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Abstract: In this paper, a PCA and ANN-based face recognition system is proposed and 

implemented on a Coarse Grain Reconfigurable Computing (CGRC) platform. Our work is quite 

distinguished from previous ones in two aspects. First, a new hardware-software co-design method 

is proposed, and the whole face recognition system is divided into several parallel tasks implemented 

on both the Coarse-Grained Reconfigurable Architecture (CGRA) and the General-Purpose 

Processor (GPP). Second, we analyzed the source code of the ANN algorithm and proposed the 

solution to explore its multi-level parallelism to improve the performance of the application on the 

CGRC platform. The computation tasks of ANN are dynamically mapped onto CGRA only when 

needed, and it's quite different from traditional Field Programmable Gate Array (FPGA) methods in 

which all the tasks are implemented statically. Implementation results show that our system works 

correctly in face recognition with a correct recognition rate of approximately 90.5%. To the best of our 

knowledge, this work is the first implementation of PCA and ANN-based face recognition system on a 

dynamically CGRC platform presented in the literature. 

Keywords: Coarse-grained Reconfigurable Architecture; Principal Components Analysis (PCA); Face 

Recognition; Artificial Neural Network (ANN); Reconfigurable Computing platform. 

Face recognition is one of the most common 

biometric recognition techniques that attract 

huge attention of many researchers in the field of 

computer vision since the 1980s.* Today, face 

recognition has proven its important role and is 

widely used in many areas of life. Some 

important applications of face recognition are 

_______ 
* Corresponding author. 

   E-mail address: kiemhung@vnu.edu.vn 
 

   https://doi.org/10.25073/2588-1086/vnucsce.263 

automatic criminal record checking, integration 

with surveillance cameras or ATM systems to 

increase security, online payment, tracking, and 

prediction of strange diseases in medicine. 

The face recognition system gets an image, a 

series of photos, or a video as input and then 

processes them to identify whether a person is 

   https://doi.org/10.25073/2588-1086/vnucsce.263 
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known or not. The system includes two phases 

which are the feature extraction and the 

classification as shown in Figure 1. 
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Figure 1. Processes in face recognition. 

The problem we have to deal with when 

implementing a face recognition system is that 

the data set has a very large number of 

dimensionality resulting in a large amount of 

computation which takes a lot of processing 

time. Therefore, a significant improvement 

would be achieved if we could reduce the 

dimensionality of data by mapping them to 

another space with a smaller number of 

dimensionality [16]. Especially, dimensionality 

reduction is indispensable for real-time face 

recognition system while processing high-

resolution images. Feature extraction is a process 

to reduce the dimensionality of a set of raw data 

to more manageable groups for processing. 

Feature extraction selects and/or combines 

variables into features, effectively reducing the 

amount of data that must be processed, while still 

accurately and completely describing the 

original data set. Generally, the feature 

extraction techniques are classified into two 

approaches: local and holistic (subspace) 

approaches. The first approach is classified 

according to certain facial features (such as eyes, 

mouth, etc.), not considering the whole face. 

They are more sensitive to facial expressions, 

lighting conditions, and pose. The main 

objective of these approaches is to discover 

distinctive features. The second approach 

employs the entire face as input data and then 

projects into a small subspace or in correlation 

plane. Therefore, they do not require extracting 

face regions or features points (eyes, mouth, 

noses, and so on). The main function of these 

approaches is to represent the face image by a 

matrix of pixels, and this matrix is often 

converted into feature vectors to facilitate their 

treatment. After that, these feature vectors are 

implemented in small dimensional space.  

The principal components analysis (PCA) 

[15] is one of the popular methods of holistic 

approaches used to extract features points of the 

face image. This approach are introduced to 

reduce the dimensionality and the complexity of 

the detection or recognition steps, meanwhile 

still achieved a great performance in face 

recognition. PCA offers robust recognition 

under different lighting conditions and facial 

expressions, and these advantages make these 

approaches widely used. Although these 

techniques allow a better reduction in 

dimensionality and improve the recognition rate, 

they are not invariant to translations and 

rotations compared with local techniques.  

Classification is a process in which ideas and 

objects are recognized, differentiated, and 

understood based on the extracted features by an 

appropriate classifier. The artificial neural 

networks (ANNs) are one of the most successful 

classification systems that can be trained to 

perform complex functions in various face 

recognition systems. State-of-the-art ANNs are 

demonstrating high performance and flexibility 

in a wide range of applications including video 

surveillance, face recognition, and mobile robot 

vision, etc.  

Face recognition using PCA in combination 

with neural networks is a method to achieve high 

recognition efficiency by promoting the 

advantages of PCA and neural networks [11]. In 

this paper, a face recognition system based on 

the combination of PCA and neural network is 

implemented on the coarse-grained 

reconfigurable computing platform.  The 

proposed system offers an improvement in the 

recognition performance over the conventional 

PCA face recognition system. The system 

operates stably and has high adaptability when 

the data input has a large variation. The system 

has been implemented and validated on the 

coarse-grained reconfigurable computing 

platform built around the CGRA called MUSRA 

that was proposed in our previous work [10]. 

The rest of this paper is organized as follows. 

Section 2 reviews some related works. In Section 

3, the proposal of the MUSRA-based coarse-

grained reconfigurable computing (CGRC) 
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platform is introduced. Section 4 presents the 

implementation of the face recognition system 

on the CGRC platform. Evaluation of the 

proposed system in comparison with the related 

works are given in Section 5. Finally, some 

conclusions are drawn in Section 6. 

2. Related Works 

2.1. PCA for Face Recognition 

Principal Component Analysis (PCA) is a 

standard method for dimensionality reduction 

and feature extraction. It uses a mathematical 

method called orthogonal transformation to 

transform a large number of correlated variables 

into a smaller set of uncorrelated variables so 

that the newly generated variables are linear 

combinations of old variables [15]. 

In this paper, the PCA method is used to 

reduce the number of dimensionality of the 

image, helping to reduce the computation 

complexity of the training or identification 

process in the neural network later. The steps to 

perform PCA are as follows: 

Step 1: Let’s establish the training set of face 

images be S = {1, 2,…, M}. Each image in 2-

dimension with size W×H is converted into a 1-

dimension vector of W×H elements. 

Step 2: Calculate the average image Ψ: 

Ψ =  
1

𝑀
∑ 𝑖

𝑀

𝑖=1

 (1) 

Step 3: Calculate the deviation of input 

images from average image: 

𝑖 = 𝑖 − Ψ  (2) 

Step 4: Calculate the covariance matrix C: 

C =  
1

𝑀
∑ 𝑖𝑖

𝑇𝑀
𝑖=1 = 𝐴. 𝐴𝑇  (3) 

where A = [𝟏, 2, … , 𝑴] 

Step 5: Because matrix C is too large in size 

(N×N), therefore, to find the eigenvector ui of C 

we find the eigenvector and the eigenvalue of the 

matrix L: 

𝐿 = 𝐴𝑇𝐴  với 𝐿𝑚,𝑛 = 𝑚
𝑇 𝑛  (4) 

The size of the matrix L is M×M << N×N, 

so calculating eigenvector is faster.  

Step 6: Let’s set vi as the eigenvector of L. 

The eigenvector of C is: 

𝑢𝑖 =  ∑ v𝑖𝑘𝑘
𝑀
𝑖=1  , i =1, 𝑀̅̅ ̅̅ ̅̅  (5) 

Because vectors ui are the eigenvectors of 

the covariance matrix corresponding to the 

original face images, so they are referred as 

eigenfaces. 

Step 7: After finding the eigenfaces, the 

images in the database will be projected onto 

these eigenfaces space to create the feature 

vectors. These vectors are much smaller than the 

image size but still carries the most key 

information contained in the image.  

There is much research [13-16; 18-20] on 

using PCA in scientific disciplines, some works 

have published the implementation of PCA for 

face recognition [13, 14]. 

2.2. Artificial Neural Networks 

Artificial neural networks take their 

inspiration from a human brain’s nervous 

system. Figure 2 depicts a typical neural network 

with a single neuron explained separately. 

Similar to human nervous system, each neuron 

in the ANN collects all the inputs and performs 

an operation on them. Lastly, it transmits the 

output to all other neurons of the next layer to 

which it is connected. A neural network is 

composed of three layer types: 

● Input Layer: takes input values and feeds 

them to the neurons in the hidden layers. 

● Hidden Layers: are the intermediate 

layers between input and output which help the 

neural network learn the complicated 

relationships involved in data. 

● Output Layer: presents the final outputs 

of the network to the user.  

Computation at each neuron in hidden layers 

and output layer is modeled by the expression:  

𝑦𝑖 = 𝑓(∑ 𝑊𝑖𝑗 × 𝑥𝑗 + 𝑏𝑖)

R

𝑗=1

 (6) 

where 𝑊𝑖𝑗, 𝑏𝑖, 𝑥𝑗 and 𝑦𝑖 are the weights, bias, input 

activations, and output activations, respectively, 
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and f() is a nonlinear activation function such as 

Sigmoid [5], Hyperbolic Tangent [5], Rectified 

Linear Unit (RELU) [6], etc.  

Just like in human brain, an ANN needs to 

be trained to perform its given tasks. This 

training involves determining the value of the 

weights (and bias) in the network. After that, the 

ANN can perform its task by computing the 

output of the network by using the weights 

determined during the training process. This 

process is referred to as inference. Training and 

inference must be considered during the 

development of hardware platform for ANN. 

Training generally requires high-computing 

performance, high-precision arithmetic, and 

programmability to support different deep 

learning models. In fact, training is usually 

performed offline on workstations or servers. 

Some research efforts have been looking for 

incremental training solutions [7] and a 

reduction in precision training [8] to decrease the 

computation complexity. 

Many ANN frameworks are implemented on 

GPU (Graphic Processing Unit) platforms such 

as Caffe [1], Torch [2], and Chainer [3]. These 

fast and friendly frameworks are developed for 

easily modifying the structures of neural 

networks. However, from the performance point 

of view, dedicated architectures for ANNs have 

a higher throughput as well as higher energy 

efficiency. In recent decades, interest in the 

hardware implementation of artificial neural 

networks (ANN) by using FPGA and ASIC has 

grown. This is mainly due to the rapid 

development of semiconductor technology that 

is used for implementing digital ANN. Previous 

FPGA/ASIC architectures already achieved a 

throughput of several hundreds of Gop/s. These 

architectures are easily scalable to get a higher 

performance by leveraging parallelism. 

However, one problem that most of these 

designs are still faced with is: ASIC solution are 

usually suffering from a lack of the flexibility to 

be reconfigured for the various parameters of 

ANN. With deep ANN comprising many layers 

with different characteristics, it is impossible to 

use heterogeneous architectures for the different 

layers. In this paper, we propose an 

implementation of ANN on the coarse-grained 

reconfigurable architecture. 
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Figure 2. An artificial neuron and an ANN model. 

2.3 Reconfigurable Hardware 

The reconfigurable hardware is generally 

classified into the Field Programmable Gate 

Array (FPGA) and coarse-grained dynamically 

reconfigurable architecture (CGRA). A typical 

example of the FPGA-based reconfigurable SoC 

is Xilinx Zynq-7000 devices [21]. Generally, 

FPGAs support the fine-grained reconfigurable 

fabric that can operate and be configured at bit 

level. FPGAs are extremely flexible due to their 

higher reconfigurable capability. However, the 
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FPGAs consume more power and have more 

delay and area overhead due to greater quantity 

of routing required per configuration [22]. This 

limits the capability to apply FPGA to embedded 

applications. To overcome the limitation of the 

FPGA-like  

fine-grained reconfigurable devices, coarse-

grained reconfigurable architectures (CGRAs) 

focus on data processing and configuration at 

bit-group with complex functional blocks (e.g. 

Arithmetic Logic unit (ALU), multiplier, etc.). 

These architectures are often designed for a 

specific domain of applications. CGRAs achieve 

a good trade-off between performance, 

flexibility, and power consumption. Many 

CGRAs have been proposed with the unique 

features that is dedicated to a specific domain of 

applications. Typical two of them are REMUS 

[23] and ADRES [24]. ADRES (Architecture for 

Dynamically Reconfigurable Embedded 

System) is a reconfigurable system template, 

which tightly couples a VLIW (Very Long 

Instruction Word) processor and a coarse-

grained reconfigurable matrix into a single 

architecture. Here, coarse-grained 

reconfigurable matrix plays a role of a  

co-processor in the VLIW processor. Coupling 

CGRA directly with the processor increases the 

performance at the expense of decrease in 

flexibility because the CGRA architecture has to 

be compatible with the given processor 

architecture. By contrast, in the REMUS-II 

(REconfigurable MUltimedia System version II) 

architecture - a coarse-grained dynamically 

reconfigurable heterogeneous computing SoC 

for multimedia and communication baseband 

processing, the CGRA is implemented as an IP 

core that is attached to the system bus of the 

processor. The REMUS-II consists of one or two 

coarse-grained dynamically reconfigurable 

processing units (RPUs) and an array of RISC 

processors (µPU) coupled with a host ARM 

processor via the AHB bus. Designing the 

CGRA as an IP core in the REMUS makes it 

easy to reuse design in the various systems with 

no dependence on any particular processor 

architecture. 

In [10], we developed and modeled a coarse-

grained dynamically reconfigurable architecture, 

called MUSRA (Multimedia Specific 

Reconfigurable Architecture). The MUSRA is a 

high-performance, flexible platform for a 

domain of applications in multimedia 

processing. In contrast with FPGAs, the 

MUSRA aims at reconfiguring and manipulating 

on the data at word-level. The MUSRA was 

proposed to exploit high data-level parallelism 

(DLP), instruction-level parallelism (ILP) and 

TLP (Task Level Parallelism) of the 

computation-intensive loops of an application. 

The MUSRA also supports the capability of 

dynamic reconfiguration by enabling the 

hardware fabrics to be reconfigured into 

different functions even if the system is working. 

3. Proposed Architecture of CGRC Platform 

3.1 Coarse-Grained Reconfigurable Computing 

Platform 

In this paper, we developed a high-

performance Coarse-Grained Reconfigurable 

Computing Platform (CGRC) for experimentally 

evaluating and validating the applications of 

multimedia processing. The platform’s hardware 

is a system-on-chip based on the MUSRA 

(Multimedia Specified coarse-grained 

Reconfigurable Architecture) [10], the ARM 

processor, and the other IP cores from the 

Xilinx’s library as shown in Figure 3. The CGRC 

platform was synthesized and implemented on 

the Xilinx ZCU106 Evaluation Kit [25]. The 

ARM processor functions as the central 

processing unit (CPU) that takes charge of 

managing and scheduling all activities of the 

system. The external memory is used for 

communicating data between tasks on the CPU 

and tasks on the MUSRA. Cooperation between 

MUSRA, CPU, and DMACs (Direct Memory 

Access Controllers) are synchronized by the 

interrupt mechanism. When the MUSRA 

finishes the assigned task, it generates an 

interrupt via IRQC (Interrupt Request 

Controller) unit to signal the CPU and returns 
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bus control to the CPU. In order to run on the 

platform, the C-program of the application is 

compiled and loaded into the Instruction 

Memory of the platform. Meanwhile, the data is 

copied into the Data Memory. 
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Figure 3. Coarse-Grained Reconfigurable 

Computing Platform (CGRC). 

Execution and data-flow of the MUSRA are 

reconfigured dynamically under controlling of 

the CPU. After resetting, the operation of the 

system is briefly described as follows: 

(1) Context Memory Initialization: CPU 

writes the necessary control parameters and then 

grant bus control to CDMAC in Context 

Memory. CDMAC will copy a context from the 

instruction memory to context memory. At the 

same time, CPU executes another function. 

(2) Context Parser Initialization: CPU 

writes the configuration words to the context 

parser.  

(3) RCA Configuration and Data Memory 

Initialization: After configured, parser reads 

one proper context from the context memory, 

decode it and configure RCA. Concurrently, 

CPU initializes DDMAC that will copy data 

from the external data memory to the internal 

data memory. DDMAC is also used for writing 

the result back to the external data memory. 

(4) RCA Execution: RCA performs a 

certain task right after it has been configured. 

3.2. MUSRA Architecture 

The MUSRA [10] is composed of a 

Reconfigurable Computing Array (RCAs), 

Input/Output FIFOs, Global Register File 

(GRF), Data/Context memory subsystems, and 

DMA (Direct Memory Access) controllers, etc. 

Data/Context memory subsystems consist of 

storage blocks and DMA controllers  

(i.e. CDMAC and DDMAC). The RCA is an 

array of 88 RCs (Reconfigurable Cells) that can 

be configured partially to implement 

computation-intensive tasks. The input and 

output FIFOs are the I/O buffers between the 

data memory and the RCA. Each RC can get the 

input data from the input FIFO or/and GRF, and 

store the results back to the output FIFO. These 

FIFOs are all 512-bit in width and 8-row in 

depth, and can load/store sixty-four bytes or 

thirty-two 16-bit words per cycle. Especially, the 

input FIFO can broadcast data to every RC that 

has been configured to receive the data from the 

input FIFO. This mechanism aims at exploiting 

the reusable data between several iterations. The 

interconnection between two neighboring rows 

of RCs is implemented by a crossbar switch. 

Through the crossbar switch, an RC can get 

results that come from an arbitrary RC in the 

above row of it. The Parser decodes the 

configuration information that has been read 

from the Context Memory, and then generates 

the control signals that ensure the execution of 

RCA accurately and automatically.  

RC (Figure 4) is the basic processing unit of 

RCA. Each RC includes a data-path that can 

execute signed/unsigned fixed-point 8/16-bit 

operations with two/three source operands, such 

as arithmetic and logical operations, multiplier, 

and multimedia application-specific operations 

(e.g. barrel shift, shift and round, absolute 

differences, etc.). Each RC also includes a local 

register called LOR. This register can be used 

either to adjust operating cycles of the pipeline 

or to store coefficients when a loop is mapped 

onto the RCA. A set of configuration registers, 
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which stores configuration information for the 

RC, is called a layer. Each RC contains two 

layers that can operate in the ping-pong fashion 

to reduce the configuration time. 
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Figure 4. RC architecture. 

The configuration information for the 

MUSRA is organized into the packets called 

context. The context specifies a particular 

operation of the RCA core (i.e. the operation of 

each RC, the interconnection between RCs, the 

input source, output location, etc.) as well as the 

control parameters that control the operation of 

the RCA core. The total length of a context is 

128 32-bit words. An application is composed of 

one or more contexts that are stored into the 

context memory of the MUSRA. 

The MUSRA architecture is basically the 

such-loop-oriented one. By mapping the body of 

the kernel loop onto the RCA, the RCA just 

needs configuring one time for executing 

multiple times, therefore it can improve the 

efficiency of the application execution. 

Executing model of the RCA is the pipelined 

multi-instruction-multi-data (MIMD) model. In 

this model, each RC can be configured 

separately to a certain operation, and each row of 

RCs corresponds to a stage of a pipeline. 

Multiple iterations of a loop are possible to 

execute simultaneously in the pipeline. 
 

Figure 5. (a) DFG representation of a simple loop body, and (b) its map onto RCA.

For purpose of mapping, a kernel loop is first 

analyzed and loop transformed (e.g. loop unrolling, 

loop pipelining, loop blocking, etc.) in order to 

expose inherent parallelism and data locality that 

are then exploited to maximize the computation 

performance on the target architecture. Next, the 

body of the loop is represented by data-flow graphs 

(DFGs) as shown in Figure 5. Thereafter, DFGs are 

mapped onto RCA by generating configuration 

information, which relates to binding nodes to the 

RCs and edges to the interconnections. Finally, 

these DFGs are scheduled in order to execute 

automatically on RCA by generating the 

corresponding control parameters for the CGRA’s 

controller. Once configured for a certain loop, 

RCA operates as the hardware dedicated for this 

loop. When all iterations of loop have completed, 
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this loop is removed from the RCA, and the other 

loops are mapped onto the RCA. 

4. Implementation of Face Recognition System 

4.1. Face Recognition System  

The face recognition system is based on the 

combination of PCA and an artificial neural 

network called the PCA-ANN system. The PCA-

ANN face recognition system is divided into 3 

processes: feature extraction, training, and 

recognition as shown in Figure 6.  

Face Database

Testing SetTraining Set
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Computation

Projection of 

Image

Feature Vector

Projection of 

Image

Feature Vector

Training ANN

Set of weights 

and bias
ANN

PCA 

(Feature 

Extraction)

Classification

Training Inference

Decision Making

 

Figure 6. Face recognition based on the combination 

between ANN and PCA. 

In the feature extraction process, an 

eigenfaces space is established from the training 

images using the PCA feature extraction method. 

The ANN requires the training process where the 

weights connecting the neurons in consecutive 

layers are calculated based on the training 

images and target classes. Therefore, after 

generating the eigenvectors using PCA methods, 

the projection of face images in the training set 

is calculated and then used to train the neural 

network on how to classify images for each 

person. In the recognition process, each input 

face image in the testing set is also projected to 

the same eigenfaces space and classified by the 

trained ANN. 

4.2. Hardware/Software Partition 

Instead of implementing the system entirely 

by hardware or software, this paper proposes a 

system-level model for the realization of the 

PCA-ANN face recognition system, including 

hardware and software tasks, as shown in  

Figure 7. 

In PCA feature extraction, calculating 

eigenvalues and eigenvectors for eigenfaces 

space requires very complicated algebraic 

methods like QR or Jacobi [12]. The hardware 

architecture for implementing a PCA algorithm 

is often very complex. Because of the 

complexity of the PCA algorithm, in the scope 

of this paper it will be implemented as software 

running on the CPU. 

In ANN-based classification, two aspects 

must be considered, including training and 

inference. Training still requires high-

performance computing, high-precision 

arithmetic, and programmability to support 

different deep learning models. The training 

process is time-consuming and involves a lot of 

power consumption. Therefore, it is usually done 

offline on the server's GPU. In particular, the 

training is performed in software using 

MATLAB running on the server. Matlab 

program includes one function to calculate the 

eigenvectors using the built-in functions and 

another for training the neural network. The 

results are the average vector, the eigenvectors, 

the weights and biases of the neural network 

after being trained. These parameters are then 

saved in text files (.txt) and will be written to the 

memory on the CGRC platform while the system 

is operating. 

On the other side, the inference is performed 

by both software and hardware on the high-

performance CGRC platform. Here, PCA feature 
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extraction is performed by the CGRC platform’s 

CPU, and ANN is mapped onto the CGRC 

platform’s MUSRA. The face image, which is 

considered for recognition, is firstly  

pre-processed by a MATLAB program on the 

server, then passed through the PCA module to 

extract the features, and finally sent to the ANN 

module for making recognition decision. 

H 

 

Figure 7. Hardware/Software partition. 

4.3 Mapping ANN onto MUSRA 

Algorithm 1. ANN Computation 
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Let’s examine a generic ANN that has  

L layers with one input layer, one output layer, 

and L-2 hidden layers. At the layer kth, the input 

vector Xk is forwardly transferred through the 

neurons to generate an output vector Yk that then 

becomes the input vector Xk+1 for the next layer 

(k+1)th. The pseudo-code in Algorithm 1 

describes ANN computation. 

Where, input = (i1, i2, … in) is the input 

vector, and output = (o1, o2, … om) is the output 

vector.  

Let’s set Nk is the number of neurons in the 

layer kth, where k = 1, 2,…, L-1. Since the output 

of each layer forms the input of the next layer, 

therefore, the input vector of the layer kth is 𝑋𝑘 =

[𝑥0
𝑘 , 𝑥1

𝑘 , … , 𝑥𝑁𝑘−1−1
𝑘 ] and its dimension is 1×Nk-

1.  The output vector of the layer kth is 𝑌𝑘 =

[𝑦0
𝑘 , 𝑦1

𝑘 , … , 𝑦𝑁𝑘−1
𝑘 ], which has 1×Nk elements. 

Wk is the weight matrix at the layer kth.  

𝑊𝑘 = (

𝑤0,0
𝑘 ⋯ 𝑤𝑁𝑘−1,0

𝑘

⋮ ⋱ ⋮
𝑤0,𝑁𝑘−1−1

𝑘 ⋯ 𝑤𝑁𝑘−1,𝑁𝑘−1−1
𝑘

) 

Algorithm 1 can be expanded to some loops, 

as shown in Algorithm 2. 

ORL Face DatabaseTraining Set Testing Set

Matlab code runs on PC
Feature_extraction()
//represents the image as 
a vector
//calculates average 
vector
//calulates eigenvectors
//Projects the training set 
on eigenspace 
Training_ANN()
//calculates weights and 
bias

PCA on 

CPU

Mem_3.txt

Mem_2.txt

w_hid.txt

w_out.txt

b_hid.txt

b_out.txt

ANN on 

MUSRA

Matlab code runs on PC
Preprocess()
// convert image to 8-bit 
gray one

Mem_1.txt

Recognition 

Decision

CGRC
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Algorithm 2. ANN Computation 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

X1
 = input 

For k in 1 to L – 1 loop   

// loop_k runs through all layers 

For i = 0 to Nk – 1 loop  

//loop_i runs through all neurons 

 𝑨𝒊
𝒌 = 𝒃𝒊 

For j = 0 to Nk-1 – 1 loop //loop_j   

 𝑨𝒊
𝒌 = 𝑨𝒊

𝒌 + 𝒙𝒋
𝒌𝑾𝒊,𝒋

𝒌  

       End for j 

  𝒀𝒊
𝒌 =  𝒇(𝑨𝒊

𝒌) //activation function 

              𝑿𝒊
𝒌+𝟏 = 𝒀𝒊

𝒌 

 End for i 

End For k 

Output = XL
 

The loop loop_j (line 7 to line 9 in Algorithm 

2) is unrolled and implemented by the adder tree 

with the output that is the accumulation of the 

products of the inputs and weights as shown in 

Figure 8. The structure of adder-tree for different 

layers varies in the number of inputs, weights, 

and bias. 

X

X[
1]

W
[i]

[1
]

X

X[
2]

W
[i]

[2
]

+

X

X[
r-

1]

W
[i]

[r
-1

]

X

X[
r]

W
[i]

[r
]

+

+ +

+

+

b

a[
i]

 

Figure 8. DFG of the loop loop_j. 

The sum of the weighted inputs will be fed 

to the activation function to calculate the output 

value at each neuron (line 10 in Algorithm 2). 

The activation function used here is the Sigmoid 

function, as shown in expression (7): 

𝑓(𝑥) =
1

1+𝑒−𝑥  (7) 

There some different methods for the 

implementation of the sigmoid activation 

function, including Look-up table (LUT), Taylor 

transformation, piecewise linear approximation 

[9]. The method of Taylor transformation 

requires many multiplications. The LUT method 

uses a large memory to store the table of possible 

values of the target function. As a result, both of 

these methods are not realizable for the 

implementation on CGRA. Therefore, in this 

paper, we adopted the method of a piecewise 

linear approximation to perform the sigmoid 

activation function. Also notice that, the chosen 

approximation method has a great influence  

on the accuracy and performance of the  

neural network. 

For x in the range [0, +∞), the sigmoid 

function is approximated by expression: 

 
(8) 

For negative values of x, the sigmoid 

function can be calculated using the expression: 

    (9) 

 

× 

a x

+

b

× 

+

c

1 0

  

0

x

-x

1 0

1

X>4?

LOR

LOR

LOR

X<0?

  

1 F(x)

1-f(x)

LOR

1 0

F(x)
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LOR

LOR

LOR
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Figure 9. DFG of activation function. 
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Figure 9 shows a DFG for implementing the 

sigmoid activation function, where, a = -0.03125, 

b = 0.25, and c = 0.5. Because of the 

reconfigurability of MUSRA, the activation 

function can be easily configured to different 

ones for the hidden layers and the output layer. 

5. Experiment and Evaluation 

This section presents the validation of the 

PCA-ANN face recognition system on the CGRC 

platform. The performance of our implementation 

is compared with the other works. 

5.1. Validation Script 

The face database used for the experiment is 

the image set from the AT&T ORL (Olivetti 

Research Laboratory). This database consists of 

400 images of 40 people, each with 10 different 

images. Each image has dimensions of 80 × 110 

pixels. The face database are divided into 

training set and testing set. After PCA feature 

extraction, each face image is represented by a 

feature vector of size 1×30. 

The neural network consists of three layers 

and is configured as follows: 

- Input Layer: includes 30 neurons 

corresponding to the number of elements of the 

feature vector of size 1×30. 

- Hidden Layer: consists of 120 neurons, 

each has 30 inputs, 30 weights and one bias. 

- Output Layer: is made of three neurons 

corresponding to three outputs. Each of neuron 

has 120 inputs, 120 weights and one bias. 

- Number of training times: 10000 times. 

- Learning coefficient: 0.01 

- Permissible error: 10-5 

5.2. Experimental Results 

1) Sigmoid function and its approximation 

Figure 10 shows the chart of Sigmoid 

function and its approximation by Error! 

Reference source not found. and Error! 

Reference source not found. in the range (-8, 

8). Where, the orange line depicts the sigmoid 

function, and the blue line depicts the sigmoid 

function’s approximation. Experiment 

estimation shows that the average error and the 

maximum error of approximation of the sigmoid 

function are εaverage = 0.00774 và εmaximum = 

0.02163. 

2) Functional verification of face 

recognition system 

To functionally verify the face recognition 

system, the training set and testing set are 

extracted from the database as follows. First, 

choose three image sets of three people in the 

ORL database to build the training set. Next, 

take three images of these three people, each 

person one image, and flip that image to create 

the testing set. The purpose of flipping the image 

is to make it different from the image in the 

training set. The training set and testing set is 

shown in Figure 11 and Figure 12, respectively. 

U 
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Figure 10.  Chart of Sigmoid function and its approximation. 

 

Figure 11. Training set including images of three first persons in the ORL database. 

 
(a) images in the training set 

 
(b) image not in the training set 

Figure 12.Testing set. 

1st Person Image

2nd Person Image

Kth Person Image

Mst Person Image

PCA
Neural Network 

ANN

0
0

1

0

Kth 
Person

Make
Decision

Feature 
Vector

CPU CGRA CPU
 

Figure 13.  Inference Processing. 
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Figure 14. Simulation results for the first image in the training set. 

 

Figure 15. Simulation results for the second image in the training set. 

 

Figure 16. Simulation results for the third image in the training set. 

 

Figure 17. Simulation results for the image not in the training set. 

Testing images are represented in feature 

vectors before feeding to ANN and the ANN’s 

outputs are compared with the given threshold 

by CPU to make a recognition decision as shown 

in Figure 13. The simulation results of ANN are 

shown in Figure 14, Figure 15, and Figure 16. 

Similarly, take an image that is not included in 

the training set as input to face recognition system. 

Simulation results are shown in Figure 17. 

The computation result of ANN is 

represented by 16-bit fixed-point numbers where 

6 bits represent the integer part, and another 10 

bits represent the fractional part. This result is 

displayed on the output port in the waveform 

window while simulating. For easy viewing, this 

result is left-shifted 10 bits (i.e. multiplied by 

210) to convert to 16-bit integers, as shown in the 

figures Figure 14 - Figure 17 above. The value at 

the output is compared to the threshold by the 
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CPU to determine which face is detected. The 

thresholds chosen for comparison are 0.9 and 0.1 

(values greater than 0.9 are determined to be 1, 

less than 0.1 is decided as 0). To compare with 

the simulation results, these threshold values are 

also left-shifted 10 bits to become values 921 

and 102, respectively. The rules for making 

identification decisions are shown in Table 1. 

Based on the rules in Table 1 and the 

simulation results in figures Figure 14 - Figure 

17, we get the results of identification, as shown 

in Table 2. This result proves that the system is 

functional correctness as expected. 

Table 1. The Rule for making decision 

OUPUT Decision 
Identification 

results 

output(2) > 921 

output(1) < 102 

output(0) < 102 

[1; 0; 0] First Person 

output(2) < 102 

output(1) > 921 

output(0) < 102 

[0; 1; 0] Second Person 

output(2) < 102 

output(1) < 102 

output(0) > 921 

[0; 0; 1] Third Person 

Others [0; 0; 0] Stranger 

 

3) Performance Analysis of face recognition 

system 

To evaluate the performance of the system, 

we use the training and testing set which are built 

as follows. We use 30 images of the first three 

people in the ORL database as a training set. The 

testing set has 400 images, including 30 flipped 

images of three selected people (to make the 

difference from the training images) and 370 

images of the remaining 37 people in the ORL 

database.  

The validation results are recorded in Table 

3. Here, “strangers” are those who are not in the 

training set, and "acquaintances” are those who 

are in the training set. The result is considered as 

“Correct Identification” (a) when inputting the 

image of an “acquaintance”, the system correctly 

identifies which of the three selected persons the 

image is; or (b) when inputting an image of a 

stranger, the system returns "stranger". On the 

contrary, the result is considered as "Wrong 

identification" when the system mistakenly 

recognizes "stranger" as "acquaintance", 

"acquaintance" as "stranger", or confuses an 

acquaintance with each other. 

Table 2. Identification results 

 First Image Second image Third Image Fourth image 

Displayed result  

(16-bit) 
[1003; 3; 0] [69; 983; 0] [1; 0; 1024] [43; 387; 0] 

* Real result [0.9794; 0.0029; 0] [0.0673; 0.9599; 0] [0.0009; 0; 1] [0.0419; 0.3779; 0] 

Decision [1; 0; 0] [0; 1; 0] [0; 0; 1] [0; 0; 0] 

Identification results First person Seconf person Third person Stranger 

* Real result = Displayed result/210. 

Table 3. Performance Evaluation 

 Number of images Correct Identification Wrong Identification 

First person 10 10 0 

Second person 10 8 2 

Third persom 10 9 1 

Stranger 370 332 38 
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Total 400 359 41 

Ratio  90.5% 9.5% 

l 

Evaluation results show that the system has 

quite high recognition efficiency, achieving 

correct recognition rate of 90.5%. The 

experimental results are compared with the 

results of other works in Table 4.  

Table 4. Performance Comparison 

PCA-ANN PCA 

Our [13]  [14] [13]  [14] 

90.5% 85% 88% 78% 86% 

 

Compared to the results of other works using 

the same method, our system achieved 5.5% and 

2.5% higher correct recognition rate than [13] 

and [14], respectively. Compared with using 

only PCA method for identification, the 

recognition results when using the combination 

of two methods are 12.5% and 4.5% more 

accurate than [13] and [14], respectively. 

Table 5 shows the change in recognition 

efficiency when changing the number of hidden 

layer neurons. When the number of hidden layer 

neurons increased from 120 to 150, the 

difference in performance was very small. 

However, when the number of hidden layer 

neurons is reduced, especially when it is reduced 

to 30, the performance is greatly reduced, 

showing that the number of hidden layer neurons 

has a large impact on the identification 

performance of the neural network. This can be 

explained as follows. When the number of hidden 

layer neurons is too small, the network cannot learn 

deeply enough, resulting in poor recognition 

performance. Conversely, increasing the number 

of hidden layer neurons will make the network 

model more complicated and the possibility of 

"over-matching" becomes higher. "Over-

matching" occurs when the trained network 

matches with the training samples so much, 

therefore it answers exactly what has been learned, 

and does not care what is not learned. 

Table 5. Recognition performance vs. number of hidden layer neurons 

Number of neurons 150 120 90 60 30 

Performance 89.75% 90.5% 88.75% 85.25% 80.5% 

i  

6. Conclusion 

In this paper, we presented our work on the 

proposal, implementation and evaluation of PCA 

and ANN-based face recognition system. The 

feature vectors obtained through the PCA 

method are used as the input for training and 

testing the ANN. The combination of PCA 

method and neural network is to improve the 

system's identification efficiency. The face 

recognition system has been hardware/software 

co-designed and implemented on a coarse-

grained reconfigurable computing platform. We 

analyzed the source code of the ANN algorithm 

and proposed the optimization solution to 

explore its multi-level parallelism in order to 

improve the performance of the application on 

the CGRC platform. Our implementation has 

been simulated and validated by the CGRC 

platform of the MUSRA on the Xilinx 

ZCU106 Evaluation Kit. The verification 

process has confirmed that the system works 

correctly in face recognition. The correct 

recognition rate is approximately 90.5%. The 

proposed system gets an improvement on the 

recognition rates over classical PCA face 

recognition system. In addition, the recognition 

performance of our system is higher than the 

PCA-ANN system proposed by other works. It 

is also easy to reconfigure the MUSRA to 

support different ANN configuration (for 
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example, number of layer, number of neurons 

per layer, activation function, etc.). 

Our method on CGRC platform could be 

extended to the algorithm of the other 

applications. In the future work, some aspects 

such as hardware/software partitioning, DFG 

extracting, and scheduling, etc., will continue to 

be optimized according to the architecture of the 

MUSRA to achieve a better performance. 

References 

[1] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,  

J. Long, R. Girshick, S. Guadarrama, T. Darrell, 

“Caffe”, in the ACM International Conference on 

Multimedia - MM ’14, 2014, pp. 675-678. 

[2] R. Collobert, “Torch7: A matlab-like environment 

for machine learning”, BigLearn, NIPS  

Workshop, 2011. 

[3] S. Tokui, K. Oono, S. Hido, C.S.A S. Mateo, 

J. Clayton, “Chainer: a Next-Generation Open 

Source Framework for Deep Learning”, 

learningsys.org. 

[4] V. Sze, Y.H. Chen, T.J. Yang, J.S. Emer, Efficient 

processing of deep neural networks: A tutorial and 

survey. Proceedings of the IEEE. 105(12) (2017) 

2295-2329. 

[5] I. Tsmots, O. Skorokhoda, V. Rabyk, Hardware 

Implementation of Sigmoid Activation Functions 

using FPGA, In 2019 IEEE 15th International 

Conference on the Experience of Designing and 

Application of CAD Systems (CADSM), IEEE, 

2019, pp. 34-38.  

[6] V. Nair, G.E. Hinton, “Rectified linear units 

improve restricted boltzmann machines”, in Proc, 

ICML, 2010, pp. 807-814. 

[7] R. Istrate, A.C.I. Malossi, C. Bekas,  

D.S. Nikolopoulos, Incremental Training of Deep 

Convolutional Neural Networks, arXiv 2018, 

arXiv:1803.10232. 

[8] S. Guo, L. Wang, B. Chen, Q. Dou, Y. Tang,  

Z. Li, Z. FixCaffe: Training CNN with Low 

Precision Arithmetic Operations by Fixed Point 

Caffe. In Proceedings of the APPT 2017, Oslo, 

Norway, September,  2017, pp. 14-15. 

[9] V. Beiu, J.A. Peperstraete, J. Vandewalle,  

R. Lauwereins, Closse approximations of sigmoid 

functions by sum of step for vlsi implementation of 

neural networks, Sci, Ann, Cuza Univ. 3 (1994) 5-34.  

[10] H.K. Nguyen, M.T. Phan, RTL design of a 

dynamically reconfigurable cell array for 

multimedia processing, In 2017 4th NAFOSTED 

Conference on Information and Computer Science, 

November, IEEE, 2017, pp. 189-194. 

[11] B.J. Oh, “Face recognition by using neural network 

classifiers based on PCA and LDA”, in 2005 IEEE 

International Conference on Systems, Man and 

Cybernetics 2 (2005) 1699-1703. 

[12] Golub, H. Gene, A. Henk, Van der Vorst. 

"Eigenvalue computation in the 20th 

century", Journal of Computational and Applied 

Mathematics 123(1-2) (2000) 35-65. 

[13] Alaa Eleyan, Hasan Demirel, Pca and lda based 

neural networks for human face recognition, 

INTECH Open Access Publisher 558 (2007)  

93-106. 

[14] M.P. Rajath Kumar, K.M. Aishwarya, “Artificial 

neural networks for face recognition using PCA 

and BPNN”, TENCON 2015-2015 IEEE Region 

10 Conference, IEEE, 2015. 

[15] Abdi, Hervé, J. Lynne, Williams, “Principal 

component analysis”, Wiley interdisciplinary 

reviews: computational statistics 2(4) (2010) 

433-459. 

[16] P. Valarmathie, M.V. Srinath, K. Dinakaran, An 

increased performance of clustering high 

dimensional data through dimensionality reduction 

technique, Theoretical and Applied Information 

Technology 5(6) (2005) 731-733. 

[17] A.A.S. Ali, A. Amira, F. Bensaali, M. Benammar, 

Hardware PCA for gas identification systems using 

high level synthesis on the Zynq SoC, in IEEE 

International Conference on Electronics, Circuits, 

and Systems, 2013, pp. 707-710. 

[18] T.C. Chen, W. Liu, L.G. Chen, VLSI architecture 

of leading eigenvector generation for on-chip 

principal component analysis spike sorting system, 

in International Conference of the IEEE 

Engineering in Medicine and Biology Society, 

2008, pp. 3192-3195. 

[19] A. Das, S. Misra, S. Joshi, J. Zambreno,  

G. Memik, A. Choudhary, An efficient FPGA 

implementation of principle component analysis based 

network intrusion detection system, in Proceedings of 

the Conference on Design, Automation and Test in 

Europe, 2008, pp. 1160-1165. 

[20] T. Karnthak P. Kumhom, A hardware 

implementation of PCAbased-on the networks-on-

chip paradigm, in International Symposium on 

Communications and Information Technologies, 

2012, pp. 834-839 

[21] Zynq-7000 SoC Data Sheet, 

http://www.xilinx.com/products/silicon-

devices/soc/zynq-7000.htm, July 2, 2018. 

[22] G. Theodoridis, D. Soudris and S. Vassiliadis, “A 

Survey of Coarse-Grain Reconfigurable 

Architectures and Cad Tools Basic Definitions, 

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.htm
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.htm


H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67 

 

68 

Critical Design Issues and Existing Coarse-grain 

Reconfigurable Systems”, Springer, 2008. 

[23] M. Zhu, L. Liu, S. Yin, et al., “A Cycle-Accurate 

Simulator for a Reconfigurable Multi-Media 

System”, IEICE Transactions on Information and 

Systems 93 (2010) 3202-3210. 

[24] Frank Bouwens, Mladen Berekovic, Bjorn De 

Sutter, and Georgi Gaydadjiev: “Architecture 

Enhancements for the ADRES Coarse-rained 

Reconfigurable Array” HiPEAC 2008, LNCS 4917 

(2008) 66-81. 

[25] ZCU106 Evaluation Kit user manual, 

https://www.xilinx.com/products/boards-and-

kits/zcu106.htmll, Oct 23, 2019. 

p 

https://www.xilinx.com/products/boards-and-kits/zcu106.htmll
https://www.xilinx.com/products/boards-and-kits/zcu106.htmll

