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Abstract—Multiple knife-edge diffraction estimation is a fun-
damental problem in wireless communication. One of the most
well-known algorithm for predicting diffraction is Vogler algo-
rithm which has been shown to reach the state-of-the-art results
in both simulation and measurement experiments. However, it
can not be easily used in practice due to its high computational
complexity. In this paper, we propose VoglerNet, a data-driven
diffraction estimator, by converting the Vogler algorithm into
a deep neural network based system. To train VoglerNet, we
propose to minimize a regularized loss function using Levenberg-
Marquardt backpropagation in conjunction with a Bayesian
regularization. Our numerical experiments show that VoglerNet
provides fast solution in order of milliseconds while its perfor-
mance is very close to that of the classical Vogler algorithm.

Index Terms—multiple knife edge diffraction, Vogler al-
gorithm, deep neural network, deep learning, Levenberg-
Marquardt backpropagation, wireless communication.

I. INTRODUCTION

An accurate estimation of the diffraction attenuation is a
fundamental problem in evaluating the propagation loss over
irregular terrains [1], [2], aeronautical mobiles and ground
station interactions [3], and channel modeling at cmWave
or mmWave bands in indoor scenarios [4], to name a few.
Consider predicting the propagation loss over irregular terrain
as an example, a terrain model over the propagation path is
essential and can be characterized or ‘approximated’ by knife-
edges. In general, using a single knife-edge approximation is
simple but unsatisfactory, thus requiring multiple knife-edges
to obtain better accuracy.
In this paper, we consider the problem of estimating mul-
tiple knife-edge diffraction. So far, in the literature, there are
many methods proposed to solve this problem. Due to limited
space, we only present here some representatives. Generally,
we can categorize existing methods into two groups by their
computational complexity and characteristics: (i) The first
group consists algorithms that provide precise results but suffer
from high computational complexity. The well-known example
of this group is the Vogler algorithm [5] which can be derived
from the Fresnel-Kirchhoff theory. The obtained result is a
multiple integral which can be computed practically in terms
of series representation. The initial version of Vogler algorithm
presented first method for computing more than two knife-
edges. Moreover, it can yield accurate results up to ten knife-
edges. Other important representatives with many variants [6]–

[10] are based on the uniform theory of diffraction (UTD).
The common characteristic of this class is the necessity to
compute higher order UTD diffracted fields if a high precision
is required. In contrast, the calculation of the algorithms in
the second group are efficient but its accuracy is inadequate.
Famous examples include the Epstein/Peterson method [11],
the Deygout method [12], the Causebrook method [13] and the
Giovanelli method [14]. Those algorithms are graphical-based
methods and can be seen as an approximate multiple knife-
edge diffraction. We note that the original works of those algo-
rithms were limited for single or double knife-edges. However,
it is possible to extend such methods to multiple knife-edge
scenarios. The computation in their extended version is still
relatively simple comparing to that of the algorithms in the first
group. Thus, for time-sensitivity applications, it is important to
provide a solution exploiting the benefits of both the groups.
In recent years, there has been an increasing interest in
application of deep learning based methods because of empir-
ical success on diverse fields such as computer vision, image
processing, or natural language processing [15], [16]. This
approach offers two attractive features: First, if the underlying
process of model is complicated or it is hard to estimate
parameters of that model, a deep learning approach can be an
alternative solution or even better solution to the model based
approach. Second, by experiments, deep learning methods
often provide better results than the shallow ones due to their
high-capacities. We note that this might be reached providing
sufficient data.
To address the above-mentioned problems and take advan-
tage of deep learning approaches, the main contribution of this
paper is to recasting the Vogler algorithm into “VoglerNet”,
a system based on deep neural network (DNN), for tackling
multiple knife-edge diffraction problem. To the best of our
knowledge, this is a pioneer approach to solve this fundamen-
tal problem. Our motivation stems from the fact that DNN is
data-driven and suitable approach for complicated underlying
process which is the case for the Vogler method. The main
advantage of the proposed approach is that our solution is
practical for time-sensitivity applications, while its accuracy is
close to the Vogler method. We also show by simulations that
DNN is essential since the performance of a shallow neural
network (SNN) is unsatisfied. The superior of DNN to SNN is
due to the fact that DNN is high-capacity model which permits
representing more complicated processes than SNN.



II. VOGLER ALGORITHM
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Fig. 1: Geometry of multiple knife edge.
We consider the geometry of N knife-edge diffraction
(N ≤ 10) in Fig.1 where {hn}Nn=1 are the knife-edge heights
to a reference surface, {θn}Nn=1 are diffraction angles, and
{rn}N+1n=1 are N +1 separation distances between knife-edges.
We use h0 and hN+1 to denote the transmitter and receiver
heights respectively. Then the diffraction attenuation, A, is
given by [5]:
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For computing βn, the following angle approximation is used

θn ≈
hn − hn−1
rn

+
hn − hn+1
rn+1

, n = 1, · · · , N. (7)

To evaluate (1), the key idea is that instead of computing the
N -fold integral, we convert such task into computing N single
integrals. To this end, Vogler proposed to express exp (2F ) in
terms of power series as:
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where I (m,β) refers to the repeated integrals of the com-
plementary error function, we obtain a residual series form
solution of AN .

III. PROPOSED VOGLERNET APPROACH
A. VoglerNet system
Consider the proposed approach as shown in Fig. 2 where
we want to estimate diffraction attenuation values of several
path profiles from a specific terrain. For simplicity, we further
assume that queried parameters belong to the range of terrain
parameters.
We can divide the proposed approach into two parts. In the
first part, a real-life profile of interest is first approximated1

by N knife-edges to obtain the preferred parameters such
as knife-edge heights and their separation distances. Those
parameters as well as antenna heights and operation frequency
are then fed to a processing center (the second part) to obtain
the corresponding predicted diffraction values.
In the second part, given terrain parameters of interest such
as the minimum and maximum heights of the terrain, antenna
parameters, the minimum and maximum distance between
knife-edges and the intended frequency, we will generate
synthetic path profiles to cover the terrain. Then, those profiles
are used for training the proposed deep neural network. We
note that the second part is implemented offline and can be
prepared to cover in advance the terrain of interest. When a
new query with parameters is arrived, the process immediately
returns the predicted result, thus preserving the efficiency of
the system. We now describe the key component of the second
part, how to obtain optimal weights W and bias b of the
proposed deep neural network architecture.

B. Deep neural network
Consider a deep neural network with n-input, and 1-output
and L layers, we can represent the architecture (see Fig. 4) in
terms of the mathematical formula as follows

z(l) =W(l)y(l−1) + b(l), (10)

y(l) = g
�
z(l)
	
, (11)

where l ∈ [1, L] and g is an activation function. Generally,
different activation functions, such as signmoid, can be used
for each layer. Following this notation, y(0) = x for the input
layer. Thus, all parameters of DNN can be summarized as

θDNN =
�
W(1), · · · ,W(L),b(1), · · · ,b(L)

�
(12)

with W(l) ∈ Rdl×dl−1 ,b(l) ∈ Rdl . Now, the objective is to
train the network to minimize the loss function L over Nt
training data pairs D = {(xi, yi)}Nti=1

�

θDNN = argmin
θDNN

�Nt

i=1
L (fθ (xi) , yi) (13)

1The approximation is based on finding N highest local maxima (Fig. 3).



Fig. 2: Illustration of our proposed approach “VoglerNet”. In off-line mode, given range of parameters, synthetic path-profiles
are generated randomly to cover an irregular terrain of interest. These profiles are used to train and evaluate a deep neural
network (DNN). When new queried profile parameters are sent to the DNN, the DNN replies by the predicted diffraction
attenuation.
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Fig. 3: Multiple knife-edge approximation of a real-life terrain.
A knife-edge is chosen as local maxima. Here, ten knife-edges
are numbered in descending order.
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Fig. 4: Illustration of a deep neural network architecture with
n-input x, 1-output �y and L = 3 hidden layers.

where fθ (xi) represents to DNN response to the input xi.
To this end, let f(x), f : Rn → R, be a function we want to
approximate. Our purpose is to use the DNN estimator defined
by θDNN, f̃θ (x) : Rn → R so that

min
θDNN

���f − f̃
��� ≤ ε (14)

where ε is a desired precision. Thus, given a set of training data
pairs {(xi, yi)}Nti=1, we propose to optimize the parameters on
training set as follows

θ = argmin
θ
λED + γEθ, (15)
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which define the empirical risk and regularization terms re-
spectively with �

y i being the response of DNN to the input
xi, for 1 ≤ i ≤ Nt; and λ and γ are parameters of the loss
function. The empirical risk aims to obtain the neural network
parameters which are optimal to the given training dataset.
Meanwhile, the goal of the regularization term is to avoid
overfiting problem. In our case, the Tikhonov regularization is
used so that the small weights and biases are preferred [16],
thus ‘smoothing’ the DNN response. Moreover, adding the loss
function parameters allows to balance between the empirical
risk and regularization terms, and improves generalization.
To train the DNN to minimize the loss function, we pro-
pose to use the Levenberg-Marquardt backpropagation [17]
with a Bayesian regularization [18] as presented in [19].
This algorithm, named here Bayesian regualrized Levenberg-
Marquardt backpropagation (BRLMB), is suitable for medium



TABLE I: RBLMB algorithm parameters used for training.

Parameters Value

Maximum number of epochs to train 1000
Performance objective ε 0
Dumping factor µ 0.005
Decrease factor for µ 0.1
Increase factor for µ 10
Minimum performance gradient 10−7

size datasets as in our case (i.e., up to several hundred thou-
sand data points). We summarize here only the main ideas2.
To obtain the weights and biases, the backpropagation is
combined with Levenberg-Marquardt update (i.e., a Gaussian-
Newton type method). By using a damping factor µ, the
update step flexibly corresponds to that of either steepest
descent or Gauss-Newton algorithm. Thus, its convergence
rate is faster than the steepest descent while keeping a lower
computational complexity than the Gauss-Newton. To properly
select the parameters of the loss function, γ and λ, Bayesian
regularization framework [18] is used. Particularly, in the first
level of Bayesian interpretation, it is shown that maximizing
the posterior corresponds to minimize the loss function. It
is assumed that the noise distribution in the training set
is Gaussian. Then in the second level, the parameters are
obtained by expanding the loss function in terms of second-
order around a minimum point and solving normalization
factor. We achieve the result provided that the regularization
parameters γ and λ follows a uniform distribution. In fact,
the rationale behind the selection of the Levenberg-Marquardt
in conjunction with the Bayesian framework is to minimize
additional computational complexity (i.e., exploiting available
calculation of Hessian matrix of the Levenberg-Marquardt
algorithm).

IV. NUMERICAL RESULTS

In this section, we assess the effectiveness of the proposed
approach by comparing its performance with the state-of-the-
arts. Particularly, we first describe the setup and compare
the results of VoglerNet, SNN and the Giovanelli method.
The Giovanelli method is chosen since it provides the most
accurate results among graphical based methods as presented
in [20]. In this case, the result from the Volger method is used
as reference to other methods. Then, we analyze the effect of
training data size on performance of VoglerNet.
Performance comparison: We use a number of knife-edges
N = 3 for illustration. We randomly generate the path profiles
for terrain of interest as follows. The heights of three knife-
edges are in the range (0, 1) km. The separation distances
between two knife-edges are of (1, 10) km. The operating
frequency of antenna is at 100 MHz. We note that the terrain
parameters and the operating frequency are chosen so that
they cover the first example of [5]. This standard example is
presented in many publications due to its well-understanding
behavior. We consider the case of N = 3 of a 30 km

2We refer the reader to [19] for further technical details.

TABLE II: MSE-based error comparison of three algorithms
(The smaller value is, the better result reaches).

Methods VoglerNet SNN Giovanelli

MSE (dB) 0.2003 3.7594 1.8098
Min. (dB) 0.0187 0.0125 0.0076
Max. (dB) 1.2360 4.3198 4.7136

propagation path where the transmitter and the receiver are
in the reference plane (i.e., h(0) = h(4) = 0). There are two
fixed knife-edges at distances of 10 km and 20 km respectively.
Their heights are at 100 m above the reference plane. A third
knife-edge with variable height is located at the distance of
15 km. When the height h2 increases, the attenuation curve
converges toward the single knife-edge one. The oscillations
appear because of the effect of two other knife-edges. Thus,
we can further evaluate the result by visualizing as Fig. 5. We
emphasize that the probability of generating exact path profile,
as the first example in [5] of training test, is zero. Thus the
evaluation is fair.
In all experiments, we randomly divide data into two sets,
80% over total data for training and 20% over total data
for testing. We use the mean squared error (MSE) as a
performance index

MSE =
1

Ntest

�Ntest

i=1

�
ytesti −

�
y
test
i

	
(18)

where Ntest is number of of test data samples. ytest is the
test data which is diffraction attenuation result of the Vogler
method; �y

test
is response of the DNN to test input data.

Moreover, we also use two other indices, maximum value
(Max.) and minimum value (Min.), which are the worst
and best predicted diffraction differences respectively when
comparing to the result of Vogler method. We design the DNN
to have 10 hidden layers (i.e., L = 10) and each layer has 20
neurons (i.e., d1 = · · · = d10 = 20). The activation functions
are hyperbolic tangent sigmoid used for all hidden layers. In
the output layer, a linear transfer function is chosen. We notice
that SNN (two-layer feedforward network) is a special case
of DNN which has one hidden layer (i.e., L = 1) with 200
neurons. Moreover, we use BRLMB for training both DNN
and SNN. Parameters of BRLMB are summarized in Table I.
The results are reported using the dataset including 500,000
points.
It can be observed from Table. II that VoglerNet obtains the

best results in terms of accuracy (MSE and Max. categories)
among three employed algorithms while keeping its running
time in order of millisecond (using Matlab). The running time
is the same order as that of the Giovanelli method in this
example. The Giovanelli method, however, yields the best
result in Minimum category (Min.).
While Table II serves as quantitative assessment, we also

investigate the qualitative one which provides insight of the
proposed approach (see Fig. 5). When the height h2 increases
from 0.35 to 0.8 km, the attenuation curve moves toward
the single knife-edge one. The ‘oscillations’ appear because
of the effect of two other knife-edges. We can see that
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Fig. 5: Qualitative comparison of four methods.
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Fig. 6: Effect of training data size on performance of Vogler-
Net.

the result of VoglerNet can preserve better the main trend
of the curve comparing to the the Giovanelli method and
SNN. The Giovanelli method overestimates the diffraction
value while SNN result is inadequate. We can observe that
VoglerNet underestimates the diffraction result in the range
(0.35, 0.8) since the DNN considers the oscillations as noises
and ‘denoises’ this effect.
Effect of training data size: One of the main advantages of
VoglerNet is that we can exploit as much data as we want to
train the DNN. This is due to the benefit of synthetic path-
profile generation. It means that more accurate results can be
obtained when increasing the dataset size. This effect can be
observed in Fig. 6. In this experiment, the total size of dataset
is increased from 10,000 to 500,000 data points. It is showed
that the difference between results of VoglerNet and Vogler
method can reach to below 0.1 dB.

V. CONCLUSION
In this paper, we has proposed a new algorithm, VoglerNet,
based on deep neural network, to solve multiple knife-edge

diffraction. To the best of our knowledge, this is a pioneer
approach to handle this problem. Our approach benefits from
the advantages of both the Vogler method and deep learning
approach, where our fast solution is in order of milliseconds
while the performance is very close to that of the Vogler
method. In a near future work, further investigations in terms
of DNN analysis and training time improvement will be
conducted.
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