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Abstract—Automatic polyp detection and segmentation are 

highly desirable for colon screening due to polyp miss rate by 

physicians during colonoscopy, which is about 25%. Diagnosis 

of polyps in colonoscopy videos is a challenging task due to 

variations in the size and shape of polyps. In this paper, we adapt 

U-net and evaluate its performance with different modern 

convolutional neural networks as its encoder for polyp 

segmentation. One of the major challenges in training networks 

for polyp segmentation raises when the data are unbalanced, 

polyp pixels are often much lower in numbers than non-polyp 

pixels. A trained network with unbalanced data may make 

predictions with high precision and low recall, being severely 

biased toward the non-polyp class which is particularly 

undesired because false negatives are more important than false 

positives. We propose an asymmetric similarity loss function to 

address this problem and achieve a much better tradeoff 

between precision and recall. Finally, we propose an ensemble 

method for further performance improvement. We evaluate the 

performance of well-known polyp datasets CVC-ColonDB and 

ETIS-Larib PolypDB. The best results are 89.13% dice, 79.77% 

IOU, 90.15% recall, and 86.28% precision. Our proposed 

method outperforms the state-of-the-art polyp segmentation 

methods. 

Keywords—Polyp Segmentation, Medical image analysis, 

transfer learning, deep learning 

I. INTRODUCTION  

Colorectal cancer is the third most common cause of 
cancer-related death in the world for both men and women, 
with  551,269 deaths (account for 5.8% of all cancer deaths) 
worldwide in 2018 [1]. Colorectal cancer usually arises from 
polyps abnormal growths inside the colon, although, polyps 
grow slowly and may take years to turn into cancer. While the 
advanced stages of colorectal cancer have a poor five-year 
survival rate of 10%, the early diagnosis has shown a more 
favorable five-year survival rate of 90%. Early diagnosis of 
colorectal cancer is achievable [2]. Colonoscopy is the 
primary method for screening and preventing polyps from 
becoming cancerous. However, colonoscopy is dependent on 
highly skilled endoscopists and a high level of eye-hand 
coordination, and recent clinical studies have shown that 
22%–28% of polyps are missed in patients undergoing 
colonoscopy [3].  Segmenting out polyps from the normal 
mucosa can help endoscopists to improve their segmentation 
errors and subjectivity. The segmented polyps size directly has 
an impact on the miss rates in colonoscopy, because doctors 
usually cannot easily evaluate small polyps, which are tiny 
and difficult to see, yet they can later naturally become cancer 
tumors. Different methods have been proposed with the aim 
of accurate polyp segmentation. The existing research work in 
polyp segmentation can be roughly grouped into three main 
approaches. The first approach belongs to image processing 

based segmentations which do not use any learning methods. 
The second group of approaches belongs to methods that first 
extract features and then use classifiers for segmentation. The 
third group of approaches belongs to methods that use 
convolutional neuronal networks (CNN) and perform the 
segmentation.  

In this work, we propose a novel polyp segmentation 
method based on CNNs. We adapt U-net [4] which is 
proposed for biomedical image segmentation in recent years, 
showing the state of art result, to segment polyp automatically. 
We aim to evaluate different CNN architectures (e.g. 
MobileNet [5], Resnet[6], and EfficentNets [7]) as the 
backbone of the U-net for polyp segmentation. We choose 
EfficentNet as the backbone of U-net for our segmentation 
polyp model because its performance is the highest. To deal 
with significantly unbalanced imaging data, we propose a 
novel loss function combining pixel-wise cross-entropy loss 
and an asymmetric loss function. By training models with the 
proposed loss function, we found that the network can achieve 
a considerably better Dice score and give a better prediction. 
Finally, we propose an ensemble method for further 
performance improvement. We evaluate our method using 
well-known public available datasets:  ETIS-Larib [9] from 
the MICCAI 2015 polyp detection challenge [10], and CVC-
ColonDB [11]. The main contributions of our work can be 
summarized as follows: 

1) We present a transfer learning method based on U-net 
and EfficientNet for polyp segmentation. To the best of our 
knowledge, this is the first work to use U-net and EfficientNet 
for the task of polyp segmentation. 

2) We present a novel loss function to address the 
unbalanced data problem and achieve better performance. The 
combination of the loss function and our model results in a 
better performance. 

3) We present an ensemble method to combine the results 
of two U-net models with different encoder structures 
(EfficientNet B4 and EfficientNet B5) to get better 
performance. 

 4) We demonstrate that our proposed method outperforms 
state-of-the-art methods using datasets from the MICCAI 
2015 polyp detection challenge.  

 The rest of this work is organized as follows. In Section 2, 
we review related research on polyp segmentation. In Section 
3, we present our proposed method for polyp segmentation. 
The experimental results are presented in Section 4. Finally, 
in Section 5 we summarize and conclude this work. 

  

Authorized licensed use limited to: University of Glasgow. Downloaded on July 21,2020 at 05:44:27 UTC from IEEE Xplore.  Restrictions apply. 



 

 

II. RELATED WORK  

The first approach for polyp segmentation is to use image 
processing segmentation methods. Many methods have been 
proposed to segment the polyps automatically. Bernal et al. 
[10] proposed a method using “depth of valleys”  of an image 
to segment colorectal polyps. They use the watershed 
algorithm to segment images into polyp candidate regions and 
then classify each region into polyp and non-polyp, this 
classification is based on region information and “depth of 
valleys”  in each region. Ganz et al. [12] propose a method 
based on Hough transform to detect the region of interest 
(ROI) and specular reflection suppression with an exemplar-
based image in painting as a preprocessing method. Then, they 
use an algorithm called shape-UCM [13] for image 
segmentation, shape-UCM works based on image gradient 
contours and spectral clustering. After performing the shape-
UCM algorithm, they use a scheme to improve edges resulted 
from the shape-UCM algorithm.  

The second approach in polyp segmentation is feature 
extraction from image patches and labeling of patches as 
polyp and non-polyp based on extracted features. Tajbakhsh 
et al. [14] presented a method based on Canny edge detector 
in each of the three RGB channels. This is done to produce 
edge maps and then oriented patches for each pixel are 
extracted to classify them as polyp or non-polyp. Tajbakhsh et 
al. [15] also proposed a feature extraction method to extracts 
sub-patch with a 50% overlap and calculates their average 
vertically resulting in one- dimensional signal. After that, they 
use DCT coefficients as a feature for each extracted patch. 
Finally, they use a two-stage random forest classifier to label 
each patch.  

The third approach for polyp segmentation is using 
Convolutional Neutral Networks (CNN). In the 2015 
MICCAI sub-challenge on automatic polyp detection, most of 
the proposed methods were based on CNN, including the 
winner [16]. The author in [17] showed that fully convolution 
network (FCN) architectures could be refined and adapted to 
recognize polyp structures. Zhang et al. [18] used FCN-8S to 
segment polyp region candidates, and texton features 
computed from each region were used by a random forest 
classifier for the final decision. Shin et al. [19] showed that 
Faster R-CNN is a promising technique for polyp detection. 

 

III. PROPOSED METHOD 

In this section, we describe the methodology on which the 

proposed method is based on. First, we use the U-net 

architecture for polyps segmentation and evaluate the 

performance of U-nets with different CNN encoders. We 

selected U-net architectures with EfficentNet B4 and 

EfficentNet B5 encoder for our polyp segmentation 

framework. Second, we propose a novel loss function that can 

effectively boost the segmentation performance of our 

network. In the last step, we adapt an ensemble method to 

combine the results of two U-net models with different 

encoder structures (EfficientNet B4 and EfficientNet B5) for 

better performance. The overview of the proposed method 

can be seen in Fig.1. The proposed method consists of these 

components: 1) data augmentation, 2) two U-net with 

different encoder structures (EfficientNet B5 and 

EfficientNet B4), 3) the loss function that combined with the 

U-net model for better performance, and 4) an ensemble 

model to combine results of two U-net models with two 

different backbones to enhance the segmentation 

performance. 

A. Data agumentation 

One of the challenges in training polyp segmentation 
models is the insufficient number of data for training because 
access data is limited due to privacy concerns. Since the 
endoscopy procedures involving moving camera control, 
color calibration are not consistent, the appearance of 
endoscopy images significantly changes across different 
laboratories. The data augmentation step brings endoscopy 
images into an extended space that can cover all their 
variances. By augmenting training data, we can also reduce 
the over-fitting problem on training models. Fig.2. shows the 
examples of the data augmentation method applied to the 
original polyp image (Fig.2.a).  

 

Fig.2.  Examples of data augmentation 
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Fig.1. Overview of proposed method 
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The methods of augmentation used in our work are: 
Vertical flipping, horizontal flipping, random rotation 
between -10 and 10 degrees, random scaling ranging from 0.5 
to 1.5, random shearing between -5 and 5 degrees, random 
Gaussian blurring with a sigma of 3.0, random contrast 
normalization by a factor of 1 to 1.5, random brightness 
ranging from 1  to 1.5, and random cropping and padding by 
0–5% of height and width. 

B. Encoder networks  

 The U-net was developed by Olaf Ronneberger et al. for 
BioMedical Image Segmentation [4]. The architecture, shown 
in Fig.3., has two paths. First path is the contraction path (also 
called the encoder) which is used to capture the context in the 
image, consists of convolutional and max-pooling layers. The 
second path is the symmetric expanding path (also called the 
decoder) which is used to enable precise localization using 
transposed convolutions. Because the decoding process loses 
some of the higher-level features the encoder learned, the U-
net has skip connections. That means that the outputs of the 
encoding layers are passed directly to the decoding layers so 
that all the important pieces of information can be preserved.  
For polyp segmentation, we adapt a transfer learning 
approach, we use U-net with a CNN model pre-trained on the 
ImageNet dataset as the encoder. In the first path of U-net, we 
need a convolution neural network as an encoder to extract 
features from the input image. The choice of the encoder is 
essential because the CNN architecture, the number of 
parameters and type of layers directly affect the speed, 
memory usage and most importantly the performance of the 
U-net. In this study, we select three architectures to compare 
and evaluate their performance in polyp segmentation: 
MobileNet, Resnet, and  EfficientNet.  MobileNet is a family 
of mobile-first computer vision models from Google. They are 
designed to effectively maximize accuracy while being 
mindful of the restricted resources for an on-device or 
embedded application. MobileNet has two different versions: 
MobileNet V1 and MobileNet V2 [5]. With MobileNetV2 as 
a backbone for feature extraction, state-of-the-art 
performances are also achieved for object detection and 
semantic segmentation. We choose MobileNetV2 as the 
encoder of U-net in our experiment. Resnet [6] is a residual 
learning framework to ease the training of deep networks by 
explicitly reformulating the layers as learning residual 
functions with reference to the layer inputs, instead of learning 
unreferenced functions. With Resnet, we can benefit from 
deeper CNN networks to obtain even higher level of features 
which are essential for difficult tasks such as polyp 
segmentation. We use two Resnet backbone structures 
(ResNet50 and ResNet101) as encoders of U-net for polyp 
segmentation. EfficientNets [7] are the latest family of image 
classification models from Google, which achieves state-of-
the-art accuracy on ImageNet. 

 

Fig.3. U-net architecture 

The  EfficientNets was developed by Mingxing Tan and Quoc 
V. Le, they developed EfficientNets based on AutoML and 
Compound Scaling. In particular, they use the AutoML 
MNAS Mobile framework to develop a mobile-size baseline 
network, named EfficientNet-B0. Then, they use the 
compound scaling method to scale up this baseline to obtain 
EfficientNet-B1 to EfficientNet-B7. Starting from the 
smallest EfficientNet configuration B0 to the largest B7, 
accuracies are steady increasing while maintaining a relatively 
small size. In our experiment, we select EfficentNet B4 and 
EfficentNet B5 as the encoder of U-net. 

 After experimenting and evaluating results of U-net with 
different CNN encoders, we selected U-net with EfficentNet 
B5 encoder (U-net1) and U-net with EfficentNet B4 encoder 
(U-net2) for our  segmentation polyp model. 

C. Asymmetric similarity loss function 

To boost segmentation results, we propose a novel simple 
loss function that is a combination of basic loss functions with 
hyper-parameters to perform the segmentation: cross-entropy 
loss and asymmetric 𝐹𝛽  loss function. Pixel-wise cross-

entropy loss was used by Ronneberger et al. in [4] for the task 
of image segmentation. This loss simply verified each pixel 
individually, comparing the class predictions that are defined 
as a depth-wise pixel vector to the target vector. The cross-
entropy loss function is defined as: 

𝐶𝐸 = − ∑ 𝑔𝑖,𝑗 ∗ log(𝑝𝑖,𝑗)𝑖,𝑗                    (1) 

where p(i,j) is the predicted binary segmentation volume 
and g(i,j) stands for the ground truth at image pixel (i,j). 
Because cross-entropy loss function asserts every single pixel 
and colonoscopy image usually have a low surface area, the 
segmentation network trained with a cross-entropy loss 
function is biased towards the background image rather than 
the object itself. Furthermore, as the foreground region is often 
missing or only partially detected, it is not easy for the model 
to see the object. In the medical community, the Dice score 
coefficient (DSC) is an overlap index that is widely used to 
asses segmentation maps. Let P and G be the set of predicted 
and ground truth binary labels, respectively. The Dice 
similarity coefficient D between P and G is defined as: 

𝐷𝑆𝐶(𝑃, 𝐺) =
2|𝑃𝐺|

|𝑃|+|𝐺|
                       (2) 

Loss functions based on the Dice similarity coefficient have 
been proposed as alternatives to cross-entropy to improve 
training U-Net and other network architectures. However 
DSC, as the harmonic mean of precision and recall, weighs  
false positives (FPs) and false negatives (FNs) equally, 
forming a symmetric similarity loss function. To make a better 
adjustment of the weights of FPs and FNs (and achieve a better 
balance between precision and recall) in training fully 
convolutional deep networks for highly unbalanced data, 
where detecting small number of pixels in a class is important, 
we use an asymmetric similarity loss function [20] based on 
the 𝐹𝛽  scores to replace Dice similarity coefficient. 𝐹𝛽  scores 

is defined as:  

𝐹𝛽 = (1 +  𝛽2)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
       (3) 

By adjusting the hyperparameter β we can control the trade-
off between precision and recall (FPs and FNs). Equation (3) 
can be written as: 

𝐹(𝑃, 𝐺, 𝛽) =
(1+𝛽2)|𝑃𝐺|

(1+𝛽2)|𝑃𝐺|+𝛽2|𝐺 \ P|+|𝑃 \ G| 
  (4) 
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where |P \ G| is the relative complement of G on P. To define 
the 𝐹𝛽 loss function we use the following formulation: 

𝐹𝛽 =
(1+𝛽2) ∑ 𝑝𝑖,𝑗𝑔𝑖,𝑗

(1+𝛽2) ∑ 𝑝𝑖,𝑗𝑔𝑖,𝑗+𝛽2 ∑(1−𝑝𝑖,𝑗)𝑔𝑖,𝑗+∑ 𝑝𝑖,𝑗(1−𝑔𝑖,𝑗) 
 (5) 

The asymmetric 𝐹𝛽 loss function with the hyper-parameter 

β generalizes the Dice similarity coefficient and the Jaccard 
(IoU) index. More specifically, in the case of β =1 the score 
simplifies to be the Dice loss function (F1) while β = 2 
generates the F2 score and β = 0 transforms the function to 
precision. Larger β weighs recall higher than precision (by 
placing more emphasis on false negatives).  

We proposed a combination of cross-entropy loss and 
asymmetric 𝐹𝛽 loss function to reduce the negative aspects of 

the former. This is because asymmetric 𝐹𝛽 loss function can 

strongly measure the overlap between two objects, one is a 
prediction and the remaining is ground truth. The loss function 
is  defined as:  

𝐿 = 𝛼 ∗ 𝐶𝐸 + 𝐷𝐿                        (6) 
where CE is cross-entropy loss and DL=1-𝐹𝛽 is asymmetric 

𝐹𝛽 loss function, while hyperparameter α is used for 

balancing. Our experimental results prove that this loss 
function is more robust compared to the classical cross-
entropy loss function and basic dice loss function. We trained 
our U-net2 with different hyper-parameters α,β values and 
used CVC-ColonDB for testing. Appropriate values of the 
hyper-parameters can be defined based on class imbalance 
ratios, the best results were obtained from training our U-net 
2 model with α =0.4. and  β = 1.6. 

D. Ensemble models 

 In this work, we use two U-nets with different encoder 
structures (EfficientNet B5 and EfficientNet B4) for our polyp 
segmentation framework. The two CNN encoders compute 
different types of features due to differences in their number 
of layers and architectures. If U-net was initialized with 
different pre-trained backbone structure models, the network 
is therefore virtually guaranteed to converge to different 
solutions, although it uses the same training data, for example, 
U-net with EfficientNet B5 encoder produced better 
segmentation results than U-net with EfficientNet B4 encoder 
for some polyp images. Besides, a deeper CNN can compute 
a higher level of features from the input image while it loses 
some spatial information due to the contraction and pooling 
layers. Some polyps might be missed by one of the CNN 
models while it could be detected by another one. Based on 
these observations, we propose an ensemble method that 
combines the results of two U-nets for better performance. We 
use U-net with EfficientNet B5 (Unet1) encoder as the main 
model and its output is always relied on, and U-net with 
EfficientNet B4 encoder model (Unet2) as an auxiliary model 
to support the main model. We only take into account the 
outputs from the auxiliary model when the probability that 
pixel is polyp is > 0.96 (an optimized value using a validate 
dataset see section III-b) 

IV. EXPERIMENTS AND RESULTS 

A. Dataset  

We use well-known datasets from the MICCAI 2015 

polyp detection challenge in colorectal segmentation : CVC-

ClinicDB[7], ETIS-Larib[8], and CVC-ColonDB[9]. The 

datasets are briefly described in the following paragraphs. 

 CVC-ClinicDB contains 612 images, where all 
images show at least one polyp. The segmentation 
labels obtained from 31 colorectal video sequences 
were acquired from 23  patients. 

 ETIS-LaribPolypDB contains 196 images, where all 
images show at least one polyp. 

 CVC-ColonDB ontains 379 frames from 15 different 
colonoscopy sequences, where each sequence shows 
at least one polyp each.  

The datasets were obtained with different imaging 

systems and contain binary masks as the ground truths to 

indicate the location of the polyps for each image. All ground 

truths of polyp regions for these datasets were annotated by 

expert video endoscopists from the corresponding associated 

clinical institutions. There are similar image frames within 

the same colonoscopy dataset. Therefore, for more reliable 

evaluation, we assign the above-mentioned different datasets 

into training and testing set separately as the recommendation 

of the MICCAI challenge guidelines: CVC-CLINIC for 

training and ETIS-Larib for testing. Furthermore, we also 

report results from another public dataset (CVC-ColonDB) as 

a testing set.  

B. Evaluation metrics 

For the evaluation of polyp segmentation, we use a 
common segmentation evaluation metric similarity score Dice 
coefficient as the main metric. Furthermore, to provide a 
general view of the effectiveness of our method, we also 
employed interception over union (IoU), recall (Re) which is 
also known as sensitivity, precision (Prec) metrics to evaluate 
the proposed method. We use these metrics to compare our 
prediction results (PR) with the ground truth (GT). If a pixel 
of polyp is correctly classified, it is counted as a true positive 
(TP). Every pixel segmented as a polyp pixel that falls outside 
of a polyp mask counts as a false positive (FP). Finally, every 
polyp pixel that has not been detected counts as a false 
negative (FN). The evaluation metrics are calculated as 
follows: 

𝐷𝑖𝑐𝑒 =
2𝑃𝑅 ∩ 𝐺𝑇

|𝑃𝑅|+|𝐺𝑇|
                                (7) 

𝐼𝑜𝑈 =
𝑃𝑅∩𝐺𝑇

𝑃𝑅∪𝐺𝑇
                                    (8) 

 𝑅𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                    (9) 

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                  (10) 

C. Training details  

 We use the CVC-CLINIC for training, this dataset 
contains 32 different polyps presented in 612 images. The 
training set is split into 80% for learning the weights and 20% 
for validating our model during the training step. We use the 
pre-trained weights of the backbone models on ImageNet 
dataset as the training begins. We unfreeze the backbone 
model and update the entire network via Adam optimizer, the 
learning rate of Adam is set to 10-4. The model generated at 
the epoch with the max dice score on the validation set is used 
as our final mode. Furthermore, all algorithms have been 
programmed/trained using Keras and Tensorflow backend on 
a PC with a GeForce GTX 1080 Ti GPU. 
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D. Performance evaluation on CNN pre-trained encoders 

In this section, we reported the performance of U-net 
models for polyp segmentation with different pre-trained 
CNNs as encoders. In this experiment, we use the CVC-
ClinicDB dataset for training the models, ETIS-Larib and 
CVC-ColonDB for testing.  Table 1 presents our results using 
the ETIS-Larib dataset as the test set. Table 1 shows that U-
net with EfficientNet B4 and U-net with EfficientNet B5 have 
the best performance among the models, the U-net with 
EfficientNet B4 achieves the highest in all evaluation metrics, 
with a Dice of 81.13% and IoU of 69.6%, recall (Re) of 80.8%, 
precision(Pre) of 83.4%. Table 2 presents the experimental 
results on the CVC-ColonDB dataset. The table also shows 
that U-net with EfficientNet B4 and U-net with EfficientNet 
B5 have the best performance among the models, but the U-
net with EfficientNet B5 achieved the highest in all evaluation 
metrics, with a Dice of 87.69% and IoU 78.44%, recall of 
88.07%, precision of 83.40%. Moreover, examples of 
different segmentations produced by the different U-net 
networks could be depicted in Fig.6. The figure describes that 
U-net with EfficientNet B4 and U-net with EfficientNet B5 
can recognize the polyp mask as much as possible what others 
could not do. 

E. The effect of proposed loss function 

 We evaluated the effect of our proposed loss function on 
performance of the model, compare it with basic loss 
functions in polyp segmentation. The improvement of 
performance metrics are reported in Table 3 and Figure 7 
describes the comparison of effect to network learning 
progress between our proposed loss function and cross-
entropy loss function. Table 3 demonstrates that our proposed 
loss function reduces the negative aspects of the cross-
entropy, it makes a better balance between precision and recall 
so that the performance of models trained with our proposed 
loss function can improve. Comparing to using cross-entropy 
loss function for training model, using our proposed loss 
function with Unet1 (EfficientNetB4 encoder) could improve 
dice by 12.4% and IoU by 11%, and recall by 16.3% and with 
Unet2 (EfficientNetB5 encoder) could improve dice by 9.8%  
and IoU by 7%, and recall by 13.9%. Precision got decreased 
in both cases. 

TABLE 1. COMPARISON OF U-NET MODELS ON THE ETIS-LARIB 

Network Dice(%) IoU(%) Re(%) Pre(%) 

U-net_MobileNetV2 70.06 54.58 76.85 65.22 

U-net_Resnet50 68.16 52.26 69.03 68.55 

U-net_Resnet101 74.56 61.60 77.60 74.50 

U-net_EfficientNetB4 81.30 69.60 80.80 83.40 

U-net_EfficientNetB5 78.69 65.68 79.44 79.07 

TABLE 2. COMPARISON OF U-NET MODELS ON THE CVC-
COLONDB 

Network Dice(%) IoU(%) Re(%) Pre(%) 

U-net_MobileNetV2 83.21 71.67 88.72 78.85 

U-net_Resnet50 85.20 74.85 84.61 86.25 

U-net_Resnet101 86.22 76.75 90.01 83.91 

U-net_EfficientNetB4 86.96 77.26 87.55 86.80 

U-net_EfficientNetB5 87.69 78.44 88.07 87.78 

 
Fig.6. Example of different segmentations produced by the U-nets 

TABLE 3. THE EFFECT OF THE PROPOSED LOSS FUNCTION ON THE 
ETIS-LARIB 

Network Dice(%) IoU(%) Re(%) Pre(%) 

Unet1 with bce loss 68.90 58.60 64.60 86.50 

Unet1 with dice loss 73.69 58.72 64.94 86.29 

Unet1 with 𝐹𝛽 loss 78.10 64.29 71.50 86.62 

Unet1 with proposed loss 81.30 69.60 80.80 83.40 

Unet2 with bce loss 68.86 58.56 65.56 86.43 

Unet2 with dice loss   74.41 59.61 75.74 73.86 

Unet2 with 𝐹𝛽 loss 69.45 53.58 68.88 70.94 

Unet2 with proposed loss 78.70 65.70 79.40 79.10 

  

a) Basic cross-entropy loss function c) Proposed loss function 
Fig.7. The effect of proposed loss function to network learning progress 

on the same dataset by comparing to cross-entropy loss function. 

F. Ensemble Results 

 Our experiments show that segmentation performance can 
be improved by combining the output results of U-net models 
using our ensemble method. We used the validation set to 
select a suitable probability threshold for the auxiliary model. 
Based on this optimization step, the output of the auxiliary 
model is only taken into account when the probability that 
pixel is polyp is >0.96. Table 4 shows the results of the 
ensemble on the CVC-ColonDB. Table 4 illustrates that the 
auxiliary model could add a small improvement in the 
performance of the main model. The ensemble could improve 
Dice by 1.44% and IoU by 1.33%. 

G. Comparison with Other Methods 

 We evaluate our proposed segmentation method and 
compare it with the other competitor methods on the ETIS-
Larib dataset of the MICCAI challenge.  

TABLE 4. ENSEMBLE RESULTS OBTAINED ON THE CVC-COLONDB 
BY COMBINING THE RESULTS OF TWO U-NET MODELS 

Network Dice(%) IoU(%) Re(%) Pre(%) 

Unet1  86.54 76.76 89.61 84.24 

Unet2 87.69 78.44 88.07 87.78 

Ensemble  89.13 79.77 90.15 86.28 
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TABLE 5. COMPARISON OF THE PROPOSED METHOD WITH OTHER 
METHODS ON THE ETIS-LARIB 

Criterion Dice(%) IoU(%) Re(%) Pre(%) 

Qadir, Hemin Ali, et al[23] 70.40 61.20 72.60 80.00 

Kang, Jaeyong, et al[22]  66.10 74.40 73.80 

Proposed 82.25 70.24 87.78 77.85 

TABLE 6. COMPARISON OF THE PROPOSED METHOD WITH OTHER 
METHODS ON THE CVC-COLONDB 

Criterion Dice(%) IoU(%) Re(%) Pre(%) 

Akbari, Mojtaba, et al[21] 81.00 - 75.70 88.30 

Kang, Jaeyong, et al[22] - 69.46 76.25 77.92 

Proposed 89.13 79.77 90.15 86.28 

Our results are presented in Table 5. The table shows that our 
proposed model outperforms previous methods in the 
segmentation of colorectal polyps on the ETIS-Larib dataset 
Moreover, we also evaluated our network’s performance on 
the well-known dataset CVC-ColonDB, as shown in Table 6. 
Our proposed model achieves the highest in all metrics among 
the models. 

V. CONCLUSION 

In this paper we presented a transfer learning method 
based on U-net and EfficientNet model for colorectal polyp 
segmentation.We adapted and evaluated U-net with recent 
pre-trained CNN encoders i.e. MobileNetV2, Resnet50, 
Resnet101, EfficientNetB4 and EfficientNetB5  for polyp 
segmentation. We also presented a novel loss function to 
address unbalanced data problem and achieve better 
performance. Furthermore, we proposed an ensemble results  
method  to improve the performance of the models. The 
proposed framework consists of elements: 1) data 
augmentation, 2) two U-net with different backbone structures 
(EfficientNetB4 and EfficientNetB5) pre-trained on the 
ImageNet, and 3) the ensemble method  that  combined results 
from two U-net. Our method is validated using well known 
datasets from MICCAI 2015 polyp detection challenge. Our 
experimental results show that the proposed method 
outperforms the state-of-the-art polyp segmentation methods. 
Our research is still flawed, but we hope to try to break 
through existing research results in a variety of ways. To 
improve segmentation performance, we plan to explore other 
semantic segmentation models combining with our proposed 
loss function. Besides, we also continue to find other ensemble 
methods to boost performance of models. 
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