
VNU Journal of Science: Comp. Science & Com. Eng, Vol. 36, No. 2 (2020) 52-67

52

Original Article

An Implementation of PCA and ANN-based

Face Recognition System on Coarse-grained

Reconfigurable Computing Platform

Hung K. Nguyen*, Xuan-Tu Tran

VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Received 21 September 2020

Revised 23 November 2020; Accepted 27 November 2020

Abstract: In this paper, a PCA and ANN-based face recognition system is proposed and

implemented on a Coarse Grain Reconfigurable Computing (CGRC) platform. Our work is quite

distinguished from previous ones in two aspects. First, a new hardware-software co-design method

is proposed, and the whole face recognition system is divided into several parallel tasks implemented

on both the Coarse-Grained Reconfigurable Architecture (CGRA) and the General-Purpose

Processor (GPP). Second, we analyzed the source code of the ANN algorithm and proposed the

solution to explore its multi-level parallelism to improve the performance of the application on the

CGRC platform. The computation tasks of ANN are dynamically mapped onto CGRA only when

needed, and it's quite different from traditional Field Programmable Gate Array (FPGA) methods in

which all the tasks are implemented statically. Implementation results show that our system works

correctly in face recognition with a correct recognition rate of approximately 90.5%. To the best of our

knowledge, this work is the first implementation of PCA and ANN-based face recognition system on a

dynamically CGRC platform presented in the literature.

Keywords: Coarse-grained Reconfigurable Architecture; Principal Components Analysis (PCA); Face

Recognition; Artificial Neural Network (ANN); Reconfigurable Computing platform.

Face recognition is one of the most common

biometric recognition techniques that attract

huge attention of many researchers in the field of

computer vision since the 1980s.* Today, face

recognition has proven its important role and is

widely used in many areas of life. Some

important applications of face recognition are

* Corresponding author.

 E-mail address: kiemhung@vnu.edu.vn

 https://doi.org/10.25073/2588-1086/vnucsce.263

automatic criminal record checking, integration

with surveillance cameras or ATM systems to

increase security, online payment, tracking, and

prediction of strange diseases in medicine.

The face recognition system gets an image, a

series of photos, or a video as input and then

processes them to identify whether a person is

 https://doi.org/10.25073/2588-1086/vnucsce.263

mailto:kiemhung@vnu.edu.vn

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

53

known or not. The system includes two phases

which are the feature extraction and the

classification as shown in Figure 1.

Feature

Extraction

Face Image
Classification

Decision
Feature

Vector

Figure 1. Processes in face recognition.

The problem we have to deal with when

implementing a face recognition system is that

the data set has a very large number of

dimensionality resulting in a large amount of

computation which takes a lot of processing

time. Therefore, a significant improvement

would be achieved if we could reduce the

dimensionality of data by mapping them to

another space with a smaller number of

dimensionality [16]. Especially, dimensionality

reduction is indispensable for real-time face

recognition system while processing high-

resolution images. Feature extraction is a process

to reduce the dimensionality of a set of raw data

to more manageable groups for processing.

Feature extraction selects and/or combines

variables into features, effectively reducing the

amount of data that must be processed, while still

accurately and completely describing the

original data set. Generally, the feature

extraction techniques are classified into two

approaches: local and holistic (subspace)

approaches. The first approach is classified

according to certain facial features (such as eyes,

mouth, etc.), not considering the whole face.

They are more sensitive to facial expressions,

lighting conditions, and pose. The main

objective of these approaches is to discover

distinctive features. The second approach

employs the entire face as input data and then

projects into a small subspace or in correlation

plane. Therefore, they do not require extracting

face regions or features points (eyes, mouth,

noses, and so on). The main function of these

approaches is to represent the face image by a

matrix of pixels, and this matrix is often

converted into feature vectors to facilitate their

treatment. After that, these feature vectors are

implemented in small dimensional space.

The principal components analysis (PCA)

[15] is one of the popular methods of holistic

approaches used to extract features points of the

face image. This approach are introduced to

reduce the dimensionality and the complexity of

the detection or recognition steps, meanwhile

still achieved a great performance in face

recognition. PCA offers robust recognition

under different lighting conditions and facial

expressions, and these advantages make these

approaches widely used. Although these

techniques allow a better reduction in

dimensionality and improve the recognition rate,

they are not invariant to translations and

rotations compared with local techniques.

Classification is a process in which ideas and

objects are recognized, differentiated, and

understood based on the extracted features by an

appropriate classifier. The artificial neural

networks (ANNs) are one of the most successful

classification systems that can be trained to

perform complex functions in various face

recognition systems. State-of-the-art ANNs are

demonstrating high performance and flexibility

in a wide range of applications including video

surveillance, face recognition, and mobile robot

vision, etc.

Face recognition using PCA in combination

with neural networks is a method to achieve high

recognition efficiency by promoting the

advantages of PCA and neural networks [11]. In

this paper, a face recognition system based on

the combination of PCA and neural network is

implemented on the coarse-grained

reconfigurable computing platform. The

proposed system offers an improvement in the

recognition performance over the conventional

PCA face recognition system. The system

operates stably and has high adaptability when

the data input has a large variation. The system

has been implemented and validated on the

coarse-grained reconfigurable computing

platform built around the CGRA called MUSRA

that was proposed in our previous work [10].

The rest of this paper is organized as follows.

Section 2 reviews some related works. In Section

3, the proposal of the MUSRA-based coarse-

grained reconfigurable computing (CGRC)

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

54

platform is introduced. Section 4 presents the

implementation of the face recognition system

on the CGRC platform. Evaluation of the

proposed system in comparison with the related

works are given in Section 5. Finally, some

conclusions are drawn in Section 6.

2. Related Works

2.1. PCA for Face Recognition

Principal Component Analysis (PCA) is a

standard method for dimensionality reduction

and feature extraction. It uses a mathematical

method called orthogonal transformation to

transform a large number of correlated variables

into a smaller set of uncorrelated variables so

that the newly generated variables are linear

combinations of old variables [15].

In this paper, the PCA method is used to

reduce the number of dimensionality of the

image, helping to reduce the computation

complexity of the training or identification

process in the neural network later. The steps to

perform PCA are as follows:

Step 1: Let’s establish the training set of face

images be S = {1, 2,…, M}. Each image in 2-

dimension with size W×H is converted into a 1-

dimension vector of W×H elements.

Step 2: Calculate the average image Ψ:

Ψ =
1

𝑀
∑ 𝑖

𝑀

𝑖=1

 (1)

Step 3: Calculate the deviation of input

images from average image:

𝑖 = 𝑖 − Ψ (2)

Step 4: Calculate the covariance matrix C:

C =
1

𝑀
∑ 𝑖𝑖

𝑇𝑀
𝑖=1 = 𝐴. 𝐴𝑇 (3)

where A = [𝟏, 2, … , 𝑴]

Step 5: Because matrix C is too large in size

(N×N), therefore, to find the eigenvector ui of C

we find the eigenvector and the eigenvalue of the

matrix L:

𝐿 = 𝐴𝑇𝐴 với 𝐿𝑚,𝑛 = 𝑚
𝑇 𝑛 (4)

The size of the matrix L is M×M << N×N,

so calculating eigenvector is faster.

Step 6: Let’s set vi as the eigenvector of L.

The eigenvector of C is:

𝑢𝑖 = ∑ v𝑖𝑘𝑘
𝑀
𝑖=1 , i =1, 𝑀̅̅ ̅̅ ̅̅ (5)

Because vectors ui are the eigenvectors of

the covariance matrix corresponding to the

original face images, so they are referred as

eigenfaces.

Step 7: After finding the eigenfaces, the

images in the database will be projected onto

these eigenfaces space to create the feature

vectors. These vectors are much smaller than the

image size but still carries the most key

information contained in the image.

There is much research [13-16; 18-20] on

using PCA in scientific disciplines, some works

have published the implementation of PCA for

face recognition [13, 14].

2.2. Artificial Neural Networks

Artificial neural networks take their

inspiration from a human brain’s nervous

system. Figure 2 depicts a typical neural network

with a single neuron explained separately.

Similar to human nervous system, each neuron

in the ANN collects all the inputs and performs

an operation on them. Lastly, it transmits the

output to all other neurons of the next layer to

which it is connected. A neural network is

composed of three layer types:

● Input Layer: takes input values and feeds

them to the neurons in the hidden layers.

● Hidden Layers: are the intermediate

layers between input and output which help the

neural network learn the complicated

relationships involved in data.

● Output Layer: presents the final outputs

of the network to the user.

Computation at each neuron in hidden layers

and output layer is modeled by the expression:

𝑦𝑖 = 𝑓(∑ 𝑊𝑖𝑗 × 𝑥𝑗 + 𝑏𝑖)

R

𝑗=1

 (6)

where 𝑊𝑖𝑗, 𝑏𝑖, 𝑥𝑗 and 𝑦𝑖 are the weights, bias, input

activations, and output activations, respectively,

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

55

and f() is a nonlinear activation function such as

Sigmoid [5], Hyperbolic Tangent [5], Rectified

Linear Unit (RELU) [6], etc.

Just like in human brain, an ANN needs to

be trained to perform its given tasks. This

training involves determining the value of the

weights (and bias) in the network. After that, the

ANN can perform its task by computing the

output of the network by using the weights

determined during the training process. This

process is referred to as inference. Training and

inference must be considered during the

development of hardware platform for ANN.

Training generally requires high-computing

performance, high-precision arithmetic, and

programmability to support different deep

learning models. In fact, training is usually

performed offline on workstations or servers.

Some research efforts have been looking for

incremental training solutions [7] and a

reduction in precision training [8] to decrease the

computation complexity.

Many ANN frameworks are implemented on

GPU (Graphic Processing Unit) platforms such

as Caffe [1], Torch [2], and Chainer [3]. These

fast and friendly frameworks are developed for

easily modifying the structures of neural

networks. However, from the performance point

of view, dedicated architectures for ANNs have

a higher throughput as well as higher energy

efficiency. In recent decades, interest in the

hardware implementation of artificial neural

networks (ANN) by using FPGA and ASIC has

grown. This is mainly due to the rapid

development of semiconductor technology that

is used for implementing digital ANN. Previous

FPGA/ASIC architectures already achieved a

throughput of several hundreds of Gop/s. These

architectures are easily scalable to get a higher

performance by leveraging parallelism.

However, one problem that most of these

designs are still faced with is: ASIC solution are

usually suffering from a lack of the flexibility to

be reconfigured for the various parameters of

ANN. With deep ANN comprising many layers

with different characteristics, it is impossible to

use heterogeneous architectures for the different

layers. In this paper, we propose an

implementation of ANN on the coarse-grained

reconfigurable architecture.

G

i1

i2

in

o1

o2

om

Input layer Hidden layer
#1

Hidden layer
#k

Output layer

 S f
yk

iak
i

Wk
i,1

Wk
i,2

Wk
i,3

Wk
i,r

xk
1

xk
2

xk
r bk

i

1

Figure 2. An artificial neuron and an ANN model.

2.3 Reconfigurable Hardware

The reconfigurable hardware is generally

classified into the Field Programmable Gate

Array (FPGA) and coarse-grained dynamically

reconfigurable architecture (CGRA). A typical

example of the FPGA-based reconfigurable SoC

is Xilinx Zynq-7000 devices [21]. Generally,

FPGAs support the fine-grained reconfigurable

fabric that can operate and be configured at bit

level. FPGAs are extremely flexible due to their

higher reconfigurable capability. However, the

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

56

FPGAs consume more power and have more

delay and area overhead due to greater quantity

of routing required per configuration [22]. This

limits the capability to apply FPGA to embedded

applications. To overcome the limitation of the

FPGA-like

fine-grained reconfigurable devices, coarse-

grained reconfigurable architectures (CGRAs)

focus on data processing and configuration at

bit-group with complex functional blocks (e.g.

Arithmetic Logic unit (ALU), multiplier, etc.).

These architectures are often designed for a

specific domain of applications. CGRAs achieve

a good trade-off between performance,

flexibility, and power consumption. Many

CGRAs have been proposed with the unique

features that is dedicated to a specific domain of

applications. Typical two of them are REMUS

[23] and ADRES [24]. ADRES (Architecture for

Dynamically Reconfigurable Embedded

System) is a reconfigurable system template,

which tightly couples a VLIW (Very Long

Instruction Word) processor and a coarse-

grained reconfigurable matrix into a single

architecture. Here, coarse-grained

reconfigurable matrix plays a role of a

co-processor in the VLIW processor. Coupling

CGRA directly with the processor increases the

performance at the expense of decrease in

flexibility because the CGRA architecture has to

be compatible with the given processor

architecture. By contrast, in the REMUS-II

(REconfigurable MUltimedia System version II)

architecture - a coarse-grained dynamically

reconfigurable heterogeneous computing SoC

for multimedia and communication baseband

processing, the CGRA is implemented as an IP

core that is attached to the system bus of the

processor. The REMUS-II consists of one or two

coarse-grained dynamically reconfigurable

processing units (RPUs) and an array of RISC

processors (µPU) coupled with a host ARM

processor via the AHB bus. Designing the

CGRA as an IP core in the REMUS makes it

easy to reuse design in the various systems with

no dependence on any particular processor

architecture.

In [10], we developed and modeled a coarse-

grained dynamically reconfigurable architecture,

called MUSRA (Multimedia Specific

Reconfigurable Architecture). The MUSRA is a

high-performance, flexible platform for a

domain of applications in multimedia

processing. In contrast with FPGAs, the

MUSRA aims at reconfiguring and manipulating

on the data at word-level. The MUSRA was

proposed to exploit high data-level parallelism

(DLP), instruction-level parallelism (ILP) and

TLP (Task Level Parallelism) of the

computation-intensive loops of an application.

The MUSRA also supports the capability of

dynamic reconfiguration by enabling the

hardware fabrics to be reconfigured into

different functions even if the system is working.

3. Proposed Architecture of CGRC Platform

3.1 Coarse-Grained Reconfigurable Computing

Platform

In this paper, we developed a high-

performance Coarse-Grained Reconfigurable

Computing Platform (CGRC) for experimentally

evaluating and validating the applications of

multimedia processing. The platform’s hardware

is a system-on-chip based on the MUSRA

(Multimedia Specified coarse-grained

Reconfigurable Architecture) [10], the ARM

processor, and the other IP cores from the

Xilinx’s library as shown in Figure 3. The CGRC

platform was synthesized and implemented on

the Xilinx ZCU106 Evaluation Kit [25]. The

ARM processor functions as the central

processing unit (CPU) that takes charge of

managing and scheduling all activities of the

system. The external memory is used for

communicating data between tasks on the CPU

and tasks on the MUSRA. Cooperation between

MUSRA, CPU, and DMACs (Direct Memory

Access Controllers) are synchronized by the

interrupt mechanism. When the MUSRA

finishes the assigned task, it generates an

interrupt via IRQC (Interrupt Request

Controller) unit to signal the CPU and returns

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

57

bus control to the CPU. In order to run on the

platform, the C-program of the application is

compiled and loaded into the Instruction

Memory of the platform. Meanwhile, the data is

copied into the Data Memory.

Context

Parser

Context

Memory

Input DMA

Output DMA

Data

Memory

IN_FIFO

OUT_FIFO

GRF

 AXI/CGRA Interface

1

2

3

4

3

RCA

 AXI BUS

ARMInstruction

Memory

Data

Memory
IRQC

CDMAC

DDMAC

MUSRA

Figure 3. Coarse-Grained Reconfigurable

Computing Platform (CGRC).

Execution and data-flow of the MUSRA are

reconfigured dynamically under controlling of

the CPU. After resetting, the operation of the

system is briefly described as follows:

(1) Context Memory Initialization: CPU

writes the necessary control parameters and then

grant bus control to CDMAC in Context

Memory. CDMAC will copy a context from the

instruction memory to context memory. At the

same time, CPU executes another function.

(2) Context Parser Initialization: CPU

writes the configuration words to the context

parser.

(3) RCA Configuration and Data Memory

Initialization: After configured, parser reads

one proper context from the context memory,

decode it and configure RCA. Concurrently,

CPU initializes DDMAC that will copy data

from the external data memory to the internal

data memory. DDMAC is also used for writing

the result back to the external data memory.

(4) RCA Execution: RCA performs a

certain task right after it has been configured.

3.2. MUSRA Architecture

The MUSRA [10] is composed of a

Reconfigurable Computing Array (RCAs),

Input/Output FIFOs, Global Register File

(GRF), Data/Context memory subsystems, and

DMA (Direct Memory Access) controllers, etc.

Data/Context memory subsystems consist of

storage blocks and DMA controllers

(i.e. CDMAC and DDMAC). The RCA is an

array of 88 RCs (Reconfigurable Cells) that can

be configured partially to implement

computation-intensive tasks. The input and

output FIFOs are the I/O buffers between the

data memory and the RCA. Each RC can get the

input data from the input FIFO or/and GRF, and

store the results back to the output FIFO. These

FIFOs are all 512-bit in width and 8-row in

depth, and can load/store sixty-four bytes or

thirty-two 16-bit words per cycle. Especially, the

input FIFO can broadcast data to every RC that

has been configured to receive the data from the

input FIFO. This mechanism aims at exploiting

the reusable data between several iterations. The

interconnection between two neighboring rows

of RCs is implemented by a crossbar switch.

Through the crossbar switch, an RC can get

results that come from an arbitrary RC in the

above row of it. The Parser decodes the

configuration information that has been read

from the Context Memory, and then generates

the control signals that ensure the execution of

RCA accurately and automatically.

RC (Figure 4) is the basic processing unit of

RCA. Each RC includes a data-path that can

execute signed/unsigned fixed-point 8/16-bit

operations with two/three source operands, such

as arithmetic and logical operations, multiplier,

and multimedia application-specific operations

(e.g. barrel shift, shift and round, absolute

differences, etc.). Each RC also includes a local

register called LOR. This register can be used

either to adjust operating cycles of the pipeline

or to store coefficients when a loop is mapped

onto the RCA. A set of configuration registers,

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

58

which stores configuration information for the

RC, is called a layer. Each RC contains two

layers that can operate in the ping-pong fashion

to reduce the configuration time.

DATAPATH

MUX MUX

LOR

MUX

A B

C

M
U

X

In
p

u
tF

IF
O

P
R

E
_

L
IN

E

In
p

u
tF

IF
O

P
R

E
_

L
IN

E

In
p

u
tF

IF
O

OUT_REG

LOR_input

LOR_output

PE_OUT

P
R

E
_

L
IN

E

LOR_OUT

PE

CLK

RESETN
A_IN B_IN

C
_

IN

Config._Addr

Config. Data

ENABLE

G
R

F
s

Cnfig.

REGs

Layer

1

Config.

REGs

Layer

0Config._ENB

Figure 4. RC architecture.

The configuration information for the

MUSRA is organized into the packets called

context. The context specifies a particular

operation of the RCA core (i.e. the operation of

each RC, the interconnection between RCs, the

input source, output location, etc.) as well as the

control parameters that control the operation of

the RCA core. The total length of a context is

128 32-bit words. An application is composed of

one or more contexts that are stored into the

context memory of the MUSRA.

The MUSRA architecture is basically the

such-loop-oriented one. By mapping the body of

the kernel loop onto the RCA, the RCA just

needs configuring one time for executing

multiple times, therefore it can improve the

efficiency of the application execution.

Executing model of the RCA is the pipelined

multi-instruction-multi-data (MIMD) model. In

this model, each RC can be configured

separately to a certain operation, and each row of

RCs corresponds to a stage of a pipeline.

Multiple iterations of a loop are possible to

execute simultaneously in the pipeline.

Figure 5. (a) DFG representation of a simple loop body, and (b) its map onto RCA.

For purpose of mapping, a kernel loop is first

analyzed and loop transformed (e.g. loop unrolling,

loop pipelining, loop blocking, etc.) in order to

expose inherent parallelism and data locality that

are then exploited to maximize the computation

performance on the target architecture. Next, the

body of the loop is represented by data-flow graphs

(DFGs) as shown in Figure 5. Thereafter, DFGs are

mapped onto RCA by generating configuration

information, which relates to binding nodes to the

RCs and edges to the interconnections. Finally,

these DFGs are scheduled in order to execute

automatically on RCA by generating the

corresponding control parameters for the CGRA’s

controller. Once configured for a certain loop,

RCA operates as the hardware dedicated for this

loop. When all iterations of loop have completed,

+

&

-

x y

×
CLK1

CLK2

CLK3

CLK4

CLK5

LOAD -

EXECUTION

STORE-

EXECUTION

z

v

InputFIFO

x y

z

L
O

A
D NI = 2

A

CLK6 w

OutputFIFO

v

w

0

1

Output #1

Output #2

NO = 2

Data broadcasted

directly to every RC

Input #1

Input #2

35

t

t

EXECUTION

(a)

PE

LORPE

PE

PE TD

PE

PE

PE
LOR

PE TD

x y

×

-

+

&

Stage1

 Stage2

Stage3

Stage4

z

LOR

LOR

LOR

LOR

PE TD PE TDAStage4

w

t

GRF(0)

OUT_FIFO(0)

OUT_FIFO(0)

v

(b)

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

59

this loop is removed from the RCA, and the other

loops are mapped onto the RCA.

4. Implementation of Face Recognition System

4.1. Face Recognition System

The face recognition system is based on the

combination of PCA and an artificial neural

network called the PCA-ANN system. The PCA-

ANN face recognition system is divided into 3

processes: feature extraction, training, and

recognition as shown in Figure 6.

Face Database

Testing SetTraining Set

Eigenspace

Computation

Projection of

Image

Feature Vector

Projection of

Image

Feature Vector

Training ANN

Set of weights

and bias
ANN

PCA

(Feature

Extraction)

Classification

Training Inference

Decision Making

Figure 6. Face recognition based on the combination

between ANN and PCA.

In the feature extraction process, an

eigenfaces space is established from the training

images using the PCA feature extraction method.

The ANN requires the training process where the

weights connecting the neurons in consecutive

layers are calculated based on the training

images and target classes. Therefore, after

generating the eigenvectors using PCA methods,

the projection of face images in the training set

is calculated and then used to train the neural

network on how to classify images for each

person. In the recognition process, each input

face image in the testing set is also projected to

the same eigenfaces space and classified by the

trained ANN.

4.2. Hardware/Software Partition

Instead of implementing the system entirely

by hardware or software, this paper proposes a

system-level model for the realization of the

PCA-ANN face recognition system, including

hardware and software tasks, as shown in

Figure 7.

In PCA feature extraction, calculating

eigenvalues and eigenvectors for eigenfaces

space requires very complicated algebraic

methods like QR or Jacobi [12]. The hardware

architecture for implementing a PCA algorithm

is often very complex. Because of the

complexity of the PCA algorithm, in the scope

of this paper it will be implemented as software

running on the CPU.

In ANN-based classification, two aspects

must be considered, including training and

inference. Training still requires high-

performance computing, high-precision

arithmetic, and programmability to support

different deep learning models. The training

process is time-consuming and involves a lot of

power consumption. Therefore, it is usually done

offline on the server's GPU. In particular, the

training is performed in software using

MATLAB running on the server. Matlab

program includes one function to calculate the

eigenvectors using the built-in functions and

another for training the neural network. The

results are the average vector, the eigenvectors,

the weights and biases of the neural network

after being trained. These parameters are then

saved in text files (.txt) and will be written to the

memory on the CGRC platform while the system

is operating.

On the other side, the inference is performed

by both software and hardware on the high-

performance CGRC platform. Here, PCA feature

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

60

extraction is performed by the CGRC platform’s

CPU, and ANN is mapped onto the CGRC

platform’s MUSRA. The face image, which is

considered for recognition, is firstly

pre-processed by a MATLAB program on the

server, then passed through the PCA module to

extract the features, and finally sent to the ANN

module for making recognition decision.

H

Figure 7. Hardware/Software partition.

4.3 Mapping ANN onto MUSRA

Algorithm 1. ANN Computation

1

2

3

4

5

6

7

X1
 = input

For k in 1 to L - 1 loop

 Ak = XkWk

 Yk = f(Ak)

 Xk+1 = Yk

End For

Output = XL

Let’s examine a generic ANN that has

L layers with one input layer, one output layer,

and L-2 hidden layers. At the layer kth, the input

vector Xk is forwardly transferred through the

neurons to generate an output vector Yk that then

becomes the input vector Xk+1 for the next layer

(k+1)th. The pseudo-code in Algorithm 1

describes ANN computation.

Where, input = (i1, i2, … in) is the input

vector, and output = (o1, o2, … om) is the output

vector.

Let’s set Nk is the number of neurons in the

layer kth, where k = 1, 2,…, L-1. Since the output

of each layer forms the input of the next layer,

therefore, the input vector of the layer kth is 𝑋𝑘 =

[𝑥0
𝑘 , 𝑥1

𝑘 , … , 𝑥𝑁𝑘−1−1
𝑘] and its dimension is 1×Nk-

1. The output vector of the layer kth is 𝑌𝑘 =

[𝑦0
𝑘 , 𝑦1

𝑘 , … , 𝑦𝑁𝑘−1
𝑘], which has 1×Nk elements.

Wk is the weight matrix at the layer kth.

𝑊𝑘 = (

𝑤0,0
𝑘 ⋯ 𝑤𝑁𝑘−1,0

𝑘

⋮ ⋱ ⋮
𝑤0,𝑁𝑘−1−1

𝑘 ⋯ 𝑤𝑁𝑘−1,𝑁𝑘−1−1
𝑘

)

Algorithm 1 can be expanded to some loops,

as shown in Algorithm 2.

ORL Face DatabaseTraining Set Testing Set

Matlab code runs on PC
Feature_extraction()
//represents the image as
a vector
//calculates average
vector
//calulates eigenvectors
//Projects the training set
on eigenspace
Training_ANN()
//calculates weights and
bias

PCA on

CPU

Mem_3.txt

Mem_2.txt

w_hid.txt

w_out.txt

b_hid.txt

b_out.txt

ANN on

MUSRA

Matlab code runs on PC
Preprocess()
// convert image to 8-bit
gray one

Mem_1.txt

Recognition

Decision

CGRC

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

61

Algorithm 2. ANN Computation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

X1
 = input

For k in 1 to L – 1 loop

// loop_k runs through all layers

For i = 0 to Nk – 1 loop

//loop_i runs through all neurons

 𝑨𝒊
𝒌 = 𝒃𝒊

For j = 0 to Nk-1 – 1 loop //loop_j

 𝑨𝒊
𝒌 = 𝑨𝒊

𝒌 + 𝒙𝒋
𝒌𝑾𝒊,𝒋

𝒌

 End for j

 𝒀𝒊
𝒌 = 𝒇(𝑨𝒊

𝒌) //activation function

 𝑿𝒊
𝒌+𝟏 = 𝒀𝒊

𝒌

 End for i

End For k

Output = XL

The loop loop_j (line 7 to line 9 in Algorithm

2) is unrolled and implemented by the adder tree

with the output that is the accumulation of the

products of the inputs and weights as shown in

Figure 8. The structure of adder-tree for different

layers varies in the number of inputs, weights,

and bias.

X

X[
1]

W
[i]

[1
]

X

X[
2]

W
[i]

[2
]

+

X

X[
r-

1]

W
[i]

[r
-1

]

X

X[
r]

W
[i]

[r
]

+

+ +

+

+

b

a[
i]

Figure 8. DFG of the loop loop_j.

The sum of the weighted inputs will be fed

to the activation function to calculate the output

value at each neuron (line 10 in Algorithm 2).

The activation function used here is the Sigmoid

function, as shown in expression (7):

𝑓(𝑥) =
1

1+𝑒−𝑥 (7)

There some different methods for the

implementation of the sigmoid activation

function, including Look-up table (LUT), Taylor

transformation, piecewise linear approximation

[9]. The method of Taylor transformation

requires many multiplications. The LUT method

uses a large memory to store the table of possible

values of the target function. As a result, both of

these methods are not realizable for the

implementation on CGRA. Therefore, in this

paper, we adopted the method of a piecewise

linear approximation to perform the sigmoid

activation function. Also notice that, the chosen

approximation method has a great influence

on the accuracy and performance of the

neural network.

For x in the range [0, +∞), the sigmoid

function is approximated by expression:

(8)

For negative values of x, the sigmoid

function can be calculated using the expression:

 (9)

×

a x

+

b

×

+

c

1 0

0

x

-x

1 0

1

X>4?

LOR

LOR

LOR

X<0?

1 F(x)

1-f(x)

LOR

1 0

F(x)

LOR

LOR

LOR

LOR

LOR

LOR

Figure 9. DFG of activation function.

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

62

Figure 9 shows a DFG for implementing the

sigmoid activation function, where, a = -0.03125,

b = 0.25, and c = 0.5. Because of the

reconfigurability of MUSRA, the activation

function can be easily configured to different

ones for the hidden layers and the output layer.

5. Experiment and Evaluation

This section presents the validation of the

PCA-ANN face recognition system on the CGRC

platform. The performance of our implementation

is compared with the other works.

5.1. Validation Script

The face database used for the experiment is

the image set from the AT&T ORL (Olivetti

Research Laboratory). This database consists of

400 images of 40 people, each with 10 different

images. Each image has dimensions of 80 × 110

pixels. The face database are divided into

training set and testing set. After PCA feature

extraction, each face image is represented by a

feature vector of size 1×30.

The neural network consists of three layers

and is configured as follows:

- Input Layer: includes 30 neurons

corresponding to the number of elements of the

feature vector of size 1×30.

- Hidden Layer: consists of 120 neurons,

each has 30 inputs, 30 weights and one bias.

- Output Layer: is made of three neurons

corresponding to three outputs. Each of neuron

has 120 inputs, 120 weights and one bias.

- Number of training times: 10000 times.

- Learning coefficient: 0.01

- Permissible error: 10-5

5.2. Experimental Results

1) Sigmoid function and its approximation

Figure 10 shows the chart of Sigmoid

function and its approximation by Error!

Reference source not found. and Error!

Reference source not found. in the range (-8,

8). Where, the orange line depicts the sigmoid

function, and the blue line depicts the sigmoid

function’s approximation. Experiment

estimation shows that the average error and the

maximum error of approximation of the sigmoid

function are εaverage = 0.00774 và εmaximum =

0.02163.

2) Functional verification of face

recognition system

To functionally verify the face recognition

system, the training set and testing set are

extracted from the database as follows. First,

choose three image sets of three people in the

ORL database to build the training set. Next,

take three images of these three people, each

person one image, and flip that image to create

the testing set. The purpose of flipping the image

is to make it different from the image in the

training set. The training set and testing set is

shown in Figure 11 and Figure 12, respectively.

U

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

63

Figure 10. Chart of Sigmoid function and its approximation.

Figure 11. Training set including images of three first persons in the ORL database.

(a) images in the training set

(b) image not in the training set

Figure 12.Testing set.

1st Person Image

2nd Person Image

Kth Person Image

Mst Person Image

PCA
Neural Network

ANN

0
0

1

0

Kth
Person

Make
Decision

Feature
Vector

CPU CGRA CPU

Figure 13. Inference Processing.

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

64

Figure 14. Simulation results for the first image in the training set.

Figure 15. Simulation results for the second image in the training set.

Figure 16. Simulation results for the third image in the training set.

Figure 17. Simulation results for the image not in the training set.

Testing images are represented in feature

vectors before feeding to ANN and the ANN’s

outputs are compared with the given threshold

by CPU to make a recognition decision as shown

in Figure 13. The simulation results of ANN are

shown in Figure 14, Figure 15, and Figure 16.

Similarly, take an image that is not included in

the training set as input to face recognition system.

Simulation results are shown in Figure 17.

The computation result of ANN is

represented by 16-bit fixed-point numbers where

6 bits represent the integer part, and another 10

bits represent the fractional part. This result is

displayed on the output port in the waveform

window while simulating. For easy viewing, this

result is left-shifted 10 bits (i.e. multiplied by

210) to convert to 16-bit integers, as shown in the

figures Figure 14 - Figure 17 above. The value at

the output is compared to the threshold by the

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

65

CPU to determine which face is detected. The

thresholds chosen for comparison are 0.9 and 0.1

(values greater than 0.9 are determined to be 1,

less than 0.1 is decided as 0). To compare with

the simulation results, these threshold values are

also left-shifted 10 bits to become values 921

and 102, respectively. The rules for making

identification decisions are shown in Table 1.

Based on the rules in Table 1 and the

simulation results in figures Figure 14 - Figure

17, we get the results of identification, as shown

in Table 2. This result proves that the system is

functional correctness as expected.

Table 1. The Rule for making decision

OUPUT Decision
Identification

results

output(2) > 921

output(1) < 102

output(0) < 102

[1; 0; 0] First Person

output(2) < 102

output(1) > 921

output(0) < 102

[0; 1; 0] Second Person

output(2) < 102

output(1) < 102

output(0) > 921

[0; 0; 1] Third Person

Others [0; 0; 0] Stranger

3) Performance Analysis of face recognition

system

To evaluate the performance of the system,

we use the training and testing set which are built

as follows. We use 30 images of the first three

people in the ORL database as a training set. The

testing set has 400 images, including 30 flipped

images of three selected people (to make the

difference from the training images) and 370

images of the remaining 37 people in the ORL

database.

The validation results are recorded in Table

3. Here, “strangers” are those who are not in the

training set, and "acquaintances” are those who

are in the training set. The result is considered as

“Correct Identification” (a) when inputting the

image of an “acquaintance”, the system correctly

identifies which of the three selected persons the

image is; or (b) when inputting an image of a

stranger, the system returns "stranger". On the

contrary, the result is considered as "Wrong

identification" when the system mistakenly

recognizes "stranger" as "acquaintance",

"acquaintance" as "stranger", or confuses an

acquaintance with each other.

Table 2. Identification results

 First Image Second image Third Image Fourth image

Displayed result

(16-bit)
[1003; 3; 0] [69; 983; 0] [1; 0; 1024] [43; 387; 0]

* Real result [0.9794; 0.0029; 0] [0.0673; 0.9599; 0] [0.0009; 0; 1] [0.0419; 0.3779; 0]

Decision [1; 0; 0] [0; 1; 0] [0; 0; 1] [0; 0; 0]

Identification results First person Seconf person Third person Stranger

* Real result = Displayed result/210.

Table 3. Performance Evaluation

 Number of images Correct Identification Wrong Identification

First person 10 10 0

Second person 10 8 2

Third persom 10 9 1

Stranger 370 332 38

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

66

Total 400 359 41

Ratio 90.5% 9.5%

l

Evaluation results show that the system has

quite high recognition efficiency, achieving

correct recognition rate of 90.5%. The

experimental results are compared with the

results of other works in Table 4.

Table 4. Performance Comparison

PCA-ANN PCA

Our [13] [14] [13] [14]

90.5% 85% 88% 78% 86%

Compared to the results of other works using

the same method, our system achieved 5.5% and

2.5% higher correct recognition rate than [13]

and [14], respectively. Compared with using

only PCA method for identification, the

recognition results when using the combination

of two methods are 12.5% and 4.5% more

accurate than [13] and [14], respectively.

Table 5 shows the change in recognition

efficiency when changing the number of hidden

layer neurons. When the number of hidden layer

neurons increased from 120 to 150, the

difference in performance was very small.

However, when the number of hidden layer

neurons is reduced, especially when it is reduced

to 30, the performance is greatly reduced,

showing that the number of hidden layer neurons

has a large impact on the identification

performance of the neural network. This can be

explained as follows. When the number of hidden

layer neurons is too small, the network cannot learn

deeply enough, resulting in poor recognition

performance. Conversely, increasing the number

of hidden layer neurons will make the network

model more complicated and the possibility of

"over-matching" becomes higher. "Over-

matching" occurs when the trained network

matches with the training samples so much,

therefore it answers exactly what has been learned,

and does not care what is not learned.

Table 5. Recognition performance vs. number of hidden layer neurons

Number of neurons 150 120 90 60 30

Performance 89.75% 90.5% 88.75% 85.25% 80.5%

i

6. Conclusion

In this paper, we presented our work on the

proposal, implementation and evaluation of PCA

and ANN-based face recognition system. The

feature vectors obtained through the PCA

method are used as the input for training and

testing the ANN. The combination of PCA

method and neural network is to improve the

system's identification efficiency. The face

recognition system has been hardware/software

co-designed and implemented on a coarse-

grained reconfigurable computing platform. We

analyzed the source code of the ANN algorithm

and proposed the optimization solution to

explore its multi-level parallelism in order to

improve the performance of the application on

the CGRC platform. Our implementation has

been simulated and validated by the CGRC

platform of the MUSRA on the Xilinx

ZCU106 Evaluation Kit. The verification

process has confirmed that the system works

correctly in face recognition. The correct

recognition rate is approximately 90.5%. The

proposed system gets an improvement on the

recognition rates over classical PCA face

recognition system. In addition, the recognition

performance of our system is higher than the

PCA-ANN system proposed by other works. It

is also easy to reconfigure the MUSRA to

support different ANN configuration (for

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

67

example, number of layer, number of neurons

per layer, activation function, etc.).

Our method on CGRC platform could be

extended to the algorithm of the other

applications. In the future work, some aspects

such as hardware/software partitioning, DFG

extracting, and scheduling, etc., will continue to

be optimized according to the architecture of the

MUSRA to achieve a better performance.

References

[1] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,

J. Long, R. Girshick, S. Guadarrama, T. Darrell,

“Caffe”, in the ACM International Conference on

Multimedia - MM ’14, 2014, pp. 675-678.

[2] R. Collobert, “Torch7: A matlab-like environment

for machine learning”, BigLearn, NIPS

Workshop, 2011.

[3] S. Tokui, K. Oono, S. Hido, C.S.A S. Mateo,

J. Clayton, “Chainer: a Next-Generation Open

Source Framework for Deep Learning”,

learningsys.org.

[4] V. Sze, Y.H. Chen, T.J. Yang, J.S. Emer, Efficient

processing of deep neural networks: A tutorial and

survey. Proceedings of the IEEE. 105(12) (2017)

2295-2329.

[5] I. Tsmots, O. Skorokhoda, V. Rabyk, Hardware

Implementation of Sigmoid Activation Functions

using FPGA, In 2019 IEEE 15th International

Conference on the Experience of Designing and

Application of CAD Systems (CADSM), IEEE,

2019, pp. 34-38.

[6] V. Nair, G.E. Hinton, “Rectified linear units

improve restricted boltzmann machines”, in Proc,

ICML, 2010, pp. 807-814.

[7] R. Istrate, A.C.I. Malossi, C. Bekas,

D.S. Nikolopoulos, Incremental Training of Deep

Convolutional Neural Networks, arXiv 2018,

arXiv:1803.10232.

[8] S. Guo, L. Wang, B. Chen, Q. Dou, Y. Tang,

Z. Li, Z. FixCaffe: Training CNN with Low

Precision Arithmetic Operations by Fixed Point

Caffe. In Proceedings of the APPT 2017, Oslo,

Norway, September, 2017, pp. 14-15.

[9] V. Beiu, J.A. Peperstraete, J. Vandewalle,

R. Lauwereins, Closse approximations of sigmoid

functions by sum of step for vlsi implementation of

neural networks, Sci, Ann, Cuza Univ. 3 (1994) 5-34.

[10] H.K. Nguyen, M.T. Phan, RTL design of a

dynamically reconfigurable cell array for

multimedia processing, In 2017 4th NAFOSTED

Conference on Information and Computer Science,

November, IEEE, 2017, pp. 189-194.

[11] B.J. Oh, “Face recognition by using neural network

classifiers based on PCA and LDA”, in 2005 IEEE

International Conference on Systems, Man and

Cybernetics 2 (2005) 1699-1703.

[12] Golub, H. Gene, A. Henk, Van der Vorst.

"Eigenvalue computation in the 20th

century", Journal of Computational and Applied

Mathematics 123(1-2) (2000) 35-65.

[13] Alaa Eleyan, Hasan Demirel, Pca and lda based

neural networks for human face recognition,

INTECH Open Access Publisher 558 (2007)

93-106.

[14] M.P. Rajath Kumar, K.M. Aishwarya, “Artificial

neural networks for face recognition using PCA

and BPNN”, TENCON 2015-2015 IEEE Region

10 Conference, IEEE, 2015.

[15] Abdi, Hervé, J. Lynne, Williams, “Principal

component analysis”, Wiley interdisciplinary

reviews: computational statistics 2(4) (2010)

433-459.

[16] P. Valarmathie, M.V. Srinath, K. Dinakaran, An

increased performance of clustering high

dimensional data through dimensionality reduction

technique, Theoretical and Applied Information

Technology 5(6) (2005) 731-733.

[17] A.A.S. Ali, A. Amira, F. Bensaali, M. Benammar,

Hardware PCA for gas identification systems using

high level synthesis on the Zynq SoC, in IEEE

International Conference on Electronics, Circuits,

and Systems, 2013, pp. 707-710.

[18] T.C. Chen, W. Liu, L.G. Chen, VLSI architecture

of leading eigenvector generation for on-chip

principal component analysis spike sorting system,

in International Conference of the IEEE

Engineering in Medicine and Biology Society,

2008, pp. 3192-3195.

[19] A. Das, S. Misra, S. Joshi, J. Zambreno,

G. Memik, A. Choudhary, An efficient FPGA

implementation of principle component analysis based

network intrusion detection system, in Proceedings of

the Conference on Design, Automation and Test in

Europe, 2008, pp. 1160-1165.

[20] T. Karnthak P. Kumhom, A hardware

implementation of PCAbased-on the networks-on-

chip paradigm, in International Symposium on

Communications and Information Technologies,

2012, pp. 834-839

[21] Zynq-7000 SoC Data Sheet,

http://www.xilinx.com/products/silicon-

devices/soc/zynq-7000.htm, July 2, 2018.

[22] G. Theodoridis, D. Soudris and S. Vassiliadis, “A

Survey of Coarse-Grain Reconfigurable

Architectures and Cad Tools Basic Definitions,

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.htm
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.htm

H.K. Nguyen. X-T. Tran / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 2 (2020) 52-67

68

Critical Design Issues and Existing Coarse-grain

Reconfigurable Systems”, Springer, 2008.

[23] M. Zhu, L. Liu, S. Yin, et al., “A Cycle-Accurate

Simulator for a Reconfigurable Multi-Media

System”, IEICE Transactions on Information and

Systems 93 (2010) 3202-3210.

[24] Frank Bouwens, Mladen Berekovic, Bjorn De

Sutter, and Georgi Gaydadjiev: “Architecture

Enhancements for the ADRES Coarse-rained

Reconfigurable Array” HiPEAC 2008, LNCS 4917

(2008) 66-81.

[25] ZCU106 Evaluation Kit user manual,

https://www.xilinx.com/products/boards-and-

kits/zcu106.htmll, Oct 23, 2019.

p

https://www.xilinx.com/products/boards-and-kits/zcu106.htmll
https://www.xilinx.com/products/boards-and-kits/zcu106.htmll

