ABSTRACT In this paper, we present an experimental image quality assessment (IQA) method for image/
video patches with compression artifacts. Using the High Efficiency Video Coding (HEVC) standard, we cre-
ate a new database of image patches with compression artifacts. Then, we conduct a completed subjective
testing process to obtain the ‘ground truth’ quality scores for the mentioned database. Finally, we employ an
end-to-end learning method to estimate the IQA model for the patches with HEVC compression artifacts.
In such proposed method, a modified convolutional neural network (CNN) architecture is exploited for
feature extraction while an adaptive moment estimation optimizer solution is used to perform the training
process. Experimental results show that the proposed end-to-end IQA method significantly outperforms the
relevant IQA benchmarks, especially when the compression artifacts are strongly realized in image/video
patches. The proposed IQA method is expected to drive a new set of image/video compression solutions in
future image/video coding and transmissions.

INDEX TERMS Image quality assessment, coding distortion, image-patch quality assessment, compression

artifacts.

I. INTRODUCTION

Currently, image quality assessment (IQA) has been playing
a critical part in image and video communications. IQA is
a basic and important requirement in encoding images and
videos [1]. Generally, either subjective or objective methods
can be used to evaluate the quality of the image.

Subjective assessment methods are highly effective, but
they can be infeasible in conducting the assessment in real
time and on large scale. It requires the engagement of a
number of human viewers who will give their views on image/
video quality under a variety of test conditions. Thus, it is
necessary that testing conditions be closely monitored, with
careful selection of observers and processing of the findings
to ensure their consistency and statistical significance. Con-
sequently, they are costly and time consuming.

Unlike the subjective method, objective quality assess-
ment adopts criteria that attempt to imitate the ability to
perceive images via the human visual system (HVS). In some
conventional methods, the absolute or squared difference
between distorted images and their original ones is utilized.
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The traditional methods of image compression mainly use
the quality metrics based on signal-fidelity, which poorly
correlate with the quality perceived by humans, such as MAE
(mean absolute error), MSE (mean square error), PSNR (peak
SNR) and their inheritances [2]. While these metrics have
a lot of positive features, e.g. clear physical meaning and
high calculation efficiency, they create adverse impact on
the efficiency of compression as they fail to exclude image
visual redundancies which are inconsistent with human visual
perception.

A number of perceptual quality metrics have been intro-
duced in recent years to obtain measures more consistent
with human visual perception. One class of these algorithms
including SSIM [3], FSIM [4], RFSIM [5] with an applica-
tion of handcrafted features that supposedly capture relevant
factors affecting to image quality. Although they are widely
accepted and applied, the accuracy with which they reproduce
human perception of image quality need to be enhanced.

Another set of methods adopt convolutional neural net-
work (CNN) based approaches [6], [7]. In this approach,
some features are extracted from the original image’s pix-
els, which are automatically learnt and embedded within
the network. Some available image quality databases have
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TABLE 1. Comparison characteristics of subjective Image Databases.

Database Year Type Data Scores SRC LOD NOD Subjects Ratings Resolution Method PSNR
CSIQ [11] 2010  Full DMOS+o 866 30 5 6 25 5-7  512x512 Custom
IVC() [12, 20] 2005  Full DMOS+o 185 10 5 3 15 15 512x512 DSIS 65%
IVC-3D [21] 2008  Full DMOS 90 6 5 3 19 19 512x512 SAMVIQ
IVC-Art [22, 23] 2009  Full Raw 120 8 5 3 19 19 512x512 DSIS
LIVE(D) [8, 17] 2006  Full DMOS+o 779 29 7-8 5 20-29  768x512 ACR 88%
MICT [13] 2008  Full Raw 196 14 5 2 16 16 768x512 ACR 61%
MMSP-3D(I) [24] 2010  Full MOS+o 54 9 4 1 27 27  768x512 ACR 62%
TID2008 [9, 25] 2008  Full Raw 1700 25 4 17 838 17 512x384 ACR 55%
TID2013 [10, 18] 2013 Full MOS+o 3000 25 4 10 971 33 512x384 ACR
PDAP-HDDS [19] 2018  Full MOS 12000 250 4 24 38 30 FHD ACR 54%
HMII (Proposed) 2018 Patch MOS 40286 308 49 1 2189 15-20 HD,FHD DSIS 65-67%

Scores Number of testing images.

SRC Number of source (reference) images.

LOD Levels of distortions.

NOD Number of distortion types.

PSNR Approximate correlation between PSNR and MOS.

been introduced in literature, including LIVE Image [8],
TID2008 [9], TID2013 [10], CSIQ [I11], IVC [12] and
MICT [13]. Generally, these methods estimate the quality
of the image patches and propose a most apparent artifact
IQA metric which only well perform with desirable results
on some typical image/video databases. Their architecture
is more suitable for evaluating the quality of block size
image in rate-distortion optimization manner which share a
block-based common hybrid coding framework. However,
their IQA metrics which do not synthesize the video compres-
sion features fail to compute the quality of block size video
frame. Jin, in [14], has stated that there is no comprehensive
method which is exactly comparable to human perception
and can be equally well applied in different areas. There-
fore, a subjective rating database of image/video patches
with compression artifacts is necessary in constituting ground
truth needed for training, testing, and benchmarking in video
coding.

Based on these observations, we propose a large-scale
Image-Patch Quality Assessment database with video com-
pression distortion in this paper. State-of-the-art IQA meth-
ods on the proposed database are analysed and it can be
seen that IQA’s accuracy can be improved in predicting
image quality. Finally, we propose a full-reference (FR)
Image-Patch model to determine image patches’ quality
based on the CNN architecture.

In summary, this paper
contributions:

includes the following

1) A COMPRESSED IMAGE-PATCH DATABASE

To our best knowledge, this database is the first one to be con-
structed, serving as a benchmark for assessing compressed
image and the quality of video’s frame patch, and being bene-
ficial for image and video compression on the basis of human
perception. The existing databases with coarse-grained qual-
ity are inefficient to evaluate IQA algorithms especially
patch-based methods on images with fine-grained quality dif-
ferences. One of the problems in perceptual-based image and
video compression is to select the optimal coding mode for

215158

each coding block according to their rate-distortion. There-
fore, the proposed database can be helpful for researchers in
the field of image compression to select the most appropriate
IQA method to gain the perceptual based image optimization.

2) A DEEP IMAGE-PATCH NEURAL NETWORK DESIGN

We also investigate different FR methods to model the rela-
tionship between image patch and patch quality score. After
multiple experiments, Deep Image-Patch Quality Assessment
is proposed to address the problem of end-to-end optimiza-
tion. We use the adjusted concept of Siamese networks men-
tioned in tasks of [15], [16] to extract features from the
reference and distorted patches based on a deep convolution
neural network.

This paper is organized as follows: The related studies
on IQA databases and Deep Learning IQA Methods are
reviewed in Section II. Then, Image/video patches with
compression artifacts created and the proposed method are
described in Section III. Extensive experimental results
are presented in Section IV. Finally, conclusions are given
in Section V.

Il. RELATED WORKS

A. IQA DATABASES

A brief overview on test material and experimental details
of existing databases is presented in this part. As can be
seen from Table 1, experimental data are generated from
original images (6-30). Various distortions are added to these
images at different levels to form testing images whose
quality is assessed via subjective rating by a certain num-
ber of observers (usually from 15-30). The testing methods
frequently used are “Double stimulus categorical rating”
(DCIS) and “Single stimulus categorical rating” (e.g., Abso-
lute Category Rating (ACR). The assessment scores used
are differential mean opinion score (DMOS) or mean opin-
ion score (MOS) in combination with standard deviation.
Among those databases, LIVE [8], CSIQ [11], TID2008 [9],
TID2013 [10] are widely utilized in bench-marking, testing
and training of IQA. Releasing 2 of LIVE [8], [17] consists
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of 779 testing images generated from 29 original images
which are added with five different distortions. They are
JPEG, JPEG2000, white noise, Gaussian blur, and simulated
Rayleigh fading channel (JPEG2000 bitstream) of which each
comprises 7-8 levels. As for Categorical Subjective Image
Quality (CSIQ) Database [11], there are 30 original images,
of which each is processed with the application of six types
of distortions including JPEG compression, JPEG-2000 com-
pression, global contrast decrements, additive pink Gaussian
noise, and Gaussian blurring. For each type of disortion,
four to five different levels are used. The result is that
866 distorted images are produced. With The Tampere Image
Database (TID 2008), 1700 distorted images are produced
from 25 reference images using 17 disortion types at 4 lev-
els of degradation for each distortion. TID 2013 [10], [18]
extended from TID 2008 comprises 3000 distorted images
by using 24 distortions instead of 17. Currently this image
quality database has the largest number of both testing
images and subjects in the public domain. Liu et al. [19]
recently introduced the PDAP-HDDS image quality database
including 2,000 high-definition resolution test images. This
database consists of a total of 12000 MOS calculated from
360,000 opinions subject rating by 38 observers. Due to the
fact that limited distortion levels (4-8 ones) covering the
whole quality range from “Bad” to ““Excellent” are available
in most of the existing IQA databases, it is obviously different
and easy to rank the images in adjacent distortion levels.
These databases contain some distortion types that do not
occur during modern image or video compression.

All existing databases evaluate subjective quality for full
image while the quality in its regions is far different. Because
of compressing or adding noise to the image, each region
has its own characteristics resulting in annoying artifacts
with which HVS has different sensitivity. Moreover, there
is a minimum visibility threshold which no change can be
perceived below [26]. Figure 1 shows that distortions between
the houses and the sky regions (1) and the edge region (5)
are easily observable. However, those on flat region (2) and
textural regions (3, 4) are less noticeable. In addition, HVS
has the ability to effortlessly identify salient objects even
in a complex scene by exploiting the inherent visual atten-
tion mechanism. As stated in [27], [28], many physiological
experiments have proved that only the significant portion of
the scene projected onto the retina is thoroughly processed
by human brain for semantic understanding. Therefore, it is
inappropriate to take subjective rating of the whole image for
all areas in the image.

B. DEEP LEARNING IQA METHODS

In Deep learning IQA methods, a number of patches from
images are usually selected, then fed into a CNN model
depending on the distortion type and distortion level infor-
mation. Subsequently, the CNN model extracts features from
each selected patch and evaluates its quality score. Finally,
all scores of patches are weighted to obtain the quality of
the image. Bosse et al. [6] justrandomly selected patches and
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FIGURE 1. Example of distorted image.

acquired the image quality in two ways: simply averaging
and learned weights of the patches’ score. Li and Yue [29]
used the idea of visual saliency to calculate the weight of
each patch in an image and selected top weighting patches.
Kim and Lee [30] pre-trained a CNN model using numerous
patches with proxy quality scores provided by a full-reference
IQA model. Recently, Zhang et al. [31] proposed a deep
bilinear model for blind image quality assessment (BIQA)
that handled both synthetic and authentic distortions. Last
but not least, in [32] the authors proposed a multi-task
CNN to predict the type of distortions and image quality
from the last fully connected layer in the network. In sum-
mary, the afore-mentioned methods partially address the
patch-based training data shortage problem, but it is difficult
to extend them to ensure the subjectivity of original databases.
To overcome that weakness, Wu et al. [33] deployed a
new large-scale training dataset (including 80,000 labeled
images using advanced FR-IQA metric) to develop a novel
no-reference (NR) model for accessing the perceptual quality
of screen content pictures.

Generally, image quality assessments (IQAs) are divided
into three types, namely full-reference (FR), no-reference
(NR) and reduced-reference (RR). Full-reference (FR)
approaches can fully access reference images, but
no-reference (NR) approaches only use distorted images. The
majority of aforementioned deep learning based methods
are included in NR type with the exception of the method
proposed in [6] which belongs to FR IQA type. No-reference
approaches yield the good performance of cross test in the
training database, albeit showing poor results when being
tested in others [6], [31].

The SSIM [3] can be considered as the most popular
perceptual approach in FR IQA. It is determined by pool-
ing luminance similarity, contrast similarity and structural
similarity. The SSIM is not only developed into MS-SSIM
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TABLE 2. Testing sequences.

No Test sequence Resolution Frames SF SP | No Test sequence Resolution Frames SF SpP
1 Mobcal 1280 x 720 500 6 1200 | 21 Honey Bee 1920 x 1080 600 8 1600

2 Parkrun 1280 x 720 500 6 1200 | 22 Jockey 1920 x 1080 600 8 1600

3 Fhields 1280 x 720 500 6 1200 | 23 Old town cross 1920 x 1080 500 8 1600

4 Stockholm 1280 x 720 500 8 1600 | 24  Park joy 1920 x 1080 500 8 1600

5 Vidyo 1 1280 x 720 600 8 1600 | 25  Pedestrian area 1920 x 1080 375 6 1200

6 Vidyo 3 1280 x 720 600 8 1600 | 26  Ready Steady Go 1920 x 1080 600 8 1600

7 Vidyo 4 1280 x 720 600 8 1600 | 27  Red kayak 1920 x 1080 600 8 1600

8 Four People 1280 x 720 600 8 1600 | 28  River bed 1920 x 1080 250 5 1000

9 Johnny 1280 x 720 600 8 1600 | 29  Rush hour 1920 x 1080 500 6 1200

10 Kristen And Sara 1280 x 720 600 8 1600 | 30  Shake and Dry 1920 x 1080 300 5 1000
11 Aspen 1920 x 1080 570 8§ 1600 | 31 Sintel trailer 1920 x 1080 1250 10 2000
12 Basketball Drive 1920 x 1080 500 6 1200 | 32  Snow mountain 1920 x 1080 600 8 1600
13 Beauty 1920 x 1080 600 8 1600 | 33  Speed bag 1920 x 1080 600 8 1600
14  BigBuck Bunny 1920 x 1080 14315 14 2800 | 34  Station 2 1920 x 1080 313 5 1000
15  Blue sky 1920 x 1080 217 5 1000 | 35  Sunflower 1920 x 1080 500 6 1200
16 Bosphorus 1920 x 1080 600 8 1600 | 36  Tractor 1920 x 1080 690 9 1800
17 Controlled burn 1920 x 1080 570 8 1600 | 37  West wind easy 1920 x 1080 600 8 1600
18  Crowd run 1920 x 1080 500 8 1600 | 38  YachtRide 1920 x 1080 600 8 1600
19 Dinner 1920 x 1080 950 10 2000 | 39  Ducks take off 1920 x 1080 500 6 1200
20  Elephants Dream 1920 x 1080 15691 15 3000 | 40 Intotree 1920 x 1080 500 6 1200
SF: Selected Frames All 308 61600

SP: Selected Patches

metric [34], but also be applied for FR IQA, such as the
FSIM [4], the SRSIM [35] or RFSIM [5] obtaining promis-
ing results. However, testing conducted in [6] indicates
that WaDIQaM-FR method shows better performance com-
pared with the above-mentioned methods. Other FR 1QAs
approaches as in [36] use an adaptive representation of
local patch structure yielding rewarding results, but they can
only be applied to certain distortion types. Therefore, this
study is only intended for comparison of performance of
full-reference (FR IQA) approaches in [6].

In a recent work [37], we propose a quality assessment
approach database for image patch with the desire to create a
new perception-based metric to apply for each region. Then,
a coding distortion modelling method for local image per-
ception which is able to predict objective evaluation from the
perceptual point of local image content is presented. Experi-
mental results show that compressed image quality decreases
depending on the visual features of image. However, the test-
ing image database only has 600 samples, so it is not enough
to cover all features of human visual perception.

lIl. PROPOSED IMAGE PATCH QUALITY ASSESSMENT
Given the necessity of an efficient IQA method for
image/video patches with compression artifacts, we present
in this section a novel end-to-end IQA method. After dis-
cussing the characteristics of image/video patches with
compression artifacts, we introduce the architecture of the
proposed method. Finally, we present the feature engineering
and training optimization.

A. IMAGE/VIDEO PATCHES WITH COMPRESSION
ARTIFACTS

All available image quality benchmark databases are only
suitable for evaluating the quality of images as a whole
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and not able to investigate which part of the testing image
contributing to the testing results or to the score of a particular
patch of image. In this work, we set up an experimental
database to evaluate the quality that human perceive for each
image patch. The testing data are preprocessed to remove
noises and outliers.

1) GROUND TRUTH SCORE ACHIEVEMENT

The goal of our study is to create a testing image database
for local image perception. Due to the research orientation
for video coding, testing images are extracted from the video
test sequence and noise types are added to the original video
by H.265/HEVC compression before extracting. There are
40 original source videos of high-definition (1280 x 720)
and full high-definition (1920 x 1080) being compressed with
different quantization parameters (QPs) in range from 2 to 50.
For each video sequence, depending on the length of such
video, a different number of original frames are selected as
reference images, as summarized in Table 2. The reference
frames are selected evenly throughout the video sequence to
diversify the content. For each reference image, 200 pairs of
128 x 128 patches are randomly selected by position to crop
and by quantization parameters in a frame of the compressed
video which has the same index with the aforesaid reference
image. We also crop the center 64 x 64 patches from the
original pair 128 x 128 to evaluate in the experiments. Finally,
we obtain 246, 400 images: 61, 600 pairs of 64 x 64 patches
and 61,600 pairs of 128 x 128 patches. All patches are
annotated with their position.

2) TESTING METHODOLOGY

Observers may be experts or non-experts depending on spe-
cific requirements of the test. Studies have found that sys-
tematic differences may occur among different laboratories
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conducting similar tests [38]. One of the reasons for this is
that expert observers have different view in compare with
non-experts. Other factors may include gender, age, and occu-
pation. However, the majority of consumers in reality are
non-experts; hence, for the purpose of this study non-expert
observers are recruited. Before the final selection round, all
candidates have been checked to ensure that they possess
normal visual acuity (color vision included). In [38], it is rec-
ommended that observers should not be directly involved in
image quality evaluation and should not be experienced asses-
sors. In this study, more than 2000 people (2159- undergradu-
ates, 20-graduates, 3-researchers,7 -lecturers) are employed.

For the purpose of subject testing methodology, the Inter-
national Telecommunication Union set the ITU-R BT.500-11
standard. In this standard, there are several popular subjective
methodologies for testing such as ““Single stimulus categori-
cal rating”’, ““Double stimulus categorical rating”, ““Ordering
by force-choice pairwise comparison” and ‘‘Pairwise similar-
ity judgments”. Double stimulus categorical rating is chosen
in this test. In this method, both the testing and reference
images, which randomly appear, are viewed by observers for
a fixed period of time. After that, the observers are asked to
vote for the quality of the testing image in accordance with
the scale of five categories: “‘excellent”, “good”, ‘““fair”,
“poor” or “bad”. Prior to each session, the observers have
been instructed about assessment modes, assessment scale
and the procedures (reference image, grey, test image, voting
period).

Since the image quality assessment methods stated in [38]
are only suitable for assessing quality of image as a whole,
they cannot be directly applied for our testing experiments.
Therefore, we modify this image selection method into the
standard so that the users can focus and only assess the local
image patch instead of the whole image. Figure 3 represents
the created testing software in the experiment. Each pair
quality is assessed following the procedure of 2. The subjects
observe the original image within the time T1 at minimum 5Ss,
then click on the observing image patch to observe the com-
pressed image within the time T2. After watching at least
twice per image, observers are requested to score on the
scale of 5.

3) DATA PREPROCESSING

In our experiment, 2189 different subjects rate 61600 image
patch pairs of which each p™ is observed by Sy (up to 20)
subjects. The differential mean opinion score (DMOS) of
each patch pair is calculated by:

_ 1
p = S_ Zyp,39 (1)
4

where y, ; is the differential opinion score of a subjective
rating by subject s for patch pair p™. Let Y, denote the raw
data and each image patch pair (R,, D)) is evaluated by at
least 15 observers as folow:

Yo = {((Rp, D), p)ISp = 15}. @
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FIGURE 3. Presentation structure of test material.

The raw score database is not entirely good because some
observers evaluate carelessly. To remove outlier in this data,
we use z-score. The z-score of a subjective rating for patch
pair p"” is calculated by the following formula:

Yp,s — Mp
9
Op

Zp,s = 3
where ), denotes the mean and o, denotes the standard
deviation of rating pairs. The figure below (Fig.4) shows
that distribution of z-score is the standard normal distribution
side-by-side. According to empirical rule, 95%, 98.7% and
99.7% of the values lie within 2, 2.5 and 30, respectively.
After applying this rule we achieve the results as in table 4.

0.5 A

0.4 1

0.3 A

0.2

—2g,

0.1

—30,

1
1
0.0 T i "
-100 -75 -50 -

N
(S S,

FIGURE 4. The standard normal distribution of Z-score.

We select 20 to minimize the error resulting in a reduction
of 422 image patch pair scores in database. Fig. 6 shows
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the standard deviation of subjective ratings before and after
outlier rejection. Most samples having deviations greater than
0.5 have been removed. The filtered data are presented as
follows:

Yf = {((Rp9 Dp)v y_p) € Y0|Zp,x > Zap; Sp = 15} s 4

Finally, each pair of patches is evaluated by the aver-
age cleaned scores of at least 15 observers (with 5 levels).
N = [Yr| = 40,286 cleaned pairs are kept to make two
final HMII (Human Machine Interaction Image) databases
(Table 3). Each database comprises 40,286 quality annotated
images based on 40,286 source reference image patches that
are subject to different distortion levels of compression as
in table. Fig. 5 is an example of image patch pair with two
diference sizes. Differential mean opinion score (DMOS) for
this dataset is computed for each pair, ranging from 10 to 50.

TABLE 3. HMII databases summary.

Database | Number of image patch pairs ~ Patch size
HMII-64 40286 64 x 64
HMII-128 40286 128 x 128

(a) 64 x 64

FIGURE 5. An example of image patch pairs (reference and distortion)
with two diference sizes.

TABLE 4. Outlier rejection results.

Properties 20  2.50 30
Number of outliers 33199 8631 1991
Number of image patch pairs 422 136 37
Number subjects 21 7 3
Percentage outlier 502 13% 0.3%

B. BENCHMARK ANALYSES

1) HMII DATABASE BENCHMARK ANALYSES

We implement of seven state-of-the-art algorithms (PSNR,
UQI, VSI, SSIM, RFSIM, FSI and SRSIM) and two new
methods (DIQaM-FR WaDIQaM-FR) [6] to predict objec-
tive scores for the entire HMII database. Table 5 shows
that the pairwise preference consistency is evaluated using
the classic correlation coefficients SRCC and PLCC. The
SRCC and PLCC are the average values for the testing
image patches of the same reference image patches, and
the top two correlation coefficient values are in bold. It is
seen that PSNR and UQI are less correlated with the qual-
ity perceived by humans, and even contrary to subjective
results. This defective performance of PSNR is also men-
tioned in the work of Zhang et al. [39] about Fine-Grained
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TABLE 5. PLCC and SRCC for different IQA algorithms.

HMII 64 x 64 HMII 128 x 128
1QA ALGORITHM SRCC PLCC | SRCC PLCC
PSNR 0.7056  0.6596 | 0.7233  0.6723
UQI [40] 0.0233  0.0233 | 0.0129 0.0124
VSI [41] 0.7659  0.7659 | 0.7680  0.7861
SSIM [3] 0.7878 0.7714 | 0.7989  0.7894
RFSIM [5] 0.7747  0.7574 | 0.7891  0.7596
FSIM [4] 0.7941  0.7997 | 0.8241 0.8154
SRSIM [35] 0.7776  0.8030 | 0.7188  0.8035
DIQaM-FR [6] 0.5525 0.5521 | 0.6075  0.6057
WaDIQaM-FR [6] 0.5648  0.6738 | 0.6750 0.7661

Quality Assessment. Although VSI consists of HVS fea-
tures and achieves more consistent results than PSNR in
global image assessment, it is poorly correlated with human
perceptual quality in fine-grained patch quality assessment.
In general, FSIM achieves top two performances for all cases
and SSIM achieves better performance with PLCC while
SRSIM performs better with SRCC. For the two correla-
tion coefficients, the above-mentioned IQA methods shows
quite similar characteristics, while two new methods methods
based on machine learning fails in proposed database. The
reason is that each structure of a machine learning problem is
only suitable for its own database.

2) SIMPLE IMAGE-PATCH MODELS
In this experiment, different models are compared to find the
best ‘ground truth’ predictor for patch quality. We use the
following models with our database:
o IPM: Zhang in [39] assumes the curve model to predict
image-patch quality is a cubic polynomial function:

F(D(R,); 0) = a1 D(R,)® + ar ®(R)? + a3 P(R),) + aa,
Q)

where 6 = aj,az,as,aq is the parameter for the
non-linear function of Image-Patch model and ®(R,,) are
the feature of reference patch R,. MSE and SSIM are
chosen for the design of features. In our work, we try
top three FR-IQA methods: SSIM, FSIM and SRSIM.

e DIQaM: Bosse in [6] presents a CNN model for image
quality assessment which obtains superior performance
on different IQA benchmarks. We utilize the extractor
architecture from this paper to train a Deep Neural Net-
work on our database.

Firstly, we use previous works to extract SSIM, FSIM and
SRSIM features for IPM. Then, the above curve model is
fitted using the least mean square method to adapt the coeffi-
cients that best fit the database. DIPQA is developed based
on DIQaM’s extractor architecture which shares the same
regression part. With the DIPQA, we use VGGNet as a feature
extractor, this part is trained with the entire network.

Table 6 shows the performance of the simple models on
HMII database. With any of the two correlation coefficients,
DIPQA (VGG extractor) achieves superior performance to
the others’. From the results of this experiment, it can be
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TABLE 6. Comparing different Full-Reference Image-Patch approaches.

HMII (64x64) HMII (128x128)
METHOD SRCC PLCC | SRCC PLCC
IPM (SSIM) 0.8362 0.7846 | 0.8434  0.7946
IPM (FSIM) 0.8484  0.7954 | 0.8715 0.8106
IPM (SRSIM) 0.8541  0.8025 | 0.8573  0.7980
DIPQA (VGG extractor) | 0.9071  0.8382 | 0.9167 0.8574

seen that objective models assess image-patch quality more
accurately with the larger size of the patch.

C. PROPOSED IQA METHOD
1) ARCHITECTURE OF THE PROPOSED METHOD
Being known as a designed architecture to learn the similarity
relations between two given inputs, Siamese network has
been applied for face verification [38] and signature [42]
tasks. The main concept of this method is to process two
networks that share the same architecture and weights in
parallel. In this work, we employ a Siamese network for
feature extraction. Before feeding the feature vector as input
to the regression layers, two extracted feature vectors are
combined by a fusion step. The proposed architecture of IQA
method is sketched in Fig 7.

For training our IQA method, data set Yy is randomly
splitted by reference image. The training set is based on
H pairs of reference and distort image, testing set on
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N — H pairs. The training set is:

Yirain = {((Rp, Dp)7 y_p) € Yflp = 1-~L} , (6)
and testing set is:
Yiess = {(Rp, Dp), V) € Yslp =L+ 1.N}. 7

Let us describe the notations in convolution filter of CNN
feature extractor which consists of a stack of convolutional
layers, pooling layers, and full-connected layers. Let [ denote
the [" layer where L is the number of layers. H x W (pixels)
respectively be the width and height of input image patch x.
Let wfnﬁ denote the weight matrix between neurons of layer
[ and neurons of layer [ — 1. The convolved data streams at
layer [ plus the bias unit b’ are defined as follows:

I T !
Xj= )Y WhOtim i+
m n

wherei=1,2,3...H,j=1,2,3... W are row and column
iterators of input vector; m = 1,2,3...k;,n=1,2,3...k
are iterators of filter w. The output vector at layer 1 of,j are
depicted as below:

®)

1 I
0ij =J %)),

where f(-) denotes the activation function. Application of the
activation layer to the convolved input vector at layer [ is

&)
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given by:
I e 1
f(x! )= X j» 1fxl-,j >0
W loifxf; <0’

iX j»

(10)

where g; is the coefficient controlling the slope of the negative
part. All layers of feature extractor are activated by a rectified
linear unit (ReLu) [43] when a; = 0. The resultant activation
function is of the form f (xl{ j) = max(0, xl.l’ j).

Let y; denotes the ground-truth indicator vector, feature
extractor produces the activation of the reference patches
feature vector F = [F1, ..., Fp] and the distortion patches
feature vector F' = [F|, ..., Fp]. To denote the weights of
last convolution filter in feature extractor by wk, we define
the feature vectors function according to the formulas:

_ L
Fpij = max(0, Rp,i’j)

L pL—1 L
= max(0, Z ZWm,an,i+m,j+n +b~) (11)
m n

and

U

L
p,i,j = ma.x(o, Dp,l,j)

L—1
= max(0, Z Z Wﬁ,nDp,i+m,j+n + b (12)
m n

where Rfy and X, [l) represent a feature map in / layer of the input
patch R, and D,, respectively.

The feature extraction layers extract F and F’ which are the
feature vectors of reference and distorted patch respectively.
The regression layers require the network to combine these
two vectors in a feature fusion step. The simplest strategy is
concatenating F and F” to an unique vector (F, F’). Besides,
F — F’ is known as a meaningful representation for distance
in feature space. Therefore, concatenating F — F”’ is expected
to contribute to learning relations between reference and
distorted patch. The final output of this state is:

F) = Concat(Fp, F,, Fy — F}) (13)

Finally, the fused features are regressed by a sequence of
two fully-connected layer including: FC-512 and FC-1. The
inference of fully connected layer can be represented by:

F)' = max(0, w11 % F) 4 br41) (14)
qp = max(0, wey2 % F)' + bry2), (15)

where g, represents the output IQA method, * is the convo-
lutional operation.

2) EVALUATION CRITERIA

IQA estimation algorithm’s performance is measured through
the deviation between the estimated and actual values. The
common method to test the efficiency of IQA estimation
algorithms is using Mean Absolute Error (MAE). The smaller
MAE value obtained is, the smaller the error margin in predic-
tion is made. Let y,, denotes the subjective testing IQA and g,
denotes the predicted IQA of the pair p”*. MAE is calculated
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as the average of the sum of absolute differences between two
IQA variables in the following equation (15).

N—-H
2:1 |%_ CIpl
MAE='"____ (16)
N-H

where N — H is the number of testing patch pairs.

3) TRAINING OPTIMIZATION

Our network is trained end-to-end by backpropagation, over
a number of epochs. The adaptive moment estimation opti-
mizer (ADAM) is used instead of the classical stochastic gra-
dient descent procedure to update network weights iterative
based in training data. Optimization problem is to minimize
the cost function J(.) as defined in equation (17).

miny,j(w), a7y

where w is the weight vector. ADAM uses exponentially
decaying average of past gradients, my (first moment) and
past squared gradients, v (second moment) as given in equa-
tion (18) and (19) respectively. Adam weight update equation
can be mathematically represented as equation (20).

mp = Bimi—1 + (1 — B)VJI(w)) (18)
vi = Bavi—1 + (1 — B2)V2I(wy) (19)

/1 _nl
Wil =w—a- b _m (20

VTR

where « is the learning rate, wy is the weight vector, 81 and 8>
are momentum parameters. Parameters of ADAM are chosen
as recommended in [44] 81 = 0.9, B2 = 0.999,¢ = 10~8
and the learning rate « is initially set to 5 x 1074,

4) FEATURE ENGINEERING
With the general architecture in Fig. 7, we select one of five
different feature extractors as follows:

1) VGGnet: With the successful adaptation for various
computer vision tasks [45], [46], especially in image
quality assessment [6], VGGnet [47] is chosen as a
base network for the feature extraction. The input of
the VGG network is the size of 224 x 224 pixels. For
the purpose of adjusting the network for 64 x 64 and
128 x 128 pixels, we have tried to change the architec-
ture of VGG network such as: extending the network
by 3 layers [6], cutting last 3 layers, last 6 layers or
even replacing VGG with Resnet. Finally, we choose
to cut the last 3 layers of VGGnet and achieve the best
performance comparing to other approaches (Fig. 8).
Our VGGnet-inspired DCNN comprises 12 weight
layers as a feature extraction module and a regres-
sion module. The features are extracted in a series of
conv3-64, conv3-64, maxpool, conv3-128, conv3-128,
maxpool, conv3-256, conv3-256, maxpool, conv3-512,
conv3-512 and maxpool layers. This results in about
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FIGURE 8. VGGnet feature extractor.
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FIGURE 9. ResNeXt-50 feature extractor architecture.
Input B —‘ ’V —‘ ’V —‘ Global Feature
Conv 3x3 Conv A » ConvB » ConvC » ;
Patch avg-pool Vector
R
x2 x3 x8

FIGURE 10. Xception feature extractor architecture.

17.3 million trainable network parameters. All con-
volutional layers apply 3 x 3 pixel-size convolution
kernels.

ResNeXt-50: ResNext, also known as Aggregated
Residual Transform Network, is an improvement over
the Inception Network. Xie et al. [48] exploited the
topology of the split, transformed and merged in a
powerful but simple way by introducing a new term
"cardinality". The model consists of 1 convolutional
(7 x 7) layer, 1 maxpooling layer, 4 convolutional
blocks alternated by 4 groups of identity blocks.
We modify this network for extraction by removing
the last Average layer and adding a Single convolu-
tional layer instead before features fusing as shown
in Fig. 9.

Xception: Chollet in [49] revised the idea of Incep-
tion modules and offered to use depthwise separable
convolutions by maximizing the number of towers in
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4)

5)

a module. Basically we use the original, however, sim-
ilar to ResNeXt-50 network, the last part is changed as
shown in Fig.10.

Inception-v4: Inception V4 [50] is a well-known
architecture developed based on the GoogleNet plat-
form, the input of this network is an image patch
(299 x 299 pixels), the output depends on how many
classes targeted to predict. In the pre-trained model
used in this research, we keep Average Pooling layer
and add a Single convolutional layer before features
fusing in Fig. 11.

Inception-ResNets: Inception-ResNet-v2 is a combina-
tion of two recent networks, residual connections [51].
The Inception models are famous for their multi-branch
architectures. They have a set of filters (1 x 1, 3 x 3,
5 x 5, etc.) that are merged with concatenation in
each branch. The split-transform-merge architecture
of the inception module is observed as a powerful
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FIGURE 11. Inception-v4 extractor architecture.
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FIGURE 12. Inception-ResNets extractor architecture.

representational ability in its dense layers. The hybrid
Inception-ResNet-v2 network shows in Fig. 12.

IV. EXPERIMENTAL RESULTS

In this section, we introduce the experimental setup including
the Datasets, the Evaluation Metrics and the implementation
details of IQA model. The best feature extractor applied
in the proposed model (HMI-IQA) is chosen from 5 CNN
architectures. In addition, we test the proposed model for
4 common datasets including [8], TID2008 [9], TID2013 [10]
and CSIQ [11].

A. EXPERIMENTAL SETUP

1) DATASETS

There are 2 types of datasets used in experiments. The
first one, training datasets, is used for optimizing the pro-
posed IQA deep neuron network model and the other,
cross-evaluation datasets, is for the independent evaluation
of the proposed model:

o Training Datasets: We use datasets HMII_64 and
HMII_128 as presented in Table 3 and Fig. 5 for
the purpose of our IQA deep neuron nework model
optimization. Reported results are based on the aver-
age performance of ten folds cross-validation. For
cross-validation, a HMII database is randomly split
into 8:1:1 ratio for training, validating and testing
sets, respectively. Deep learning models converge after
50 epochs for each dataset.

o Cross-evaluation Datasets: For evaluating the gener-
alization ability of the proposed IQA model after
training step, we use the verified IQA databases
in public domain. We choose four comprehensive

215166

X2

Identity |« Conv
x5 J

| —

‘J Conv

databases mentioned above to be used as benchmarks:
LIVE [8], CSIQ [11], TID2008 [9] and TID2013 [10].
All perceptual quality of Datasets are normalized
in range [10;50].

2) EVALUATION METRICS

To evaluate the performances of the IQA algorithms, two
measures are used including Spearman’s rank order corre-
lation coefficient (SRCC) and Pearson’s linear correlation
coefficient (PLCC). PLCC measures the linear dependence
between two quantities and SRCC measures how well one
quantity can be described as a monotonic function of another
quantity.

B. EXPERIMENT RESULTS
1) PERFORMANCE OF PROPOSED METHOD
In our experiment, four other feature extractors in turn replace
the VGG-16 extractor in the first one. Only the HMII dataset
with the size of 128 x 128 x 3 is used to learn models. The
same number of epochs and other criteria are run with the first
experiment. The default size of input patches is 224 x 224
for ResNext and VGGnet and 299 x 299 for Inception-V4,
Inception-ResNet-V2 and Xception which are different from
that of patches in our database. Thus, the architecture of
feature extractors has been adjusted to fit our inputs while its
outputs are feature vectors. Features are extracted from the
distorted patch and the reference patch by a CNN and fused
as difference, concatenation or concatenation supplementary
with the difference vector.

Table 7 shows the results of the two experiments comparing
five models with different feature extractors. The model using
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FIGURE 13. Local qualities and saliency weights for a JP2K distorted image from CSIQ. The clors black and white indicate low and high values of local
qualities respectively. The DMOS values are 0.9978, 0.9274, 0.6141, 0.3693 in range [0;1], predicted qualities are 47.7512, 46.7519, 42.5574, 32.1268 in
range [10;50].

TABLE 7. Comparing different feature extraction architectures. saliency (HMI-IQA Sal) weight of local qualities. In the first
one, g is estimated by taking the average of local visual

FEATURE EXTRACTOR | SRCC PLCC o) . : .

DIPQA (VGG extracion 09167 08574 qualities g; as following formula:

Inception-ResNetsV2 0.8940  0.8405 1 Np

Xception 09112  0.8582 - )

Inception V4 0.8825  0.8146 1= N >4 @D
ResNeXt-50 0.9222  0.8764 p j=1

where N, denotes the number of patches from the image.
The second way combines models of visual saliency with

Resnext-50 named HMI-IQA has the best performance andis ~ 1QAs by weighting the local quality g; of a region j with the

in bold. corresponding local weight w;. To determine wj, the frame-
work in [52] is used to detect regional saliency adjustment
2) CROSS-DATABASE EVALUATION and measure the weight by counting pixels in this region. The

We train HMI-IQA models on HMII database and test them in overall image quality g is:

the four above-mentioned Evaluation Datasets. Each referent Ny

image is divided into 64 x 64 and enlarged to 128 x 128 ; Widj

patches which are used to predict DMOS score of the same q= j_N , (22)
local distort image patch. The DMOS value of the distorted 2”: Wi

image is calculated in 2 ways: average (HMI-IQA Aver) and j=1
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(1) Local qualities (level 1) (j) Local qualities (level 2) (k) Local qualities (level 3) (1) Local qualities (level 4)

=S

(e) Distorted Image (level 1)

FIGURE 14. Local qualities and saliency weights for a JPEG distorted image from TID2008. The clors black and white indicate low and high values of local
qualities respectively. The MOS values are 6, 4.8065, 3.25, 1.3226 in range [0,9], predicted qualities are 45.1306, 36.4296, 26.1536, 16.6870 in range [10;50].

TABLE 8. SRCC and PLCC results of individual distortion types evaluated on TID2013.

DIQaM-FR [6] WaDIQaM-FR [6]

DISTORTION trained on LIVE | trained on LIVE | HMIFIQA AVER | HMIIQA SAL

SRCC PLCC | SRCC PLCC SRCC PLCC | SRCC PLCC
Additive Gaussian noise 0.8260  0.5540 | 0.9192 0.9203 | 0.8989 0.8699 | 0.8994  0.8739
Additive noise in color components 0.7401  0.4503 | 0.8083  0.8059 0.8213  0.8421 | 0.8241  0.8510
Spatially correlated noise 0.8000 0.7946 | 0.8326 0.7856 | 0.9187 0.9049 | 0.9193 0.9070
Masked noise 0.7631  0.6633 | 0.7901  0.7688 0.8019  0.8323 | 0.8084  0.8493
High frequency noise 0.8126  0.6914 | 0.9125 0.9265 | 0.8910 0.9203 | 0.8966  0.9258
Impulse noise 0.5706  0.4091 | 0.8420 0.8178 0.8630  0.8292 | 0.8718 0.8410
Quantization noise 0.7204  0.6046 | 0.8034 0.7681 0.8500 0.8406 | 0.8476  0.8450
Gaussian blur 0.8574  0.8442 | 0.9310 0.9199 0.8846  0.8247 | 0.8882  0.8443
Image denoising 0.7737  0.7737 | 0.9393 0.9616 | 0.9352 0.9575 | 0.9350 0.9548
JPEG compression 0.8258  0.8348 | 0.9273 0.9506 | 0.9381 0.9674 | 0.9403  0.9688
JPEG2000 compression 0.9404 0.8873 | 0.9484 0.9328 0.9566  0.9633 | 0.9595 0.9712
JPEG transmission errors 0.3123  0.2885 | 0.6529  0.6463 0.7564  0.7543 | 0.7436  0.7374
JPEG2000 transmission errors 0.5727  0.5201 | 0.6106 0.4860 | 0.7796 0.6871 | 0.7706  0.6785
Non eccentricity pattern noise 0.6769  0.2333 | 0.6433  0.6046 0.7890  0.7680 | 0.8014  0.7887
Local block-wise distortions of different intensity | 0.5297  0.2647 | 0.2638  0.2471 0.5383  0.5443 | 0.4195 0.3870
Mean shift (intensity shift) 0.6217  0.6210 | 0.6494 0.5870 | 0.7258  0.7260 | 0.7299  0.7324
Contrast change 0.5493  0.6937 | 0.2715 0.3602 | 0.5150 0.6648 | 0.5211  0.6681
Change of color saturation 0.7100  0.6743 | 0.7460  0.7332 0.7853  0.7660 | 0.7722  0.7636
Multiplicative Gaussian noise 0.7728  0.5076 | 0.8932  0.8901 0.8719  0.8523 | 0.8784 0.8510
Comfort noise 0.4769  0.4645 | 0.8709  0.8403 0.9084 0.9133 | 0.9108 0.9161
Lossy compression of noisy images 0.8462  0.6751 | 0.9408 0.9228 0.9553  0.9552 | 0.9548 0.9556
Image color quantization with dither 0.4572 03920 | 0.8186  0.7928 0.8688  0.8886 | 0.8668  0.8903
Chromatic aberrations 0.8846  0.8414 | 0.8090 0.9092 | 0.8687 0.9357 | 0.8638 0.9388
Sparse sampling and reconstruction 0.8786  0.7794 | 0.9480  0.9490 0.9588 0.9651 | 0.9585 0.9701

Fig. 13 shows the local qualities g; and weights w; for an 0.6141, 0.3693 in range [0;1]; the relation between prediction
image subject to JP2K compression from CSIQ. The DMOS accuracy of the two different ways are as expected from
values of the four level distorted images are 0.9978, 0.9274, the previous evaluations (average weight: 45.3548, 42.6473,
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FIGURE 15. SRCC and PLCC test results on the subsets of Datasets.

TABLE 9. SRCC and PLCC results of individual distortion types evaluated on TID2008.

DIQaM-FR [6] WaDIQaM-FR [6]

DISTORTION trained on LIVE trained on LIVE | HMIFIQA AVER | HMI-IQA SAL

SRCC PLCC | SRCC PLCC SRCC PLCC | SRCC PLCC
Additive Gaussian noise 0.8187 0.4381 | 0.9018 0.8906 | 0.8826 0.8505 | 0.8821 0.8542
Additive noise in color components 0.8132 0.4562 | 0.8674  0.8458 0.8929 0.8889 | 0.8928  0.8915
Spatially correlated noise 0.7815 0.7673 | 0.7863 0.7508 | 0.9215 09175 | 0.9228 0.9191
Masked noise 0.7528  0.5824 | 0.7945 0.7541 0.8292  0.8315 | 0.8332  0.8488
High frequency noise 0.8265 0.6462 | 0.9337 0.9329 | 09166 09177 | 0.9199 0.9260
Impulse noise 04612 0.2383 | 0.8297 0.7808 | 0.8404 0.8236 | 0.8408  0.8297
Quantization noise 0.6993  0.5268 | 0.7347  0.6991 0.8487  0.8496 | 0.8401  0.8500
Gaussian blur 0.8316  0.7813 | 0.9200 0.9024 | 0.8183 0.7836 | 0.8222  0.8032
Image denoising 0.8338  0.7773 | 0.9515 0.9536 | 0.9590 0.9614 | 0.9571 0.9573
JPEG compression 0.8329  0.7953 | 0.9335 0.9392 | 09532 0.9697 | 0.9553 0.9715
JPEG2000 compression 0.9597 0.8672 | 0.9590 0.9173 | 0.9564 0.9565 | 0.9617 0.9672
JPEG transmission errors 0.2378 02144 | 0.5865 0.5861 0.7324  0.7151 | 0.7151  0.6950
JPEG2000 transmission errors 0.5232 04685 | 0.5144 0.3568 | 0.7286 0.6342 | 0.7173  0.6264
Non eccentricity pattern noise 0.6853  0.3973 | 0.6935 0.6972 0.7452  0.6968 | 0.7600 0.7170
Local block-wise distortions of different intensity | 0.7843  0.6465 | 0.0869  0.1526 0.8388  0.8419 | 0.7517 0.7425
Mean shift (intensity shift) 0.4968  0.5005 | 0.5362 0.4882 | 0.6564 0.6313 | 0.6691 0.6476
Contrast change 0.7030  0.7229 | 0.3929  0.3951 0.6812  0.7351 | 0.6801  0.7406

39.6324, 33.3425; saliency weight: 47.7512, 46.7519, The proposed model is tested on a specific distortion type

42.5574,32.1268). Similarly, Fig. 14 shows an image subject and shows the results on TID2013, TID2008, LIVE and
to JPEG compression from TID2008. It can be seen in Fig. 13 CSIQ in Table 8, 9, 10 and 11, respectively. These tables
and Fig. 14 that the predicted quality of patches are spatially show that HMI-IQA Sal performs better than HMI-IQA
correlated as a result, the interpolation method can be used to Aver and HMI-IQA Sal is among the top performing
compute the quality of the smaller patches. models with 28 out of 52 times. Specifically, HMI-IQA
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TABLE 10. SRCC and PLCC results of individual distortion types evaluated on LIVE.

DIQaM-FR [6] WaDIQaM-FR [6]
DISTORTION | Trained on TID2013 | Trained on TID2013 | HMITQA AVER | HMI-IQA SAL
SRCC  PLCC SRCC  PLCC SRCC  PLCC [ SRCC  PLCC
Tpeg2000 09207 08888 | 0.9626 0.8983 | 09523 08777 | 09550 0.8820
Tpeg 07472 07480 | 0.9665 0.9476 | 0.9458 0.8946 | 0.9485 0.9016
Fastfading 07846 07698 | 0.9343 0.8935 | 09065 07998 | 0.9074 0.8170
Blur 07249 07444 | 09277 0.8854 | 09048 08603 | 09154 0.8714
Wn 0.8505  0.8015 0.9616  0.9367 09850 09134 | 0.9875 09155

TABLE 11. SRCC and PLCC results of individual distortion types evaluated on CSIQ.

DIQaM-FR [6] WaDIQaM-FR [6] DIQaM-FR [6] WaDIQaM-FR [6]
DISTORTION | Trained on TID 2013 | Trained on TID 2013 | Trained on LIVE | Trained on LIVE HMI-IQA AVER | HMI-IQA SAL

SRCC  PLCC SRCC PLCC SRCC  PLCC SRCC PLCC SRCC PLCC SRCC PLCC
AWGN 0.9170  0.9315 0.9067 09172 0.8838  0.8740 | 0.9370  0.9448 0.9349  0.9019 | 0.9391 0.9101
Jpeg 0.8548  0.9429 0.9479  0.9750 0.8872 09153 | 0.9376  0.9551 0.9418 09652 | 0.9435 0.9679
Jpeg2000 0.8463  0.9012 0.9696  0.9653 0.8954 0.8990 | 0.9581 0.9671 0.9673 09714 | 0.9691 0.9747
Fnoise 0.8967  0.8982 0.9277  0.9340 0.8973  0.9013 | 0.8630  0.8469 0.9379  0.9439 | 0.9314 0.9378
Blur 0.9004 09163 0.9469  0.9399 0.9322  0.9293 | 0.9580 0.9600 0.9414  0.9267 | 0.9496  0.9380
Contrast 0.9150  0.9239 0.9180 0.9128 0.9287 0.9166 | 09185 0.9221 09163 09118 | 09169 0.9193

TABLE 12. SRCC and PLCC test results on the subsets of Datasets contain
only the 4 distortions.

AVERAGE SALIENCY
DISTORTION = PLCC SRCC — PLCC
TID20T3 08965 09016 09000 0.9005
TID2008 0.8844 09069 08906 09138
LIVE 09449 08493 09500  0.8622
CSIQ 09404 09330 09451 09417

model outperforms in compressed distortions by JPEG and
JPEG2000 because of the effectiveness of pre-training in
HMII database. We observed that HMI-IQA method performs
well on unseen distortion types, including lossy compres-
sion of noisy images, sparse sampling and reconstruction,
spatially correlated noise and comfort noise. In addition,
proposed model fails in three distortion types on TID2013,
i.e., compression transmission errors, local block-wise dis-
tortions, and contrast change, whose characteristics are dif-
ficult to model. However, the performance of HMI-IQA
model is only equivalent to WaDIQaM but insignificantly
better than other methods. The reason is that this study
only focuses on patch quality without considering its con-
tribution to the whole image quality. HMI-IQA Sal method
uses simple saliency model only to test the effectiveness of
the patch-based method. To tackle this issue, we will use
whole image quality databases to develop a weighted estimate
method instead of a replacement of existing visual saliency
models.

The proposed HMI-IQA model is evaluated on subsets
of CSIQ, LIVE, TID2008 and TID2013, containing only
the four distortions types shared among the four databases
(JPEG, JP2K, Gaussian blur and white noise). Table 12 shows
that performances of the proposed model are relatively stable
for all subsets. Fig.15 shows the scattering distributions of
subjective DMOS versus the predicted scores obtained by the
HMI-IQA Sal on four subset databases. The proposed model
still anticipates some other common types of distortion quite
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well as various types of distortion are generated in training
database during the process of video compression. However,
the prediction is inadequately good in case of high noise level.
As can be seen in Fig.15 when the image quality is reduced,
the prediction is less accurate. In further study, we will collect
more experimental data of other distortion types to enhance
the accuracy.

V. CONCLUSION

In this paper, we present an experimental image quality
assessment solution for image/video with compression arti-
facts. First, the subject quality rating database considering
image patch quality assessment method for image/video with
compression artifacts are introduced. Due to the lack of
‘ground truth’ quality of patches, we expect the proposed
image patches database to be useful for further investigation.
Second, we introduce an efficient deep neural network based
image patch quality assessment solution with several feature
engineering options. Experimental results conducted for a
rich set of image/video database shows that the proposed IQA
method is particularly suitable for image/video with compres-
sion artifacts, not only under the video HEVC compression
but also with image JPEG or JPEG-2000 compression stan-
dards. For future works, we will explore the proposed IQA
model to improve the image/video compression efficiency by
directly integrating it into those standards.
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