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Abstract
Maximum likelihood (ML) analysis of nucleotide or amino-acid alignments is widely used to infer evolutionary relation-
ships among species. Computing the likelihood of a phylogenetic tree from such alignments is a complicated task because 
the evolutionary processes typically vary across sites. A number of studies have shown that partitioning alignments into 
sub-alignments of sites, where each sub-alignment is analyzed using a different model of evolution (e.g., GTR + I + G), is a 
sensible strategy. Current partitioning methods group sites into subsets based on the inferred rates of evolution at the sites. 
However, these do not provide sufficient information to adequately reflect the substitution processes of characters at the sites. 
Moreover, the site rate-based methods group all invariant sites into one subset, potentially resulting in wrong phylogenetic 
trees. In this study, we propose a partitioning method, called mPartition, that combines not only the evolutionary rates but 
also substitution models at sites to partition alignments. Analyses of different partitioning methods on both real and simulated 
datasets showed that mPartition was better than the other partitioning methods tested. Notably, mPartition overcame the pitfall 
of grouping all invariant sites into one subset. Using mPartition may lead to increased accuracy of ML-based phylogenetic 
inference, especially for multiple loci or whole genome datasets.

Keywords  Alignment partitioning · Maximum likelihood phylogenetic inference · Substitution model · Site rate model

Background

Phylogenetic inference is a powerful approach to study 
the evolutionary relationships among species. The maxi-
mum likelihood (ML) method is among the most popular 
approaches to infer phylogenetic trees from nucleotide and 
amino-acid sequences (Felsenstein 2003; Lemey et al. 2009). 
The accuracy of ML-based phylogenetic inference relies on 
a number of factors including the size of alignments (i.e., 
the number of sites and sequences), tree building methods 
(e.g., IQ-TREE or PhyML), and models of sequence evolu-
tion (e.g., GTR + I + G4 or HKY + G4). The advancement of 
sequencing technologies has created large datasets for infer-
ring phylogenetic trees. Efficient ML methods have been 

developed to build phylogenetic trees from large datasets; 
these include PhyML (Guindon and Gascuel 2003), IQPNNI 
(Vinh and von Haeseler 2004), RAxML (Stamatakis 2015), 
and IQ-TREE (Minh et al. 2020). Using different models 
of evolution to analyze a given dataset might produce sig-
nificantly different trees (Frandsen et al. 2015; Kainer and 
Lanfear 2015; Le and Gascuel 2008; Rota et al. 2018). The 
misspecification of evolutionary models often results in sys-
tematic errors, such as strong supports of incorrect clades in 
the constructed trees (Hoang et al. 2017), especially for large 
datasets, including multiple loci or whole genomes (Kumar 
et al. 2012; Rodréguez-Ezpeleta et al. 2007).

It is well known that the evolutionary processes among 
sites rarely are homogeneous (i.e., the evolutionary rates 
often vary among sites). Currently, two main approaches to 
model rate heterogeneity among sites are the mixture model 
approach (Le et al. 2012; Pagel and Meade 2004) and the 
partitioning approach (Frandsen et al. 2015; Lanfear et al. 
2012; Nylander et al. 2004; Rota et al. 2018). The mixture 
model approach uses several models to calculate the likeli-
hood value of each site. On the other hand, the partitioning 
approach accounts for the heterogeneity among sites by clas-
sifying sites into several disjoint subsets (a partition scheme) 
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such that sites in the same subset are assumed to evolve 
under the same model of evolution. In other words, sites 
that are under the same evolutionary process are grouped 
together. The partitioning approach has been more widely 
used than the mixture model approach in ML phylogenetic 
analyses due to its computational efficiency and software 
availability. However, the recent implementation of a mix-
ture model, i.e., GHOST (Crotty et al. 2020), in the IQ-
TREE package allows users to efficiently build ML trees 
with the mixture model.

Simple partitioning methods use biological properties of 
sites such as gene boundaries or codon positions (Brandley 
et al. 2005; Lartillot and Philippe 2004; Nylander et al. 2004; 
Yang 1996) to group sites into similar subsets. The codon-
based method groups sites at the same codon position into 
one subset. Although sites at the same codon position share 
some common features, the assumption that all sites at the 
same codon position evolved under the same model of evolu-
tion is not always biologically realistic. They might evolve 
at different rates and follow different substitution patterns. 
Moreover, the biological information is not always available 
for partitioning sites, so computational methods are required 
to automatically partition alignments.

A number of studies have proposed computational meth-
ods to automatically cluster sites based on the evolutionary 
rates of sites (Frandsen et al. 2015; Rota et al. 2018). The 
site rate-based methods cluster sites into groups based on the 
assumption that sites have similar evolutionary rates should 
be in the same subset. Specifically, the k-means algorithm 
(Frandsen et al. 2015) iteratively clusters sites into subsets of 
similar site rates. Grouping all invariant sites into one subset 
is a critical pitfall of the k-means algorithm because sites 
might be invariant in the dataset under the study, but might 
vary in larger datasets. The pitfall might increase the likeli-
hood of tree, but result in biased trees (Baca et al. 2017; Rota 
et al. 2018). Therefore, since 2017 the k-means algorithm 
is no longer recommended. To diminish the problem, the 
RatePartition algorithm (Rota et al. 2018) employs a simple 
formula to divide sites into subsets such that the first subset 
includes not only all invariant sites but also some additional 
sites with the slowest evolutionary rates. During a prelimi-
nary study of this algorithm, we found that the accuracy of 
RatePartition was affected by the division factor parameter 
d , which controls the number of partitions in the partition 
scheme. A higher d value results in a greater number of 
partitions, hence, the change of d value affects the accuracy 
of RatePartition.

The evolutionary rates of different sites provide useful 
signals for partitioning sites; however, that information is 
unable to represent the substitution processes of characters 
(nucleotide or amino-acids). The substitution process at a 
site can be modeled by a Markov process and described by 
a substitution model M , which represents the instantaneous 

substitution rates between characters. The substitution mod-
els at sites provide crucial signals for partitioning sites. Our 
proposed mPartition method combines information from 
both the evolutionary rates at sites (i.e., the inferred rate 
of evolution at the sites) and substitution models (i.e., the 
substitution rates among nucleotides or amino-acids) to 
cluster sites into subsets such that sites in the same subset 
have a similar evolutionary rate and substitution model. We 
examined the accuracy of mPartition and other partitioning 
methods on both nucleotide datasets obtained from the paper 
describing the RatePartition method (Rota et al. 2018) and 
amino-acid datasets consisting of multiple loci alignments 
selected from previous studies. We analyzed the distribu-
tion of invariant sites from the mPartition method to assess 
its ability to overcome the pitfall of grouping all invariants 
into one subset.

Methods and Material

Methods

Given a multiple sequence alignment A =
{
a1,… , al

}
 of l 

sites, the ML tree reconstruction method normally deter-
mines a tree T  and a substitution model M and a site rate 
model V to maximize the likelihood L(A|T ,M,V) . The 
substitution model M represents substitution rates between 
characters during the evolution that is usually simplified 
and modeled by a time-homogeneous and time-reversible 
Markov process. Technically, the substitution model M is 
described by a n × n instantaneous substitution rate matrix 
Q =

{
qxy

}
 , where qxy represents the number of substitu-

tions between two different characters x and y per time unit 
( n = 4 for nucleotides; and n = 20 for amino-acids). The site 
rate model V describes the rate heterogeneity among sites 
(i.e., different evolutionary rates among sites). Typically, 
a site rate model V combines a Γ distribution rate model 
and an invariant rate model (Yang 1993). Alternatively, the 
probability-distribution-free model may be used to describe 
the rate heterogeneity among sites (Kalyaanamoorthy et al. 
2017).

We assume that the substitution processes among sites 
are independent, so the likelihood value L(A|T ,M,V) can 
be calculated as follows:

where the likelihood value L(ai|T ,M,V) can be calculated 
by the conditional probability P(ai|T ,M,V) of data ai given 
tree T, substitution model M, and site rate model V.

The alignment partitioning methods divide sites into sev-
eral disjoint subsets such that sites in the same subset are 
assumed to evolve under a similar site rate and substitution 

L(A|T ,M,V) =
∏l

i=1
L(ai|T ,M,V) ∝

∏l

i=1
P(ai|T ,M,V)
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model. The disjoint subsets are called a partition scheme. Let 
S = {S1,… , Sp} be a partition scheme of p subsets satisfying 
that each site of alignment A belongs to one and only one 
subset of partition scheme S. Let M = {M1,… ,Mp} be a set 
of substitution models, where Mi is the substitution model 
for subset Si . Similarly, let V = {V1,… ,Vp} be a set of site 
rate models, where Vi is the site rate model for subset Si . The 
likelihood value L(S|T ,M,V) can be calculated as follows:

where li is the number of sites in subset Si;Sij is the data at 
the jth site of subset Si ; and P(Sij|T ,Mi,Vi) is the conditional 
probability of data Sij , given tree T  , substitution model Mi , 
and site rate model Vi.

Given an alignment A, the partitioning methods deter-
mine the best partition scheme S for A by maximizing the 
likelihood value L(S|T ,M,V) . Note that information-theo-
retic metrics [i.e., the corrected Akaike information criterion 
(AICc) (Hurvich and Tsai 1989) and the Bayesian informa-
tion criterion (BIC) (Dziak et al. 2020; Schwarz 1978)] are 
normally used to measure the fitness of models M and V 
with different number of free parameters.

The mPartition algorithm starts from a partition scheme 
with only one subset consisting of all sites, and iteratively 
partitions current subsets into new smaller subsets to 
decrease the total BIC score of the current partition scheme. 
To partition a subset, the mPartition algorithm clusters 
its sites into three subsets (i.e., assigning sites with slow, 
medium, and fast evolutionary rates to slow-rate, medium-
rate, and fast-rate subsets, respectively). This step is simi-
lar to site rate-based partitioning methods. The Tree Inde-
pendent Generation of Evolutionary rates (TIGER) method 
(Cummins and McInerney 2011) is widely used to estimate 
the evolutionary rates of sites because it uses the composi-
tion of character patterns in the alignment without employ-
ing any tree to avoid the tree bias (Frandsen et al. 2015; Rota 
et al. 2018).

The key difference between mPartition and other site 
rate-based algorithms is the re-partitioning step based on 
the best-fit models (i.e., including both site rate model and 
substitution model) of the sites. Moreover, we apply the like-
lihood-mapping idea (Strimmer and von Haeseler 1997) to 
distribute invariant sites into different subsets proportional 
to their likelihood values in order to overcome the pitfall of 
grouping all invariant sites into one subset.

The mPartition algorithm is composed of four steps and 
described as follows:

1.	 Initial step: Let S be a partition scheme. Each subset 
in S is labeled either “partitioned” (i.e., not under the 
partitioning process anymore) or “partitioning” (i.e., 

L(S|T ,M,V) =
∏p

i=1

∏li

j=1
L
(
Sij|T ,Mi,Vi

)
∝
∏p

i=1

∏li

j=1
P
(
Sij|T ,Mi,Vi

)

being under the partitioning process). Initially, S = {A} 
(i.e., the initial scheme has only one subset containing 
all sites of alignment A), and the subset A is labeled 
“partitioning.” Compute evolutionary rates for all sites 
of A using the TIGER algorithm. Construct a tree T from 
the alignment A.

2.	 Partitioning by site rates: Let S be a “partitioning” sub-
set of S . Let r(Sj) be the rate of site Sj in S ; rmax and rmin 

be the highest and lowest site rates for S , respectively. 
Note that the site with the fastest evolutionary rate has 
the smallest TIGER rate value. We cluster the sites of 
S into three subsets: high-rate subset ( P1 ), medium-rate 
subset ( P2 ), and low-rate subset ( P3 ). Technically, the 
site Sj is clustered into subset g(Sj) as follows:

	   where k = rmax−rmin

3
 is one third the difference between 

rmax and rmin.
3.	 Re-partitioning by models: Reoptimize branch lengths 

of the tree T with respect to “partitioning” subset S. 
Determine the best-fit models for new partitioned sub-
sets P1, P2, and P3 using the ModelFinder algorithm 
( K a l y a a n a m o o r t h y  e t   a l .  2 0 1 7 ) .  L e t (
M1, V1

)
,
(
M2, V2

)
, and (M3,V3) be the best-fit models 

for subsets P1, P2, and P3, respectively. For each site Sj, 
we calculate likelihood values L(Sj

|||T , M1, V1), 
L(Sj

|||T ,M2,V2) and L(Sj
|||T ,M3,V3) . If Sj is a variant site, 

re-assign Sj to the highest likelihood subset. Otherwise 
(i.e., Sj contains only one nucleotide/amino-acid type), 
re-assign Sj to subset Px with a probability px propor-
tional to its likelihood value computed as follows:

	   The re-assigning strategy will partition invariant sites 
into different subsets to overcome the pitfall of assign-
ing all invariant sites into one subset. To avoid creat-
ing small subsets, if a subset Px has less than 50 sites 
[the same threshold as used in (Tagliacollo and Lanfear 
2018)], the subset Px will be removed from the partition 
scheme by re-assigning all sites in Px to other subsets.

	   If the total BIC score of new subsets P1,P2, and P3 
is better than the BIC score of subset S , replace subset 
S by the new subsets P1,P2, and P3 and label them as 

g
�
Sj
�
=

⎧
⎪⎨⎪⎩

P1 ∶ r
�
Sj
�
< rmin + k

P2 ∶ rmin + k ≤ r
�
Sj
�
< rmin + 2 × k

P3 ∶ rmin + 2 × k ≤ r
�
Sj
�

px = L(Sj
|||T ,Mx,Vx)∕

∑
v=1…3

L(Sj
|||T ,Mv,Vv)
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“partitioning” subsets. Otherwise, change the label of S 
into “partitioned.”

4.	 Stopping partitioning: If all subsets in the partition 
scheme S were labeled “partitioned”; combine all invari-
ant subsets into one subset; and finish the partitioning 
process and consider S as the final partition scheme. 
Otherwise, go to the step 2.

Materials and Experiment Settings

We tested the mPartition algorithm and other partition-
ing methods on both DNA and protein datasets. The DNA 

datasets were obtained from the study of RatePartition 
method including both simulated and real alignments (Rota 
et al. 2018). The protein datasets included real protein align-
ments published in previous studies (Ballesteros and Sharma 
2019; Chen et al. 2015; Irisarri et al. 2017; Ran et al. 2018; 
Wu et al. 2018).

Simulated DNA Data

The simulated DNA alignments were generated follow-
ing 17-leaf trees with both symmetrical and asymmetrical 
topologies, different branch lengths, nucleotide substitution 
models, and site rate models (see the RatePartition paper 
for more details (Rota et al. 2018)). They created 14 sub-
datasets each consisted of 20 alignments. Each alignment 
had four equal partitions of 1000 base pairs simulated under 
the same substitution model (i.e., F81 or GTR) but with dif-
ferent base frequencies and nucleotide substitution rates. The 
invariant rate and Gamma distribution rate models were used 
in the simulations with different proportion of invariant sites 
and Gamma distribution shapes.

They also created 40 alignments with missing data by 
randomly removing one of four partitions from some align-
ments to examine the effect of missing data. In total, the 
simulated DNA dataset contained 320 alignments.

For each simulated DNA alignment, we evaluated dif-
ferent partition schemes: the true partition scheme with 
four equal partitions; four partition schemes generated by 
the RatePartition algorithm with different divide factors 

Table 1   The real DNA alignments obtained from the RatePartition 
paper

Alignments #Taxa #Loci #Sites

Arctiina (Katja et al. 2016) 113 8 5809
Calisto (Matos-Maraví 2014) 90 6 5297
Choreutidae (Rota and Wahlberg 2012) 41 8 6293
Coenonymphina (Kodandaramaiah et al. 

2009)
69 5 4435

Geometridae (Sihvonen et al. 2011) 164 8 5998
Morpho (Penz, Devries, and Wahlberg 2012) 31 8 6372
Noctuidae (Zahiri et al. 2013) 78 8 6365
Pieridae (Wahlberg et al. 2014) 110 8 6247

Table 2   The real protein 
alignments for examining 
different partitioning methods

Datasets Clade Papers #Taxa #Loci #Sites

Ballesteros10 Sea spiders (Ballesteros and Sharma 2019) 53 10 4046
Ballesteros20 Sea spiders (Ballesteros and Sharma 2019) 53 20 8575
Ballesteros30 Sea spiders (Ballesteros and Sharma 2019) 53 30 17045
Ballesteros40 Sea spiders (Ballesteros and Sharma 2019) 53 40 21998
Chen10 Mammals (Chen et al. 2015) 58 10 3967
Chen20 Mammals (Chen et al. 2015) 58 20 6403
Chen30 Mammals (Chen et al. 2015) 58 30 13267
Chen40 Mammals (Chen et al. 2015) 58 40 15278
Irissari10 Jawed vertebrates (Irisarri et al. 2017) 100 10 6027
Irissari20 Jawed vertebrates (Irisarri et al. 2017) 100 20 8509
Irissari30 Jawed vertebrates (Irisarri et al. 2017) 100 30 13183
Irissari40 Jawed vertebrates (Irisarri et al. 2017) 100 40 15698
Ran10 Seed plants (Ran et al. 2018) 38 10 3062
Ran20 Seed plants (Ran et al. 2018) 38 20 6897
Ran30 Seed plants (Ran et al. 2018) 38 30 10443
Ran40 Seed plants (Ran et al. 2018) 38 40 14749
Wu10 Mammals (Wu et al. 2018) 90 10 5148
Wu20 Mammals (Wu et al. 2018) 90 20 12225
Wu30 Mammals (Wu et al. 2018) 90 30 18088
Wu40 Mammals (Wu et al. 2018) 90 40 24423
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d = 2, 3, 4, and 5 ; and the partition scheme resulted from 
our mPartition method. For each partition scheme, a ML 
tree was constructed using IQ-TREE (Minh et al. 2020), 
and subsequently compared with the topology of the true 
tree (i.e., the tree used to simulate the alignment) using the 
normalized Robinson–Foulds (RF) distance (Robinson and 
Foulds 1981).

Real DNA Data

The real DNA dataset comprised of eight DNA alignments 
each including one mitochondrial gene (COI) and four to 
seven nuclear genes commonly used in lepidopteran phylo-
genetics (see Table 1). The alignment varied in lengths (from 
4435 to 6372 sites) and in the number of sequences (from 
31 to 164). During the preliminary analyses of these data, 
the RatePartition algorithm gave better results than other 
feature-based partition methods based on gene boundaries 

Table 3   The average 
normalized Robinson–Foulds 
(RF) distances between the true 
trees and those constructed with 
different partition schemes on 
the simulated DNA alignments

TruePartition mPartition RP2 RP3 RP4 RP5

Average nor-
malized RF 
distance

0.095 0.115 0.141 0.140 0.141 0.142

Average number 
of partitions

4 9.6 6.8 9.8 13.2 16.1

Fig.1   The average normalized Robinson–Foulds distances between the true trees and those inferred from the simulated DNA sub-datasets. AS 
simulations with asymmetrical trees (AS); SS simulations with symmetrical trees; miss: missing data; RP2: RatePartition with d = 2

Table 4   The AICc and BIC 
scores of different partitioning 
methods for the real DNA 
datasets

The smaller AICc (BIC) score, the better method. The best AICc and BIC scores are in bold
NP no-partition; RP4 (RP5) RatePartition with d = 4(d = 5)

Datasets AICc BIC

NP RP4 RP5 mPartition NP RP4 RP5 mPartition

Arctiina 102,857 101,410 101,225 99,680 104,417 103,641 103,533 101,376
Calisto 86,492 85,122 85,162 83,037 87,733 86,869 87,060 84,394
Choreutidae 121,888 115,505 115,381 113,260 122,486 117,065 117,211 114,351
Coenonymphina 128,991 125,154 125,319 121,272 129,946 126,699 126,999 122,507
Geometridae 384,948 377,148 377,117 375,178 387,217 380,356 380,482 377,589
Morpho 58,872 55,862 55,756 52,633 59,351 57,095 57,122 53,539
Noctuidae 206,920 203,296 203,031 192,260 208,080 205,614 205,719 193,705
Pieridae 277,253 271,196 271,271 268,750 278,805 274,178 274,553 270,421
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and/or codon positions on the real DNA alignments (Rota 
et al. 2018). It was also noted that d = 4 and d = 5 were 
the best settings for the RatePartition algorithm for the real 
DNA dataset. Therefore, we compared 4 partition schemes: 
mPartition, RatePartition with d = 4(RP4) and d = 5(RP5) , 
and no-partition. For each partition scheme, a ML tree was 
constructed using IQ-TREE (Minh et al. 2020). The AICc 
scores (Hurvich and Tsai 1989) and BIC scores (Schwarz 
1978) of constructed trees were used to compare different 
partition schemes.

Real Protein Data

We compared the partitioning methods on five real concat-
enated protein alignments obtained from previous studies 
(see Table 2), i.e., sea spiders, arachnids and several extinct 
lineage (Ballesteros and Sharma 2019), mammals (Wu et al. 
2018), seed pants (Ran et al. 2018), and jawed vertebrates 
(Chen et  al. 2015; Irisarri et  al. 2017). The alignments 
consisted 38 to 100 taxa with thousands of loci. As it was 
computational burden to examine many different partition 
schemes on alignments with thousands of loci, we gener-
ated smaller alignments concatenated from 10, 20, 30, and 
40 randomly selected loci. Note that the 40 loci alignment 
did not include the 10, 20, or 30 loci alignments. In total, we 
had 20 real concatenated protein alignments for testing the 
mPartition and RatePartition methods.

For real protein alignments, the mPartition algorithm 
selected the best-fit model for a subset from three common 
general amino-acid substitution models, i.e., LG (Le and 
Gascuel 2008), JTT (Jones et al. 1992), and WAG (Whelan 
and Goldman 2001). As the RatePartition algorithm has 
not been investigated on real protein data, we evaluated 
its performance with different d values, i.e., d = 2(RP2)

, d = 3(RP3) , d = 4(RP4) , and d = 5(RP5) . We employed 
IQ-TREE to construct ML trees and used the AICc and BIC 

scores of constructed trees to compare the goodness of dif-
ferent partition schemes.

Results and Discussions

Simulated DNA Data

We compared normalized RF distances between the true 
trees and those constructed from true partition schemes 
(TruePartition), partition schemes created by RatePartition, 
and partition schemes created by mPartition (see Table 3). 
Note that the smaller normalized RF distance to the true 
tree indicates the better partition scheme. Specifically, the 
average normalized RF distances between the true trees to 
those constructed with partition schemes from TruePartition, 
RatePartition, and mPartition were 0.095, 0.141, and 0.115, 
respectively. Thus, the mPartition method helped infer more 
accurate trees than the RatePartition method. The small nor-
malized RF distances between trees constructed with the 
mPartition method and the true trees indicated that mParti-
tion resulted in good partition schemes for the simulated 
DNA datasets. The RatePartition method performed equally 

Fig. 2   The sizes of partition 
schemes generated from differ-
ent partitioning methods

Table 5   The average normalized Robinson–Foulds distances between 
partition schemes generated by different partitioning methods

mPartition No-partition RP4 RP5

mPartition – 0.080 0.076 0.089
No-partition 0.080 – 0.068 0.113
RP4 0.076 0.068 – 0.044
RP5 0.089 0.113 0.044 –
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well with different d values (the normalized RF distances 
were about 0.14 for all RP2, RP3, RP4, and RP5) on the 
simulated datasets. The mPartition method created about 9.6 
subsets per alignment, i.e., more subsets than the RateParti-
tion method with d = 2 and less subsets in the other cases.

We also compared the performance of different partition-
ing schemes on sub-datasets (see Fig. 1). As the RP2, RP3, 
RP4, and RP5 were equally good on the simulated data, we 

only analyzed the partition scheme RP2. As anticipated, the 
performance of partitioning methods was affected by the 
tree lengths. Specifically, they performed well on sub-data-
sets (i.e., AS1-AS4, AS13, AS14, SS1-SS4, SS13, SS14), 
which were simulated based on trees with reasonable long 
internal branch lengths ( ≥ 0.01 ). They had a poor perfor-
mance on sub-datasets (i.e., AS5, AS6, SS5, SS6), which 
were generated from trees with very short internal branch 

Fig. 3   The distribution of invariant and variant sites in subsets partitioned by the mPartition method
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lengths ( i.e., 0.001 ). The tree structures (asymmetrical vs. 
symmetrical) had some impact on the performance of parti-
tioning methods as the average RF distance of asymmetric 
inferred trees was lower than that of symmetrical inferred 
trees. Interestingly, we found that the partitioning methods 
handled well the missing sub-datasets (AS1-miss, AS2-miss, 
SS1-miss, SS2-miss).

Real DNA Data

We compared the performance (i.e., in terms of information 
criteria) of no-partition, RatePartition, mPartition using both 
AICc and BIC scores (see Table 4). The results indicated 
that mPartition outperformed other methods in terms of both 
AICc and BIC scores for all eight real DNA datasets. The 
no-partition method that did not partition the alignments 
was the worse method for all alignments. Both AICc and 
BIC scores of the no-partition method were remarkably 
worse than that of other partitioning methods. The results 
suggested that partitioning methods improved the quality of 
inferred trees. Note that trees constructed with mPartition 
were different from those constructed with RP4 and RP5 
in seven datasets (except the Morpho dataset). The sizes of 
partition schemes generated by RP4, RP5, and mPartition 
are presented in Fig. 2. The mPartition method generated 
less subsets than RP4 and RP5 methods in all datasets.

We computed the average normalized RF distances 
between inferred trees from different partition schemes 
(see Table 5). The tree structures constructed with no-
partition, mPartition, and RatePartition were different, 
i.e., the average normalized RF distances between inferred 
trees with mPartition and those with no-partition, RP4 and 
RP5 were 0.080, 0.076, and 0.089, respectively. In other 
words, partition schemes obtained from both mPartition 
and RatePartition affected tree structures. The distance 
between trees constructed with RP4 and RP5 (i.e., 0.044) 
was smaller than those between other partition schemes.

The mPartition method distributed the invariant sites 
into different subsets, and more importantly a large portion 
of the subsets were variant sites (see Fig. 3). The invari-
ant sites of the same nucleotide type were partitioned into 
different subsets. Thus, the mPartition method avoided the 
pitfall of previous site rate-based partitioning methods, 
which grouped all invariant sites into one subset.

We also examined the mPartition method on the aquatic 
beetle family Noteridae dataset, which was used to ana-
lyze different partitioning methods (Baca et al. 2017). 
The mPartition algorithm divided the concatenated align-
ment into five subsets with sizes from 274 to 2205 sites. 
The invariants were distributed into all the subsets each 
containing all four different invariant types (see Fig. 4). 
We used the UFboot2 algorithm (Hoang et al. 2017) to 

construct the bootstrap tree from partitioned sub-align-
ments (see Fig. 5). The mPartition-based bootstrap tree 
was generally consistent with the bootstrap tree reported in 
Baca et al. (2017), i.e., all genera were correctly grouped 
as monophyletic clades with moderate to high support 
values.

Real Protein Data

We compared the performance (i.e., in terms of informa-
tion criteria) of the mPartition and RatePartition with 
d = 2, 3, 4, 5 methods on 20 real protein alignments (see 
Tables 6 and 7). The mPartition method was better than the 
RatePartition method with different d values in terms of both 
AICc and BIC criteria. Specifically, the mPartition method 
was better than the RatePartition methods on 17 out of 20 
alignments. Among the partition schemes from RateParti-
tion, RP4 and RP5 performed equally well and better than 
RP2 and RP3.

We examined the RF distances between trees inferred 
with different partitioning methods. The average normal-
ized RF distances between trees inferred with mPartition and 
those inferred with no-partition, RP4, and RP5 were 0.029, 
0.032, and 0.034, respectively. The normalized RF distances 
between trees inferred with different partition schemes from 
RatePartition were small (i.e., ranging from 0.011 to 0.017).

The mPartition method distributed invariant sites into 
different subsets, each containing invariant sites of different 
amino-acid types. For example, Table 8 shows the distribu-
tion of invariant sites in the Irissari alignments.

Fig. 4   The distribution of invariant and variant sites in subsets of the 
Noteridae dataset partitioned by the mPartition method
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Conclusions

Inferring ML phylogenetic trees from large datasets includ-
ing multiple loci or whole genomes is a challenging problem 

due to the complex evolutionary processes among sites. Par-
titioning alignments into subsets such that sites in the same 
subset are assumed to evolve under the same evolutionary 
process has been frequently used in the ML phylogenetic 

Fig. 5   The bootstrap tree of the aquatic beetle family Noteridae data-
set. The tree was constructed by IQ-TREE and the mPartition method. 
The two numbers X and Y at each branch are the support values of 

greedy method (i.e., partition the alignment based on codon positions 
and gene fragments) and the mPartition method, respectively
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analyses. Partitioning alignments properly is important 
because it affects both tree topology and branch lengths.

Different computational methods have been proposed 
to partition alignments based on evolutionary rates of 
sites. Although the partitioning methods are better than 

Table 6   The AICc scores of 
different partition schemes on 
the 20 real protein alignments

The best AICc scores are in bold. RP2, RP3, RP4, and RP5: RatePartition with d = 2, 3, 4 and 5

Datasets mPartition RP2 RP3 RP4 RP5

Ballesteros10 191,471 195,214 195,194 194,927 195,024
Ballesteros20 388,710 392,348 392,096 391,497 391,688
Ballesteros30 776,551 789,700 789,219 788,988 788,905
Ballesteros40 1,156,283 1,168,122 1,168,039 1,168,049 1,168,168
Chen10 140,998 139,918 139,795 139,581 139,485
Chen20 261,474 263,092 262,892 264,136 262,680
Chen30 543,271 547,649 547,676 547,732 547,589
Chen40 713,599 720,539 719,695 719,504 719,491
Irissari10 319,393 319,990 320,045 319,949 319,930
Irissari20 410,737 416,335 416,108 416,036 416,072
Irissari30 597,394 606,780 606,723 606,285 606,482
Irissari40 765,490 782,545 782,584 782,565 782,568
Ran10 111,426 110,952 111,000 110,962 110,978
Ran20 281,988 281,236 280,911 280,853 280,893
Ran30 409,972 411,720 411,531 411,625 411,730
Ran40 593,330 599,479 596,830 596,778 596,721
Wu10 189,243 190,759 190,621 190,572 190,640
Wu20 586,036 590,926 590,380 590,211 590,114
Wu30 755,940 766,541 766,258 766,046 766,239
Wu40 1,297,141 1,304,664 1,304,252 1,303,724 1,303,901

Table 7   The BIC scores of 
different partition schemes on 
20 real protein alignments

The best BIC scores are in bold. RP2, RP3, RP4, and RP5: RatePartition with d = 2, 3, 4 and 5

Datasets mPartition RP2 RP3 RP4 RP5

Ballesteros10 192,705 196,112 196,029 195,972 196,161
Ballesteros20 389,882 393,471 393,254 392,746 393,020
Ballesteros30 779,124 791,613 791,117 790,771 790,894
Ballesteros40 1,157,577 1,169,877 1,170,367 1,170,671 1,170,448
Chen10 141,862 140,732 140,640 140,457 140,361
Chen20 262,655 263,939 263,786 265,036 263,621
Chen30 545,438 548,933 549,049 548,860 548,948
Chen40 715,922 721,613 720,875 720,616 720,679
Irissari10 321,191 321,566 321,529 321,498 321,513
Irissari20 412,975 417,985 417,834 417,776 417,875
Irissari30 600,039 608,642 608,504 608,073 608,314
Irissari40 768,843 784,612 784,688 784,897 785,029
Ran10 112,285 111,460 111,543 111,528 111,585
Ran20 282,892 282,086 281,694 281,670 281,750
Ran30 411,766 412,645 412,499 412,637 412,641
Ran40 595,342 600,450 597,710 597,733 597,698
Wu10 190,485 192,026 191,958 191,897 192,028
Wu20 587,996 592,526 592,054 591,943 591,985
Wu30 767,489 768,338 768,124 768,059 768,206
Wu40 1,297,295 1,306,733 1,306,434 1,305,946 1,306,042
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no-partition method, the evolutionary rates do not provide 
sufficient information to comprehensively represent the 
evolutionary processes of sites. Our mPartition method is 
designed to partition sites based on the similarity of their 
site rates as well as substitution models.

Experiments on different datasets showed that mParti-
tion produced better partition schemes than other methods 
tested. The results on simulated datasets indicated that the 
trees constructed with mPartition were closer to the true 
trees than those built with other partitioning methods. The 
mPartition method also helped building better ML trees 
than other partitioning methods on both real DNA and 
protein datasets.

The site rate-based partitioning methods have been 
widely used, however, they might group invariant sites into 
one group without any variant sites that might result in 
incorrect trees. Although the RatePartition method tries to 
diminish the pitfall by adding some additional variant sites 
into the subset of invariant sites, our experiments showed 
that the subset contained only few variant sites. The mPar-
tition algorithm distributed invariant sites into different 
subsets and more importantly the subsets contained a large 
number of variant sites to overcome the pitfall of site rate-
based methods.

The mPartition algorithm is designed to avoid creating 
small subsets. Experiments showed that the mPartition 
algorithm produced less subsets than RatePartition on real 
datasets. The design is preferred by biologists because they 
do not have to handle many subsets, site rate models, and 
substitution models when analyzing real datasets.
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