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Abstract
Amino acid substitution models represent substitution rates among amino acids during the evolution. The models play an 
important role in analyzing protein sequences, especially inferring phylogenies. The rapid evolution of flaviviruses is expand-
ing the threat in public health. A number of models have been estimated for some viruses, however, they are unable to properly 
represent amino acid substitution patterns of flaviviruses. In this study, we collected protein sequences from the flavivirus 
genus to specifically estimate an amino acid substitution model, called FLAVI, for flaviviruses. Experiments showed that 
the collected dataset was sufficient to estimate a stable model. More importantly, the FLAVI model was remarkably better 
than other existing models in analyzing flavivirus protein sequences. We recommend researchers to use the FLAVI model 
when studying protein sequences of flaviviruses or closely related viruses.
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Introduction

An amino acid substitution model is a 20  ×  20 matrix 
describing the substitution rates among 20 amino acids. 
Amino acid substitution models are essential for investigat-
ing the evolutionary relationships among species based on 
protein sequences. For example, maximum-likelihood phy-
logenetic tree reconstruction methods require amino acid 
substitution models for calculating the likelihood values of 
trees. Distance-based methods use amino acid substitution 
models to estimate pairwise distances between sequences. 
Using inappropriate nucleotide/amino acid substitution mod-
els would lead to wrong phylogenies (Posada and Crandall 
2001). Amino acid substitution models are also crucial for 
many other protein sequence analyses. For example, amino 
acid substitution models can be used as score matrices for 
protein sequence similarity search or protein sequence 

alignment. The roles and applications of the amino acid 
substitution models are summarized by (Thorne 2000).

A general time-reversible nucleotide substitution model 
consists of only 8 free parameters that can be easily esti-
mated from an alignment under the study. An amino acid 
substitution model contains 208 parameters, therefore, indi-
vidual alignments do not provide enough information for 
correctly estimating such large number of parameters. Thus, 
amino acid substitution models must be estimated from large 
protein datasets in advance. General amino acid substitution 
models such as LG (Le and Gascuel 2008) have been esti-
mated from multiple alignments including various species 
and suitable for analyzing general protein alignments.

Viruses have a short generation time and a large popula-
tion size, therefore, they can evolve quickly to adapt envi-
ronmental changes or immune responses from hosts. That 
results in various amino acid substitution patterns during 
the rapid evolution of viruses. A number of virus-specific 
amino acid substitution models have been estimated such 
as rtREV for retroviruses (Dimmic et al. 2002), HIVb and 
HIVw for HIV viruses (Nickle et al. 2007), FLU for influ-
enza viruses (Cuong et al. 2010). Experiments showed that 
the virus-specific models were better than general models 
when analyzing protein sequences from their corresponding 
viruses. For example, the FLU model is much better than 
other models in analyzing protein sequences from influenza 
viruses (Cuong et al. 2010).
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Recently, flaviviruses have remerged and caused life-
threatening outbreaks, especially in tropical and subtropical 
regions (Daep, Muñoz-Jordán, and Eugenin 2014; Hatcher 
et al. 2017). Hence, estimating an amino acid substitution 
model for flaviviruses is imperative to properly characterize 
the evolution of the viruses. We note that protein sequences 
are appropriate for studying viruses because the rapid evolu-
tion of viruses might make nucleotide sequences saturated. 
In this study, we collected available protein sequences from 
the flavivirus genus and employed the maximum-likelihood 
method to estimate an amino acid substitution model, called 
FLAVI. Experiments showed that FLAVI was robust and 
better than existing models in analyzing protein sequences 
from flaviviruses. The FLAVI model will enhance evolution-
ary studies of flaviviruses.

Material and Methods

Material

Flavivirus genus includes West Nile, Dengue, Zika, and 
some other viruses. They are small enveloped viruses whose 
complete genomes consist of from 9,500 to 12,500 nucleo-
tides. The RNA genome of these viruses encodes three struc-
tural proteins (i.e., E, PrM, and C) and seven non-structural 
proteins (i.e., NS1, NS2a, NS2b, NS3, NS4a, NS4b, and 
NS5) (Bollati et al. 2010).

The protein sequences of West Nile, Dengue, and Zika 
viruses are available from Virus Variation Resource at NCBI 
(https ://www.ncbi.nlm.nih.gov/genom es/Virus Varia tion/) 
(Hatcher et al. 2017). We downloaded all protein sequences 
(available up to April 2019) from the three viruses to form 
a dataset D of 11,392 distinct sequences (i.e., 603 Zika 
sequences, 2091 West Nile sequences, and 8698 Dengue 
sequences).

The protein sequences in D were randomly divided into 
two equal parts: one for training the model and the other for 
testing the model. All sequences from the same virus species 
and protein type in the training dataset were aligned together 
using the MUSCLE program (Edgar 2004) to create a mul-
tiple sequence alignment. As there were three virus species 
and 10 protein types, the training dataset consisted of 30 
training multiple sequence alignments. Similarly, the testing 
dataset included 30 testing alignments each corresponding 
to one protein type of a virus species.

Methods

Substitutions among amino acids during the evolution 
are modeled by a time-homogeneous, time-continuous, 
and time-reversible Markov process and described by a 
20 × 20 instantaneous substitution rate matrix Q = {qxy} 

where qxy represents the number of substitutions between 
two different amino acids x and y per a time unit ( qxx is 
assigned such that the sum of all elements on row x of 
matrix Q equals to zero). Since the amino acid substitu-
tion process is assumed to be time-reversible, the matrix Q 
can be decomposed into a symmetric exchangeability rate 
matrix R = {rxy} and an amino acid equilibrium frequency 
vector Π = {�x} . Technically, if x ≠ y, qxy = �yrxy , other-
wise, qxx = −

∑
yqxy . Note that in phylogenetic tree con-

struction, the branch lengths normally reflect the number 
of mutations, thus, the matrix Q is normalized as follows:

Given a dataset � = (D1,… ,Dn) of n multiple amino 
acid sequence alignments, let � = (T1,…Tn ) be the tree 
set corresponding to the dataset D, i.e., Ti is the tree of 
alignment Di . The maximum-likelihood estimation method 
determines the tree set T and a model M to maximize the 
likelihood value L(M,�;�) . We assume that the amino acid 
substitutions among alignments and sites are independent, 
thus, the likelihood value L(M,�;�) can be calculated as 
follows:

where li is the length of alignment Di ; and Dij is the data at 
site j of alignment Di . The likelihood value L(M, Ti;Dij) can 
be calculated by the conditional probability P(Dij|M, Ti) of 
data Dij given the model M and the tree Ti.

It is well-known that amino acid substitution rates vary 
among sites. We can properly incorporate the site rate het-
erogeneity by determining site rate models V = (V1,… ,Vn) 
for alignments D, i.e., Vi is the site rate model of alignment 
Di . Typically, a site rate model combines a gamma distri-
bution model and an invariant rate model (Yang 1993). 
The likelihood value L(M,�,�;�) is now technically cal-
culated as follows:

where P
(
Dij

|||M, Ti,Vi) is the conditional probability of 
data Dij given the model M, the tree Ti , and the site rate 
model Vi.

Estimating the parameters of a model M is computa-
tionally difficult because we have to simultaneously esti-
mate the trees T, the site rate models V and the amino 
acid substitution model M. A number of approximate 

Q =
Q

�
where� = −

∑
qxx
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maximum-likelihood methods have been proposed to esti-
mate parameters of a model M from large datasets (Whelan 
and Goldman 2001; Dang et al. 2011; Le and Gascuel 
2008). The methods showed that the parameters of model 
M can be accurately estimated using nearly optimal trees 
T and site rate models V. Thus, we can iteratively estimate 
the trees T, site rate models V and model M.

The most time-consuming step in the estimation pro-
cess is determining maximum-likelihood trees from large 
alignments. To overcome the obstacle, alignment-splitting 
algorithms have been proposed to divide large alignments 
into smaller alignments such that smaller alignments still 
contain sufficient phylogenetic information to estimate the 
model M while significantly reduce the time for construct-
ing maximum-likelihood trees (Dang et al. 2014).

The approximate maximum-likelihood procedure to 
estimate parameters of a model M from a set of protein 

alignments D is composed of three main steps (i.e., align-
ment splitting, tree construction, and model estimation) and 
illustrated in Fig. 1. The estimation procedure is described 
as following:

– Alignment splitting step The step divides large alignments 
in the training dataset D into smaller sub-alignments to 
avoid computational burden in building maximum like-
lihood trees. In this paper, we employed the tree-based 
splitting algorithm (Dang et al. 2014) to divide large 
training alignments into smaller sub-alignments each 
containing from 25 to 50 sequences. We obtained 150 
sub-alignments for estimating the parameters of M.

– Tree construction step The step builds maximum-likeli-
hood trees for sub-alignments. For each sub-alignment 
Di , we determined the best-fit models (i.e., the amino 
acid substitution model and the site rate model), and 

Fig. 1  An approximate 
maximum-likelihood proce-
dure to estimate an amino acid 
substitution model from a set of 
protein alignments
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consequently constructed the maximum-likelihood tree 
for Di. The best-fit amino acid substitution model for Di 
was selected from a set of models including the current 
model M and other existing models (i.e., FLU, HIVb, 
HIVw, JTT, WAG, LG) using the ModelFinder program 
(Kalyaanamoorthy et al. 2017). The maximum likelihood 
trees were constructed by the IQ-TREE program (Nguyen 
et al. 2015).

– Model estimation step The step estimates parameters of 
a new model M’ from the sub-alignments based on the 
trees and best-fit models obtained from the tree construc-
tion step. The parameters of M’ were estimated using 
QMaker (Bui Quang et al. 2020), our newly developed 
function in the IQ-TREE package.

  If the new model M’ is highly similar to the current 
model M (i.e., the correlation greater than 0.999), the 
estimation procedure stops and considers the model M’ 
as the final model. Otherwise, it assigns M by M’ and 
performs the tree construction and model estimation 
steps again. Normally, the estimation procedure stops 
after 3 iterations (Vinh et al. 2017; Dang et al. 2014; 
Cuong et al. 2010).

The script to estimate parameters of a model M from a 
training dataset is available at https ://githu b.com/thule km/
flavi .

An amino acid substitution model consists of 208 free 
parameters, i.e., 189 parameters from the matrix R, and 19 
parameters from the vector � , therefore, it is typically esti-
mated from large datasets. We assessed that if the collected 
flavivirus protein dataset was sufficient to estimate a sta-
ble model. To this end, we randomly divided the dataset D 
into two parts: the first part D1 used to estimate the model 
FLAVI-1, and the second part D2 used to estimate the model 
FLAVI-2. The correlation between FLAVI-1 and FLAVI-2 
models indicates the stability of FLAVI models.

We compared FLAVI with seven other models including 
three popular general models, i.e., JTT (Jones et al.1992), 
LG (Le and Gascuel 2008), and LG4X (Le et al. 2012), and 
four virus-specific models, i.e., FLU for influenza viruses 
(Cuong et al. 2010), HIVb/HIVw for HIV viruses (Nickle 
et al. 2007), and rtREV for retroviruses (Dimmic et al. 2002) 

on the testing dataset. Note that the LG4X is a mixture 
model that includes four different substitution rate matri-
ces corresponding to four different site rate categories. For 
each testing alignment, we used IQ-TREE to construct eight 
maximum-likelihood trees corresponding to eight models 
(the gamma distribution model with 4 categories and the 
invariant rate model were employed for the site rate hetero-
geneity). We compared the performance of different mod-
els using the Akaike information criterion (AIC) (Hirotugu 
1974), i.e., the smaller AIC score indicates the better model.

We also applied the approximately unbiased test (AU test) 
of phylogenetic tree selection (Hidetoshi Shimodaira 2002) 
to examine if the tree constructed with the best model was 
significantly better than trees constructed with other mod-
els. Technically, given a testing alignment, we constructed 
maximum likelihood trees with different models, and sub-
sequently used the CONSEL program (H. Shimodaira and 
Hasegawa 2001) for assessing the confidence levels of the 
models.

Results and Discussions

Model Analysis

FLAVI-1 and FLAVI-2 models were estimated from D1 and 
D2 datasets, respectively. The Pearson correlation between 
FLAVI-1 and FLAVI-2 models was over 0.99 (i.e., the cor-
relation between two exchangeability rate matrices was 
0.994; the correlation between two amino acid frequency 
vectors was 0.991). The high correlation between FLAVI-1 
and FLAVI-2 models affirmed that the collected dataset was 
sufficient to estimate a stable model for flaviviruses.

Table 1 shows the correlations among models. Generally, 
the existing models are not highly correlated (e.g., the cor-
relation between LG and HIVb is only 0.8), even between 
virus-specific models (e.g., the correlation between HIVb 
and FLU is 0.86). The correlations between FLAVI and 
existing models ranges from 0.67 (rtREV) to 0.92 (FLU) 
indicating that FLAVI is not highly correlated with the exist-
ing models. We note a very low correlation between FLAVI 
and rtREV that might be due to the lack of retrovirus protein 

Table 1  The Pearson 
correlations between FLAVI 
and other models. The values 
in the top triangle represent 
the correlations between 
exchangeability matrices, 
while values in the low triangle 
are the correlations between 
frequency vectors

FLAVI JTT LG HIVw HIVb FLU rtREV

FLAVI – 0.88 0.77 0.89 0.91 0.92 0.67
JTT 0.90 – 0.91 0.80 0.90 0.87 0.83
LG 0.85 0.96 – 0.65 0.80 0.81 0.95
HIVw 0.59 0.58 0.55 – 0.85 0.84 0.54
HIVb 0.86 0.88 0.89 0.66 – 0.86 0.71
FLU 0.73 0.80 0.72 0.84 0.72 – 0.75
rtREV 0.80 0.86 0.87 0.59 0.90 0.67 –

https://github.com/thulekm/flavi
https://github.com/thulekm/flavi
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sequences (i.e., only 33 sequences) used for estimating the 
rtREV model. As anticipated, the correlations between 
FLAVI with general models are remarkably low (i.e., 0.76 
between FLAVI and LG or 0.88 between FLAVI and JTT) as 
the general models were estimated from diverse datasets and 
unable to properly reflect the rapid changes of flaviviruses. 
As the mixture model LG4X consisted of four matrices, we 
did not measure the correlation between FLAVI and LG4X.

The amino acid frequencies and exchangeability rates 
of FLAVI, HIVb, and LG are illustrated in Figs. 2 and 3, 
respectively. We observe a number of notable differences 
between these models. For example, the frequency of M 
(methionine) in FLAVI is about twice higher than that in 
HIVb; or the substitution rate between amino acid A (ala-
nine) and amino acid V (valine) in the FLAVI is much higher 
than those in HIVb and LG. Figure 4 illustrates a deeper 
look at the relationships between these models. A large num-
ber of big circles in the figure indicate the high discrepancy 
between models. For example, nearly half of the entries in 
the FLAVI matrix are at least five times smaller or greater 
than the corresponding elements in the HIVb matrix. 

Table 2 summarizes comparisons between FLAVI, HIVb, 
and LG models. The results confirm that the existing models 
are remarkably different from the FLAVI model, thus, they 
are unable to properly represent the amino acid substitution 
process of flaviviruses.

Model Performance

We compared the performance of FLAVI and other models 
in building maximum-likelihood trees from the testing data-
set, i.e., we assessed whether FLAVI enables us to produce 
trees with better AIC score. We also examined the difference 
between tree topologies constructed by FLAVI and other 
models. Specifically, for each model we computed the aver-
age AIC score of trees constructed from the testing dataset 

(see Table 3). On average, FLAVI produced better trees than 
other models. HIVb and FLU were the second and third 
best models, respectively. As anticipated, the virus-specific 
models except rtREV were better than general models in 
building maximum-likelihood trees for flaviviruses. The 
rtREV model was worse than other models as it was esti-
mated from an insufficient dataset. The poor performance of 
rtREV warns that amino acid substitution models must be 
estimated from reasonably large datasets.

We also compared the performance of FLAVI and other 
models at the individual alignment level. The FLAVI model 
found the best trees for 28 out of 30 testing alignments and 

Fig. 2  The amino acid frequen-
cies of FLAVI, LG and HIVb 
models

Fig. 3  The exchangeability rates in FLAVI, HIVb and LG models. 
The black, grey and white circles at row X and column Y represent the 
exchangeability rates between amino acids X and Y in FLAVI, LG, 
and HIVb models, respectively
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the second-best trees for the two remaining alignments. 
The HIVb model was the second-best model for building 
maximum-likelihood trees, i.e., finding the best trees for 2 
out of 30 alignments, and the second-best trees for 18 other 
alignments.

Figure 5 shows the comparison between FLAVI and 
HIVb (i.e., the second-best model). The FLAVI model was 
better than the HIVb model for 28 testing alignments. The 
AU tests showed that trees constructed with FLAVI were 
significantly better (i.e., 0.95 confidence level) than trees 
constructed with HIVb for 16 cases. There were 12 cases 
that trees constructed with FLAVI had higher likelihood val-
ues, however, they were not significantly better than trees 
constructed with HIVb. Analyzing the trees revealed that 
they have polytomy-like topologies, i.e., external branches 
connecting leaves are much longer than internal branches.

Although the number of protein sequences from Zika, 
West Nile and Dengue viruses in the training dataset were 
unbalanced (i.e., 5.3% Zika sequences, 18.3% West Nile 
sequences, and 76.4% Dengue sequences), the FLAVI model 
performed well on testing alignments from all three virus 
kinds. Specifically, FLAVI outperformed the other mod-
els for all Dengue and West Nile testing alignments. It was 

Fig. 4  The left figure is the relative differences between exchange-
ability coefficients in FLAVI and HIVb. Each bubble represents the 
value of 

(
FLAVI

XY
− HIVb

XY

)
∕
(
FLAVI

XY
+ HIVb

XY

)
 . Values 1/3 

and 2/3 mean that the coefficient in FLAVI is two and five times 

larger than that in HIVb, respectively. Values −1∕3 and −2∕3 mean 
that the coefficient in FLAVI is two and five times smaller than that 
in HIVb, respectively. Similar explanations for the right figure but 
between FLAVI and LG

Table 2  Relative differences between FLAVI vs HIVb and 
FLAVI vs LG models. The number at row “Twice” and column 
“FLAVI > HIVb” is the number of coefficients in FLAVI that are at 
least twice larger than that in HIVb. Similar explanations for other 
numbers in the table

FLAVI > HIVb HIVb > FLAVI FLAVI > LG LG > FLAVI

Twice 31 96 24 120
Five 18 71 7 92

Table 3  The comparisons between FLAVI and other models in build-
ing maximum-likelihood trees on 30 testing alignments. The smaller 
AIC value, the better the model

AIC per alignment AIC per site

FLAVI 6649 34.8
HIVb 6722 35.2
FLU 6745 35.3
JTT 6771 35.5
HIVw 6799 35.6
LG4X 6861 35.9
LG 6889 36.1
rtREV 6964 36.5
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the best model for 8 out of 10 Zika tests. In addition, we 
estimated the Dengue model using only Dengue training 
alignments, and subsequently measured its performance on 
West Nile and Zika testing alignments. The Dengue model 
outperformed the other existing models (i.e., FLU, HIVb, 
HIVw, rtREV, JTT, LG, LG4X) on 18 out of 20 West Nile 
and Zika tests. It was the second-best model for the two 
remaining tests. From the results, it can be extrapolated that 
the FLAVI model will perform well not only for three kinds 
of flaviviruses in the training dataset but also for other fla-
vivirus types.

Conclusions

Flavivirus genus, including emerging viruses such as West 
Nile, Dengue, or Zika, are causing an expanding threat in 
the public health. We collected available protein sequences 
of flaviviruses to estimate the FLAVI amino acid substitu-
tion model. Experiments confirmed that the collected dataset 
was sufficient to estimate a stable model. The FLAVI model 
is remarkably different from the existing models including 
general models and virus-specific models. Thus, the FLAVI 
model should be used to properly describe the amino acid 
substitution process of flaviviruses.

Experiments showed that FLAVI was better than other 
models in analyzing flavivirus protein sequences. FLAVI 
helped produce better phylogenetic trees than the existing 
models in almost all testing alignments indicating the fit-
ness of FLAVI for flavivirus protein sequences. The FLAVI 
model should be used as the default model for analyzing 
protein sequences from flaviviruses. As FLAVI might not 
be the best-fit model for some cases, researchers might use 

model selection programs such as ModelFinder to determine 
the best-fit model for alignments under the study.

The discrepancy between trees constructed with FLAVI 
and other models was considerably high. The average 
normalized Robinson–Foulds distance (Robinson and 
Foulds 1981) between trees constructed with FLAVI and 
other models ranged from 0.61 to 0.66 (e.g., the average 
Robinson–Foulds distance between FLAVI-based trees 
and HIVb-based trees was 0.63). The high discrepancy 
between trees constructed with different models implied 
that trees constructed with the existing models contained a 
considerable number of incorrect clades (Vinh et al. 2017). 
Examining two trees constructed from all three Dengue, 
West Nile and Zika virus types based on the FLAVI and 
HIVb models revealed that both trees were able to cor-
rectly classify sequences from three virus types into three 
distinct clades. The large Robinson–Foulds distance 
between the trees was due to short branches inside the 
clades (i.e., the average branch length was about 0.006). 
As the existing models were not estimated from flavivirus 
data, they were unable to correctly resolve the relation-
ships among closely related sequences from the same virus 
type.

The total length of trees with FLAVI (i.e., 63.4) was 
longer than that of trees with the other models (i.e., ranged 
from 55.6 to 61.3). The results indicated that FLAVI 
helped properly model the rapid evolution of flaviviruses. 
The flavivirus trees might contain polytomy-like struc-
tures, therefore, we should use standard nonparametric 
bootstrap method (Felsenstein 1985) or fast approximation 
bootstrap method (Hoang et al. 2017) to assess the reliabil-
ity of clades in the maximum-likelihood constructed trees.
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Fig. 5  The comparison between 
FLAVI and HIVb models in 
building maximum-likelihood 
trees on Dengue, West Nile and 
Zika testing alignments. Better: 
the tree has higher likelihood 
value. Significant better: the tree 
has significant higher likelihood 
value using the approximately 
unbiased test
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