
Lemma Weakening
for State Machine Invariant Proofs

Duong Dinh Tran∗, Dang Duy Bui∗, Parth Gupta†, and Kazuhiro Ogata∗
∗School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Email: {duongtd, bddang, ogata}@jaist.ac.jp
†Indian Institute of Technology Kharagpur

Kharagpur, West Bengal 721302, India
Email: parthgupta.iitkgp@gmail.com

Abstract—Lemma conjecture is one of the most challenging
tasks in theorem proving. The paper focuses on invariant prop-
erties (or invariants) of state machines. Thus, lemmas are also
invariants. To prove that a state predicate p is an invariant of
a state machine M , in general, we need to find an inductive
invariant q of M such that q(s) implies p(s) for all states s of
M . q is often in the form p ∧ p′, and p′ is often in the form
q1 ∧ . . .∧ qn. q1, . . . , qn are the lemmas of the proof that p is an
invariant of M . The paper proposes a technique called Lemma
Weakening (LW). LW replaces qi with q′i such that qi(s) implies
q′i(s) for all states s of M , which can make the proof reasonably
tractable that may become otherwise unreasonably hard. MCS
mutual exclusion protocol is used as an example to demonstrate
the power of LW.

Index Terms—lemma weakening, lemma conjecture, MCS
protocol, proof score, algebraic specification language, lemma
strengthening

I. INTRODUCTION

State machines can be used to formalize various kinds of
systems as mathematical models and systems requirements
can be expressed as state machine properties. Therefore, it
is possible to check if systems satisfy their requirements by
formally verifying that state machines enjoy properties. There
are two major formal verification techniques: model check-
ing and theorem proving. The former can be automatically
conducted but basically cannot be used for systems that have
an infinite number of states (infinite-state systems). The latter
can directly deal with infinite-state systems but requires human
interaction, especially for lemma conjecture that is one of the
most challenging tasks in theorem proving. The paper focuses
on invariant properties (or invariants) of state machines. Thus,
lemmas are also invariants.

To prove that a state predicate p is an invariant of a state
machine M , in general, we need to find an inductive invariant
q of M such that q(s) implies p(s) for all states s of M
[1]. q is often in the form p ∧ p′, and p′ is often in the form
q1∧. . .∧qn. q1, . . . , qn are the lemmas of the proof that p is an
invariant of M . q (or p∧ p′) is more generic or stronger than
p, and p′ (or q1 ∧ . . . ∧ qn) is more generic or stronger than

The work was partially supported by JSPS KAKENHI Grant Number
JP19H04082.

each qi for i = 1, . . . , n. Accordingly, invariant proofs can
be regarded as strengthening lemmas, which is called Lemma
Strengthening (LS) in this paper. For example, starting with
q1, we need to have q1∧. . .∧qn that is stronger than q1, q1∧q2,
etc. We also need to use LS for proofs of data properties. For
instance, when we prove rev(rev(L)) = L for all lists L by
structural induction on L, where rev is the reverse function
of lists, we encounter the situation at the induction case such
that we need to use a lemma. The most straightforward lemma
would be rev(rev(L) @ (E | nil)) = E | L for all lists L
and all elements E, where @ is the concatenation function
of lists, | is the constructor of lists and nil is the empty list.
The proof of the lemma requires us to use another lemma
rev(rev(L) @ (E1 | E2 | nil)) = E2 | E1 | L for all
lists L and all elements E1, E2. If we only use the most
straightforward lemmas, we cannot make the proof converge.
To make the proof converge, we need to strengthen such
lemmas. One possible lemma obtained by strengthening such
lemmas is rev(rev(L1) @ L2) = rev(L2) @ L1 for all
lists L1, L2 that is stronger than all of the most straight-
forward lemmas. rev(rev(L)) = L corresponds to p, while
rev(rev(L1) @ L2) = rev(L2) @ L1 corresponds to p′ or
q1 ∧ . . . ∧ qn.

While proving that MCS mutual exclusion protocol (MCS
protocol or simply MCS) [2] enjoys the mutual exclusion
property, we have encountered a situation where the use of
only LS did not seem to make the proof converge. We got
over the situation by weakening some lemmas. The paper
proposes a technique called Lemma Weakening (LW). LW
replaces qi with q′i such that qi(s) implies q′i(s) for all states
s of M , which can make the proof reasonably tractable that
may become otherwise unreasonably hard. MCS is used as an
example to demonstrate the power of LW.

In this paper, we use observational transition systems
(OTSs) [3] as state machines and CafeOBJ [4] as a formal
specification language and system. Formal proofs are con-
ducted by writing what are called proof scores [3] in CafeOBJ
and executing them with CafeOBJ. All specifications and proof
scores in CafeOBJ presented in this paper are available at
http://gitlab.com/duongtd23/mcs/.

http://gitlab.com/duongtd23/mcs/

The rest of the paper is organized as follows. Sect. II gives
some preliminaries, such as OTSs and CafeOBJ. Sect. III
describes LS and LW. Sect. IV describes MCS and its formal
specification in CafeOBJ. Sect. V reports on the case study in
which MCS is used to demonstrate the power of LW. Sect. VI
mentions some related work. Sect. VII concludes the paper
with some pieces of our future work.

II. PRELIMINARIES

This section presents some basic notions which are require-
ments for the rest of the paper. We first give the definition
of OTSs. Then, through a simple example, we show how to
specify the OTS in CafeOBJ as well as how to write proof
scores to conduct formal verification.

A. Observational Transition Systems (OTSs)

We suppose that there exists a universal state space denoted
Υ and that each data type used in OTSs is provided. The data
types include Bool for Boolean values. A data type is denoted
D with a subscript such as Do1 and Do.

Definition 1: An OTS S is 〈O, I, T 〉 such that
• O: A finite set of observers. Each observer o :

ΥDo1 . . . Dom → Do is a function that takes one
state and m (≥ 0) data values and returns one
data value. The equivalence relation (υ1 =S υ2) be-
tween two states υ1, υ2 ∈ Υ is defined as (∀o ∈
O)(∀x1 ∈ Do1) . . . (∀xm ∈ Dom) (o(υ1, x1, . . . , xm) =
o(υ2, x1, . . . , xm)).

• I: The set of initial states such that I ⊆ Υ.
• T : A finite set of transitions. Each transition t :

ΥDt1 . . . Dtn → Υ is a function that takes one state
and n (≥ 0) data values and returns one state, pro-
vided that t(υ1, y1, . . . , yn) =S t(υ2, y1, . . . , yn) for each
[υ] ∈ Υ/=S , each υ1, υ2 ∈ [υ] and each yk ∈ Dtk

for k = 1, . . . , n. Each transition t has the condition
c-t : ΥDt1 . . . Dtn → Bool, which is called the effective
condition of t. If c-t(υ, y1, . . . , yn) does not hold, then
t(υ, y1, . . . , yn) =S υ.

A pair (υ, υ′) of states is called a transition instance if there
exists t ∈ T such that υ′ =S t(υ, y1, . . . , yn) for some yi ∈
Dti for i = 1, . . . , n. Such a pair (υ, υ′) may be denoted
υ →S υ′ (or υ → υ′) to emphasize that υ directly goes to υ′

by one step.
Each state that is reachable from an initial state through

transitions is called a reachable state.
Definition 2: Given an OTS S, reachable states with respect

to (wrt) S are inductively defined:
• Each υ ∈ I is reachable wrt S.
• For each t ∈ T and each yk ∈ Dtk for k = 1, . . . , n,
t(υ, y1, . . . , yn) is reachable wrt S if υ ∈ Υ is reachable
wrt S.

Let RS be the set of all reachable states wrt S.
Predicates whose types are Υ → Bool are called state

predicates. State predicates may have universally quantified
variables. State predicates that hold in all reachable states wrt
S are invariants wrt S.

Definition 3: A state predicate ρ : Υ → Bool is called an
invariant wrt S if ρ(υ) is true for all υ ∈ RS , i.e. (∀υ ∈
RS) ρ(υ).

State predicates that are preserved by all transitions are
inductive invariants.

Definition 4: A state predicate ρ : Υ → Bool is called
an inductive invariant wrt S if it satisfies the following two
conditions:

1) (∀υ ∈ I) ρ(υ)
2) (∀t ∈ T)(∀υ ∈ Υ)(∀y1 ∈ Dt1) . . . (∀yn ∈

Dtn) (ρ(υ)⇒ ρ(t(υ, y1, . . . , yn)))

Inductive invariants wrt S are invariants wrt S but not vice
versa.

B. CafeOBJ and Proof Scores

A mutual exclusion protocol is used as an example to de-
scribe how to specify OTSs in CafeOBJ. The mutual exclusion
protocol written in Algol-like pseudo-code is as follows:

loop {
“Remainder Section”

rs : repeat while test&set(locked);
“Critical Section”

cs : locked := false; }

test&set(locked) atomically does the following: if locked is
false, then it sets locked to true and returns false; otherwise it
just returns true. Since the protocol uses test&set, it is called
TAS protocol or simply TAS. Each process is located at either
rs (Remainder Section) or cs (Critical Section) and initially at
rs. locked is a Boolean variable shared by all processes and
initially false.

To formalize TAS as an OTS STAS, we use two observers
with which we observe the location of each process and the
value stored in locked. The two observers are expressed as
the CafeOBJ operators declared as follows:

op pc : Sys Pid -> Label .
op locked : Sys -> Bool .

where Sys is the sort (or type) representing Υ, Pid is the
sort of process IDs and Label is the sort of locations such
as rs and cs. For s of Sys and p of Pid, pc(s,p) is the
location at which p is located in state s and locked(s) is
the value stored in locked in state s. Observers and CafeOBJ
operators that express observers are interchangeably used in
this paper.

We use two transitions that are expressed as CafeOBJ
operators. An arbitrary initial state of STAS is expressed as
a CafeOBJ operator. Those CafeOBJ operators are declared
as follows:

op init : -> Sys {constr} .
op enter : Sys Pid -> Sys {constr} .
op exit : Sys Pid -> Sys {constr} .

where constr stands for constructors. The three operators
init, enter and exit, together with process IDs, construct
RSTAS

. init and enter are defined in terms of equations
as follows:

eq pc(init,P) = rs .
eq locked(init) = false .
ceq pc(enter(S,P),Q) = (if P = Q then cs
else pc(S,Q) fi) if c-enter(S,P) .

ceq locked(enter(S,P)) = true if c-enter(S,P) .
ceq enter(S,P) = S if not c-enter(S,P) .

where S is a CafeOBJ variable of Sys and P &
Q are CafeOBJ variables of Pid. c-enter(S,P) is
pc(S,P) = rs and not locked(S). if c then a
else b fi is a if c equals true and b if c equals false.
Note that in CafeOBJ, all variables are universal quantifier.
Transitions and CafeOBJ operators that express transitions are
interchangeably used in this paper.

One desired property TAS should enjoy is the mutual exclu-
sion property whose informal description is that there is always
at most one process in Critical Section. Let mutex(S,P,Q)
be pc(S,P) = cs and pc(S,Q) = cs implies
P = Q. The property is formalized as the following invariant:
(∀υ ∈ RSTAS

) (∀p, q ∈ Pid) mutex(υ, p, q). Let us use
“the proof of mutex” (and “to prove mutex”) to mean the
proof of (∀υ ∈ RSTAS

)(∀p, q ∈ Pid) mutex(υ, p, q) (and to
prove (∀υ ∈ RSTAS

)(∀p, q ∈ Pid) mutex(υ, p, q)) not only
for mutex but also for any other similar operators invi that
takes one state and zero or more data values and returns a
Boolean value. The invariant is proved by (simultaneous)
structural induction on υ (or S) by writing proof scores in
CafeOBJ. The proof score fragment for the base case init
is as follows:
open TAS .
ops p q : -> Pid .
red mutex(init,p,q) .
close

where open makes the given module (or specification) avail-
able, close stops the use of the module and red reduces
(computes) the given term. p & q are fresh constants of Pid
representing arbitrary process IDs. CafeOBJ returns true for
the proof score fragment meaning that the case is discharged.

In the induction cases, we want to prove that if mutex holds
in a state υ, it also holds in the successor states υ′ and υ′′ of
υ, where υ′ and υ′′ are made by transitions when an arbitrary
process r tries to move to cs from rs, and moves to rs from
cs, respectively. Accordingly, two induction cases need to be
proved. Let us consider the induction case in which enter
is taken into account. In this paper, we use the induction case
t to mean the induction case in which a transition t is taken
into account. The case is first split into two sub-cases: (1)
pc(s,r) = rs and (2) (pc(s,r) = rs) = false.
For the sub-case (2), the following proof score fragment is
written:
open TAS .
op s : -> Sys . ops p q r : -> Pid .
eq (pc(s,r) = rs) = false .
red mutex(s,p,q)

implies mutex(enter(s,r),p,q) .
close

where s is a fresh constant of Sys representing an
arbitrary state. The equation characterizes the sub-case.

mutex(s,p,q) is an instance of the induction hypothesis.
Feeding the proof score fragment into CafeOBJ, CafeOBJ
returns true, indicating that the sub-case is discharged. For
the sub-case (1), it is necessary to conduct case splitting
several more times. Let us consider a sub-case of (1), which
has the following proof score fragment:
open TAS .
op s : -> Sys . ops p q r : -> Pid .
eq pc(s,r) = rs . eq locked(s) = false .
eq p = r . eq (q = r) = false .
eq pc(s,q) = cs .
red mutex(s,p,q)
implies mutex(enter(s,r),p,q) .

close

CafeOBJ returns false for this fragment. We need to con-
jecture a lemma to discharge the sub-case. The lemma is as
follows:
eq inv1(S,P) =
(pc(S,P) = cs implies locked(S)) .

Then, in the above open-close fragment, inv1 is used as a
lemma to discharge the sub-case of (1) as follows:
red inv1(s,q) implies mutex(s,p,q)
implies mutex(enter(s,r),p,q) .

CafeOBJ now returns true for the proof score fragment.
Since inv1 is used in the proof of mutex, we need to

prove that inv1(S,P) for all process IDs P is also an
invariant wrt STAS to complete the verification. The proof of
inv1 needs to use mutex as a lemma. Although the proof of
mutex uses inv1 and vice versa, our proof is not circular.
The reason is that we use simultaneous (structural) induction
to develop our proof. The correctness of this method has been
formally proved in the paper [3]. The complete specification of
TAS as well as the proof scores can be found at the webpage
presented in Sect. I.

III. LEMMA STRENGTHENING (LS) AND LEMMA
WEAKENING (LW)

Let us suppose that we want to prove that a state predicate
p is an invariant wrt an OTS S. It is often the case that p is
not inductive and then there is a transition instance that does
not preserve p such that p(υ) holds but p(υ′) does not, where
υ → υ′ is a transition instance, which is shown in Fig. 1 (a),
where ∆p is {υ ∈ Υ | p(υ)}. This is the reason why invariant
proofs become non-trivial or even can become very hard. If
we can successfully show that the source υ is not reachable
wrt S, then we do not need to consider the transition instance,
being able to discharge the case. One possible way to do so
is to find pstr that is stronger than p such that pstr(υ) does
not hold and to prove that pstr is an invariant wrt S, which is
shown in Fig. 1 (b). If pstr is inductive wrt S, we do not need
to use any more lemmas. This approach has been summarized
as the proof rule Inv by Manna and Pnueli [1].

To prove that p is an invariant of S (or a state machine), in
general, we need to find an inductive invariant q wrt S such
that q(υ) ⇒ p(υ) for all states υ ∈ Υ. In practice, q is often
in the form p∧p′ and p′ is often in the form q1∧ . . .∧ qn. q1,
. . . , qn are the lemmas of the proof that p is an invariant wrt

Fig. 1. The reason why invariant proofs become non-trivial and two
approaches to tackling the non-trivial situation

S. It is often the case that we do not know any of q1, . . . , qn
in advance. We need to gradually conjecture q1, . . . , qn one by
one when we encounter the situation shown in Fig. 1 (a). For
example, while proving that p is an invariant wrt S, we may
conjecture q1. q1(υ) for the source υ needs not to hold but does
not need to be properly stronger than p because p∧q1∧. . .∧qn
is surely stronger than p. In general, when we have conjectured
up to qk, where k = 1, . . . , n, we do not know how many
more lemmas we need to conjecture. We may move toward
the direction such that our proof attempt never converges as
we only use the most straightforward lemmas for the proof of
rev(rev(L)) = L for all lists L.

The reason why invariant proofs become non-trivial or even
can become very hard is because there exists a transition
instance υ → υ′ as shown in Fig. 1 (a). The proof rule Inv
gets rid of such a transition instance as shown in Fig. 1 (b).
Another possible way to get rid of such a transition instance
is to find pwk that is weaker than p such that pwk(υ′) holds
and to prove that pwk is an invariant wrt S, which is shown in
Fig. 1 (c). Even though pwk is an invariant wrt S, however, it
does not guarantee that p is an invariant wrt S. This is because
∆p may not contain all reachable states in RS . Therefore, the
second approach is not used to prove that p is an invariant wrt
S. This might be the reason why the second approach has been
rarely used. Although the second approach is not very useful
for p, it may be useful for some qi, a lemma of the proof that p
is an invariant wrt S. In this paper, strengthening lemmas qi is
called Lemma Strengthening (LS), while weakening lemmas
qi is called Lemma Weakening (LW). We have already shown
a concrete case that demonstrates the usefulness of LS for the
proof of rev(rev(L)) = L for all lists L.

While proving that MCS enjoys the mutual exclusion prop-
erty, we realized that LW can make the proof attempt converge
that otherwise did not seem to converge in a reasonable amount
of time. Note that we have used LS as well as LW for the
proof that MCS enjoys the mutual exclusion property. We will
describe in which way LW makes the proof attempt converge
in Sect. V.

IV. MCS PROTOCOL AND ITS FORMAL SPECIFICATION IN
CAFEOBJ

Before going to present the usefulness of LW in making
the proof that MCS protocol enjoys the mutual exclusion
property attempt converge, we first need the specification
of the protocol. This section describes MCS and the formal
specification of SMCS that formalizes the protocol in CafeOBJ.

Fig. 2. The change of state of MCS when a process p moves to l3 from l2

A. MCS Protocol

MCS is a mutual exclusion protocol invented by Mellor-
Crummey and Scott [2]. Variants of MCS have been used in
Java VMs and therefore the 2006 Edsger W. Dijkstra Prize in
Distributed Computing went to their paper [2]. The algorithm
inside MCS protocol is a scalable algorithm for spin locks
that generates O(1) remote references per lock acquisition,
independent of the number of processes attempting to acquire
the lock.

MCS written in Algol-like pseudo-code is as follows:

rs : “Remainder Section”
l1 : nextp := nop;
l2 : predep := fetch&store(glock, p);
l3 : if predep 6= nop {
l4 : lockp := true;
l5 : nextpredep := p;
l6 : repeat while lockp; }
cs : “Critical Section”
l7 : if nextp = nop {
l8 : if comp&swap(glock, p, nop)
l9 : goto rs;
l10 : repeat while nextp = nop; }
l11 : locknextp := false;
l12 : goto rs;

MCS uses one global variable glock and three local variables
nextp, predep and lockp for each process p. Process IDs are
stored in glock, nextp and predep, while a Boolean value is
stored in lockp. There is one special (dummy) process ID nop
that is different from any real process IDs. Initially, each of
glock, nextp and predep is set to nop and lockp is set to
false. We suppose that each process is located at one of the
labels, such as rs, l1 and cs. Initially, each process is located
at rs. When a process wants to enter “Critical Section,” it first
moves to l1 from rs.

MCS uses two non-trivial atomic instructions: fetch&store
and comp&swap. For a variable x and a value a,
fetch&store(x, a) atomically does the following: x is set to a
and the old value of x is returned. For a variable x and values
a, b, comp&swap(x, a, b) atomically does the following: if x
equals a, then x is set to b and true is returned; otherwise
false is just returned.

Fig. 2 graphically visualizes the change of state of MCS
when a process p moves to l3 from l2. In the state υ, which is
represented by Fig. 2 (a), processes p, q, and r, located at l2,
l5, and cs, respectively; glock is q; next of r is q; and prede
of q is r. When process p moves to l3, glock is set to itself,
and its prede is set to q (Fig. 2 (b)).

B. Formal Specification of MCS Protocol

Each state of SMCS is characterized by glock, nextp,
predep, lockp and p’s location for each process p. Then, we
use the following observers:

op glock : Sys -> Pid&Nop .
op pc : Sys Pid -> Label .
op next : Sys Pid -> Pid&Nop .
op prede : Sys Pid -> Pid&Nop .
op lock : Sys Pid -> Bool .

Pid is the sort for real process IDs, while Pid&Nop is the
sort for real process IDs plus nop. The other sorts can be
understood as those used in Sect. II.

An arbitrary initial state of SMCS is expressed as the
following operator:

op init : -> Sys {constr} .

init is defined as follows:

eq glock(init) = nop .
eq pc(init,P) = rs .
eq next(init,P) = nop .
eq prede(init,P) = nop .
eq lock(init,P) = false .

where P is a CafeOBJ variable of Pid.
We use the following 14 transitions:

-- moves to l1 from rs
op want : Sys Pid -> Sys {constr} .
-- moves to l2 from l1
op stnxt : Sys Pid -> Sys {constr} .
-- moves to l3 from l2
op stprd : Sys Pid -> Sys {constr} .
-- moves to l4 or cs from l3
op chprd : Sys Pid -> Sys {constr} .
-- moves to l5 from l4
op stlck : Sys Pid -> Sys {constr} .
-- moves to l6 from l5
op stnpr : Sys Pid -> Sys {constr} .
-- tries to move to cs from l6
op chlck : Sys Pid -> Sys {constr} .
-- moves to l7 from cs
op exit : Sys Pid -> Sys {constr} .
-- moves to l8 or l11 from l7
op chnxt : Sys Pid -> Sys {constr} .
-- moves to l9 or l10 from l8
op chglk : Sys Pid -> Sys {constr} .
-- moves to rs from l9
op go2rs : Sys Pid -> Sys {constr} .
-- tries to move to l11 from l10
op chnxt2 : Sys Pid -> Sys {constr} .
-- moves to l12 from l11
op stlnx : Sys Pid -> Sys {constr} .
-- moves to rs from l12
op go2rs2 : Sys Pid -> Sys {constr} .

A comment starts with -- and stops by the line end. The
comments briefly explain what part of MCS is formalized by
each transition. For example, if a process p is at l2 in a state s,
then stprd(s,p) denotes the state just after p has executed
the statement at l2 and moved to l3 from l2; if p is at l6 in
s, then chlck(s,p) denotes the state just after p has exited
the loop at l6 and moved to cs if lockp is false and the state
just after p has done one iteration of the loop at l6 if lockp is
true.

The transitions are defined in terms of equations that specify
how the values observed by the five observers change. For
example, stprd is defined as follows:

ceq glock(stprd(S,P)) = P if pc(S,P) = l2 .
ceq pc(stprd(S,P),Q) = (if P = Q then l3 else
pc(S,Q) fi) if pc(S,P) = l2 .

eq next(stprd(S,P),Q) = next(S,Q) .
eq lock(stprd(S,P),Q) = lock(S,Q) .
ceq prede(stprd(S,P),Q)
= (if P = Q then glock(S) else prede(S,Q) fi)
if pc(S,P) = l2 .

ceq stprd(S,P) = S if (pc(S,P) = l2) = false .

where S is a CafeOBJ variable of Sys and P & Q are CafeOBJ
variables of Pid. The other transitions can be defined likewise.

V. FORMAL VERIFICATION BY PROOF SCORES

This section describes the proof score approach to formally
verify that MCS enjoys the mutual exclusion property. The
complete proof scores are available at the webpage presented
in Sect. I. This section focuses on how to use LW as well as
LS in the formal verification.

A. Use of Lemma Strengthening (LS)

We prepare the following module:

mod INV {
pr(MCS) . var S : Sys . vars P Q : Pid
op mutex : Sys Pid Pid -> Bool
eq mutex(S,P,Q) = ((pc(S,P) = cs and
pc(S,Q) = cs) implies (P = Q)) .

}

where pr(MCS) says that another module MCS in which MCS
is specified is used, S is a CafeOBJ variable of Sys and
P & Q are CafeOBJ variables of Pid. In INV, we write
state predicates we would like to prove as invariants wrt
SMCS. Initially, we only have mutex that is used to formalize
the mutual exclusion property. While conducting the formal
verification, we gradually conjecture lemmas and add them to
INV on the fly.

Let us consider a sub-case of the induction case chprd in
the proof of mutex. The proof score fragment of the sub-case
is as follows:
open INV .
op s : -> Sys . ops p r : -> Pid .
eq pc(s,r) = l3 . eq p = r .
eq (q = r) = false .
eq prede(s,r) = nop . eq pc(s,q) = cs .
red mutex(s,p,q)
implies mutex(chprd(s,r),p,q) .

close

CafeOBJ returns false for the proof score fragment. The
pair of states s and chprd(s,r) is a transition instance as
shown in Fig. 1 (a). We need to conjecture and use a lemma
to discharge the sub-case.

One possible lemma conjectured most straightforwardly
can be constructed by combining the five equations that
characterize the sub-case with conjunction, negating the whole
formula and replacing the fresh constants s, p, q & r with
variables S, P, Q & R [5]. Since the formula constructed
is in the form (not P = R) or F that is equivalent to
(P = R) implies F . Thus, the lemma constructed is F
in which R is replaced with P , which is equivalent to the
following:
eq inv1’(S,P,Q) = ((prede(S,P) = nop and

pc(S,P) = l3 and (Q = P) = false)
implies (pc(S,Q) = cs) = false) .

Since inv1’(s,p,q) reduces to false, in the above open-
close fragment, we can use inv1’ as a lemma to discharge
the sub-case as follows:
red inv1’(s,p,q) implies mutex(s,p,q)

implies mutex(chprd(s,r),p,q) .

In the proof of inv1’, however, we encounter a sub-case in
which the proof reduces to false. The proof score fragment
of the sub-case is as follows:
open INV .
op s : -> Sys . ops p r : -> Pid .
eq pc(s,r) = l6 . eq p = r .
eq (q = r) = false .
eq lock(s,r) = false . eq pc(s,q) = l3 .
eq prede(s,q) = nop .
red inv1’(s,p,q)

implies inv1’(chlck(s,r),p,q) .
close

By applying the same technique that has been explained above
to conjecture inv1’, we can conjecture another lemma to
discharge the sub-case in the proof of inv1’ as follows:
eq inv1’’(S,P,Q) = ((prede(S,Q) = nop and

pc(S,Q) = l3 and (P = Q) = false) implies
(pc(S,P) = l6 and lock(S,P) = false) = false) .

The conditional part of inv1’’ is exactly the same as that
of inv1’. The reason why we use the forms of inv1’ and
inv1’’ is because we emphasize what are shared by inv1’
and inv1’’. The proof of inv1’’ needs yet another lemma
whose conditional part is exactly the same as that of inv1’.
Although we do not need an infinite series of similar but
different lemmas as is the case when we only use the most
straightforward lemmas for the proof of rev(rev(L)) = L for
all lists L, we need several such ones. Therefore, we strengthen
them to obtain the following lemma:
eq inv1(S,P,Q) = ((prede(S,P) = nop and pc(S,P)
= l3 and (P = Q) = false) implies (((pc(S,Q)
= l6 and lock(S,Q) = false) or pc(S,Q) = cs or
pc(S,Q) = l7 or pc(S,Q) = l8 or pc(S,Q) = l10
or pc(S,Q) = l11) = false)) .

The proof of inv1 needs totally fewer lemmas than that of
inv1’. More precisely, the set of lemmas that need to be
used in the proof of inv1 is a subset of those in the proof of
inv1’.

B. The Other Lemmas

The other lemmas used to prove that mutex(S,P,Q) for
all process IDs P & Q is an invariant wrt SMCS are as follows:
eq inv2(S,P,Q) = ((pc(S,P) = l3 and prede(S,P)
= nop and pc(S,Q) = l3 and (P = Q) = false)
implies (prede(S,Q) = nop) = false) .

eq inv3(S,P) = (pc(S,P) = l5
implies lock(S,P) = true) .

eq inv4(S,P) = (((pc(S,P) = l3 and prede(S,P)
= nop) or (pc(S,P) = l6 and lock(S,P) = false)
or pc(S,P) = cs or pc(S,P) = l7 or pc(S,P)
= l8 or pc(S,P) = l10 or pc(S,P) = l11)
implies (glock(S) = nop) = false) .

eq inv5(S,P,Q) = ((next(S,Q) = P and (P = Q)
= false and (pc(S,Q) = l12 or pc(S,Q) = l1 or
pc(S,Q) = rs) = false) implies (prede(S,P) = Q
and pc(S,P) = l6 and lock(S,P) = true)) .

eq inv6(S,P,Q) = ((pc(S,Q) = l6 and lock(S,Q)
= false and (P = Q) = false) implies
((pc(S,P) = l6 and lock(S,P)= false) or
pc(S,P) = cs or pc(S,P) = l7 or pc(S,P) = l8
or pc(S,P) = l10 or pc(S,P) = l11) = false) .

eq inv7(S,P,Q) = (((pc(S,Q) = l11 or pc(S,Q)
= l10 or pc(S,Q) = l8 or pc(S,Q) = l7 or
pc(S,Q) = cs) and (P = Q) = false) implies
((pc(S,P) = l6 and lock(S,P) = false) or
pc(S,P) = cs or pc(S,P) = l7 or pc(S,P) = l8
or pc(S,P) = l10 or pc(S,P) = l11) = false) .

Let us partially give the explanation for inv4. inv4 says
that if there exists a process P located at cs, or l7, or l8,
or l10, or l11, or l6 and lock of P is false, or l3
and prede of P is nop; then glock can not be nop. The
remaining lemmas can be understood likewise. Let us repeat
again that we did not come up with the seven lemmas from
the beginning, but we have gradually constructed each of them
when conduct formal verification. For example, in the proof
of mutex, inv1 is constructed; or inv2 together with inv3
and inv4 are constructed when we try to prove inv1.

In addition to inv1, the proof of mutex also requires the
use of inv6. The proof of inv1 uses inv2, inv3 and inv4
as lemmas. The proof of inv2 uses inv4 as a lemma. The
proof of inv3 uses inv5 as a lemma and vice versa. The
proofs of inv4 and inv6 use inv1, inv3 and inv7 as
lemmas. inv1, inv3 and inv6 are required in the proof of
inv7.

C. Use of Lemma Weakening (LW)

While proving that MCS enjoys the mutual exclusion prop-
erty, use of LS (but not use of LW), together with case split-
ting, etc., did not seem to make our proof attempt converge.
Use of LW made it converge. There are two cases where we
used LW. We describe how to use LW in the two cases in
detail.

1) Case 1: Initially, we used the following inv40 instead
of inv4:

eq inv40(S,P) = ((pc(S,P) = l3 or pc(S,P) = l4
or pc(S,P) = l5 or pc(S,P) = l6 or pc(S,P) = cs
or pc(S,P) = l7 or pc(S,P) = l8 or

pc(S,P) = l10 or pc(S,P) = l11)
implies (glock(S) = nop) = false) .

inv40 is obtained by strengthening inv4. Let us note that
40 in the notation inv40 does not mean that there are 40 or
more invariants that have been conjectured. We put confidence
in that whenever there exists a process P located at l3 or
l6 (or cs, or l7, or l8, or l10, or l11 as well), glock
can not be nop. Thus, we strongly believe that strengthening
inv4 to obtain inv40 is the correct way to complete the
formal verification (similar to the way we strengthen inv1’
and inv1’’ to obtain inv1). Accordingly, we believe that
inv40 is truly an invariant wrt SMCS. Let us consider a sub-
case of the induction case chglk for the proof attempt of
inv40. The open-close fragment of the sub-case is as follows:

open INV .
op s : -> Sys . ops p r : -> Pid .
eq pc(s,r) = l8 . eq (p = r) = false .
eq glock(s) = r . eq pc(s,p) = l3 .
red inv40(s,p) implies inv40(chglk(s,r),p) .
close

Let υ40 be an arbitrary state in which the four equations used in
the fragment hold. CafeOBJ returns false for the fragment.
This is why we need a lemma to discharge the sub-case.
By strengthening the lemma constructed straightforwardly
from the four equations used in the fragment, we obtain the
following lemma:

eq inv41(S,P,Q) = ((pc(S,P) = l3 or pc(S,P)
= l4 or pc(S,P) = l5 or pc(S,P) = l6 or pc(S,P)
= cs or pc(S,P) = l7 or pc(S,P) = l8 or pc(S,P)
= l10 or pc(S,P) = l11) and glock(S) = Q and
(P = Q) = false) implies (pc(S,Q) = cs or
pc(S,Q) = l7 or pc(S,Q) = l8 or pc(S,Q) = l10
or pc(S,Q) = l11 or (pc(S,Q) = l6 and
lock(S,Q) = false)) = false .

inv41 can be used as a lemma to discharge the sub-case.
While proving inv41, we encounter three sub-cases of
the induction case stlnx. One of the three sub-cases is
characterized by the following equations: pc(s,r) = l11,
next(s,r) = q, glock(s) = q, pc(s,p) = l3,
pc(s,q) = l6, lock(s,q) = true, (p = r) =
false, (q = r) = false and (p = q) = false.
The other two sub-cases are characterized by almost the
same equations. The only difference is pc(s,p) = l3,
instead of which pc(s,p) = l4 and pc(s,p) =
l5 hold for the other two sub-cases, respectively. Let
υ41 be an arbitrary state that corresponds to any of the
three sub-cases. inv41(s,p,q) implies inv41(
stlnx(s,r),p,q) reduces to false and then we need a
lemma to discharge the three sub-cases. One possible lemma
is as follows:

eq inv42(S,P,Q,R) = (glock(S) = Q and next(S,R)
= Q and (pc(S,R) = cs or pc(S,R) = l7 or
pc(S,R) = l8 or pc(S,R) = l10 or pc(S,R) = l11
or (pc(S,R) = l6 and lock(S,R) = false)) and
(P = R) = false and (Q = R) = false and (P = Q)
= false) implies (pc(S,P) = l3 or pc(S,P) = l4

Fig. 3. States υ41, υ42, υ43 & υ4n

or pc(S,P) = l5 or pc(S,P) = l6) = false .

inv42 can be used as a lemma to discharge the three sub-
cases. While proving inv42, we encounter three sub-cases
of the induction case stlnx. One of the three sub-cases is
characterized by the following equations: pc(s,t) = l11,
(p = t) = false, (q = t) = false, (r = t)
= false, (p = r) = false, (q = r) = false,
(p = q) = false, next(s,t) = r, next(s,r)
= q, glock(s) = q, pc(s,q) = l6, lock(s,q)
= true, pc(s,r) = l6, lock(s,r) = true and
pc(s,p) = l3. The other two sub-cases are characterized
by almost the same equations. The only difference is
pc(s,p) = l3, instead of which pc(s,p) = l4
and pc(s,p) = l5 hold for the other two sub-cases,
respectively. Let υ42 be an arbitrary state that corresponds
to any of the three sub-cases. inv42(s,p,q,r)
implies inv42(stlnx(s,t),p,q,r) reduces to
false and then we need a lemma to discharge the three
sub-cases.

What if we keep on doing the proof attempt as we did?
Let us partially visualize υ41 as shown in Fig. 3 (a). Fig. 3
(a) visually says that q is located at l6, r is located at l11,
nextr is q, lockq is true and glock is q. Let us partially
visualize υ42 as shown in Fig. 3 (b). The difference between
υ41 and υ42 can be visually observed from Fig. 3 (a) and
(b). One process located at l6 is inserted between the two
processes in Fig. 3 (a) and its lock is true, although t is
used in Fig. 3 (b) instead of r in Fig. 3 (a). If we conjec-
ture a lemma, say inv43, that can be used to discharge
the three sub-cases that correspond to υ42 as we conjecture
inv41 and inv42, we encounter some sub-cases in which
inv43(s,p,q,r,t) implies inv42(stlnx(s,w),
p,q,r,t) reduces to false while proving inv43. Let υ43
be an arbitrary state that corresponds to any of the sub-cases.
Fig. 3 (c) shows the diagram that partially visualizes υ43. The
difference between Fig. 3 (b) and (c) is essentially the same as
that of Fig. 3 (a) and (b). One more process located at l6 such

that its lock is true is inserted into the structure constructed
with next variables. The structure virtually forms the queue in
which processes that want to enter the critical section wait. If
we repeat what we did, we will encounter the situation that can
be partially visualized as shown in Fig. 3 (d), which suggests
that this way to conjecture lemmas never converges.

There must be a generic lemma that is stronger than inv41,
inv42, etc. like rev(rev(L1) @ L2) = rev(L2) @ L1 for the
proof of rev(rev(L)) = L, but we could not construct such
a generic one. Instead, we made inv40 weaker, constructing
inv4. By observing some graphical animations of MCS, we
realized that there exists at most one process p except for
processes q such that (1) q is located at l3 and predeq is not
nop and (2) q is located at l6 and lockq is true in extended
CS region, where extended CS region consists of cs, l7, l8,
l10, l11, l3 and l6 [6]. From this observation, we conjectured
that whenever there exists such a process p in extended CS
region, the virtual queue at least consists of p as an element,
which implies that glock is not nop. This is inv4 that
is weaker than inv40. Tackling the induction case chglk
for the proof of inv4, we encounter a sub-case in which
inv4(s,p) implies inv4(chglk(s,r),p) reduces
to false. The proof score fragment of the sub-case is as
follows:

open INV .
op s : -> Sys . ops p r : -> Pid .
eq pc(s,r) = l8 . eq (p = r) = false .
eq glock(s) = r . eq pc(s,p) = l3 .
eq prede(s,p) = nop .
red inv4(s,p) implies inv4(chglk(s,r),p) .
close

The only difference between the sub-cases of the inv4 and
inv40 is the existence of prede(s,p) = nop in the sub-
case of inv4. The sub-case of inv4 can be discharged by
using inv1 as a lemma. The proof of inv4 needs inv3 and
inv7 as lemmas as well. Note that υ40 is not only the sub-
case in which inv40(s,p) implies inv40(tMCS(s,
r),p) reduces to false, where tMCS is a transition of
SMCS, but also there are eight more sub-cases such that
the term (or formula) reduces to false. The eight more
sub-cases are characterized by almost the same equations
of υ40, except the only difference is pc(s,p) = l4,
pc(s,p) = l5, pc(s,p) = l6, pc(s,p) = cs,
pc(s,p) = l7, pc(s,p) = l8, pc(s,p) = l10 and
pc(s,p) = l11 hold for the eight sub-cases, respectively,
instead of pc(s,p) = l3 in υ40. We need to conjecture
new lemmas for the first three sub-cases like υ40, while
the latter five cases can be discharged by using inv7 as a
lemma.

We strongly believe that inv40 as well as inv41 and
inv42 are invariants wrt SMCS. We were, however, not able
to construct any generic lemma that is stronger than all of
inv41, inv42, etc., and therefore we have not successfully
completed the proof of inv40. Accordingly, we cannot guar-
antee that inv40 is actually an invariant wrt SMCS when we
submit the present paper to the conference.

2) Case 2: Let us consider the lemma inv50 obtained by
deleting (P = Q) = false from inv5:

eq inv50(S,P,Q) = ((next(S,Q) = P and (pc(S,Q)
= l12 or pc(S,Q) = l1 or pc(S,Q) = rs) = false)
implies (pc(S,P) = l6 and lock(S,P) = true
and prede(S,P) = Q)) .

inv50 is stronger than inv5 or equivalently inv5 is weaker
than inv50. Since next variables are used to virtually con-
struct a queue of process IDs, we put confidence in that nextp
never has p as its value. Therefore, we also strongly believe
that inv50 is an invariant wrt SMCS if inv5 is an invariant
wrt SMCS. We realized, however, that their proofs are totally
different when we tried to prove that inv50 is an invariant
wrt SMCS.

The proof of inv5 only uses inv3 as a lemma and the
proof of inv3 only uses inv5 as a lemma (again, this is
not a circular as explained in Sect. II). On the other hand,
the proof of inv50 requires two more lemmas inv51 and
inv53 in addition to inv3. The proof of inv51 requires
inv3, inv50, inv52 and inv53 as lemmas. The proof
of inv52 requires inv53 as a lemma. inv51, inv52 and
inv53 are as follows:

eq inv51(S,P,Q) = ((pc(S,P) = l12 or pc(S,P) =
l1 or pc(S,P) = rs) = false and (pc(S,Q) = l12
or pc(S,Q) = l1 or pc(S,Q) = rs) = false and
(next(S,Q) = nop) = false and (P = Q) = false)
implies (next(S,P) = next(S,Q)) = false .

eq inv52(S,P) = ((next(S,P) = P) = false) .

eq inv53(S,P) = ((prede(S,P) = P) = false) .

Since we suppose that each of nextp and predep for every
process p is initially set to nop, nextp variables are used
to virtually construct a queue and predep variables are used
to enqueue process IDs as elements into the virtual queue,
we are sure that nextp never has p as its value and predep
never has p as its value. We realized, however, that it is not
that straightforward to prove inv53. The proof of inv53
requires a new lemma inv54 whose proof needs five more
new lemmas inv55, inv56, inv57, inv58 and inv59
to complete the proof of inv53. Please refer to http://gitlab.
com/duongtd23/mcs/ for invi for i = 54, 55, 56, 57, 58, 59.
Let us repeat again that 59 in the notation inv59 does not
mean that there are 59 invariants that have been conjectured.

VI. RELATED WORK

Rushby [7] has demonstrated that use of disjunctive in-
variants q1 ∨ . . . ∨ qn makes invariant verification easier
for synchronous concurrent (and/or distributed) systems. His
technique proves that p∧(q1∨. . .∨qn) is an inductive invariant
wrt a system so as to prove that p is an invariant wrt the
system. LW, together with LS, can be regarded as a generalized
version of his technique. Instead of p∧q1∧. . .∧qi∧. . .∧qn, we
prove that p∧q1∧. . .∧q′i∧. . .∧qn′ is an inductive invariant wrt
a system, where q′i is weaker than qi (and n′ is much less than
n in our case study). q′i may be in the form q′i1∨ . . .∨q′im. We

http://gitlab.com/duongtd23/mcs/
http://gitlab.com/duongtd23/mcs/

have demonstrated that LW can be effective for asynchronous
concurrent (and/or distributed) systems as well.

Wang [8] has proved that it is impossible to automatically
prove that concurrent software systems in which multiple
processes run algorithms on data structures with pointers enjoy
desired properties if there are an arbitrary number of processes.
Then, a new approximation method has been proposed to
formally verify such software systems. The key idea is to
construct a finite collective image set (CIS) whose elements
are reachable state representations (or global data-structure
image - GDSI). The verification can be done by enumerating
all GDSIs reachable from the initial state. He has used the
proposed method to prove that a revised version of MCS
protocol enjoys desired properties. The proofs described in
the paper, however, are in Mathematical argumentation but
not formal. It would at least not be straightforward to develop
a tool that fully supports his verification technique.

Kim, et al. [9] have used the methodology of certified
concurrent abstraction layers to conduct a case study in which
they prove that MCS enjoys the lockout freedom property (a
liveness property) as well as the mutual exclusion property
(a safety property). They have defined five layers such that
the lowest one is the implementation of MCS in C/assembly
languages and the higher ones are more abstract than the
implementation. They have formally proved with Coq, a proof
assistant, that each layer except for the highest one contex-
tually refines the one-step higher layer. Their paper mainly
focuses on their contextual refinement approach to integration
of the verified algorithm, such as MCS, into a larger system,
such as an OS.

To prove that p is an invariant wrt S, our method tries to
find an inductive invariant q wrt S such that q(υ)⇒ p(υ) for
all states υ ∈ Υ. The well-known model checking algorithm
IC3 [10] also can be used for discovering the inductive
invariants. Given a finite-state transition system S and a
property P that we want to check whether P is invariant for
the system S or not, IC3 will gradually refine P , eventually
producing either an inductive invariant P ′ that is stronger than
P or a counterexample trace. However, IC3 can not be used
to check that the state machine formalizes MCS satisfies the
mutual exclusion property or not. The reason is that IC3 only
can accept finite-state systems, can not deal with infinite-
state systems such as the state machine formalizes MCS.
Basically, that is the disadvantage of any model checking
techniques/tools that we mentioned at the very beginning
of the paper. Our method presented in this paper bases on
theorem proving that can get rid of this disadvantage.

Ogata and Futatsugi [11] have reported on a case study in
which they have semi-formally (but not formally) verified that
MCS enjoys the mutual exclusion property and the lockout
freedom property in CafeOBJ, although they claimed that
their verification is formal. Since their proofs are semi formal,
however, they may have overlooked several subtle cases and
then do not discuss anything about what we have encountered.
In addition to formal verification by writing proof scores in
CafeOBJ, we have used CiMPA and CiMPG [12], a proof as-

sistant and a proof generator for CafeOBJ, to confirm that our
proofs (or proof scores) are correct. Based on the proof scores
we wrote, we manually wrote proof scripts for CiMPA proving
that MCS enjoys the mutual exclusion property. CiMPG was
used to infer proof scripts from our proof scores and the proof
scripts inferred by CiMPG were successfully deal with by
CiMPA. In summary, we triple-checked our proof scores.

VII. CONCLUSION

We have demonstrated the power of LW by using MCS as
an example. We were not able to complete the formal proof
that MCS enjoys the mutual exclusion property without use of
LW. We had stuck in the proof attempt of inv40 for several
months until the first author of the present paper came up
with inv4 that is weaker than inv40. inv4, together with
inv5, made us successfully complete the formal proof that
MCS enjoys the mutual exclusion property.

For each non-trivial invariant proof, we need to conjecture
lemmas that are also invariants on the fly during the proof.
We cannot always conjecture the best lemma every time we
need to use a lemma. The first lemma we construct may be
too weak or strong. Therefore, we may need to strengthen or
weaken it. Accordingly, it is natural that it is necessary to use
LW as well as LS. To the best knowledge of ours, however,
LW has been rarely used in formal methods.

One piece of our future work is to conduct more case studies
that demonstrate the power of LW. Another piece of our future
work is to come up with a systematic (or hopefully automatic)
way to use LW, which will be conducted by consulting some
systematic and/or automatic ways to use LS, such as those
used by Creme [13], an automatic invariant prover for OTSs
specified in Maude.

REFERENCES

[1] Z. Manna and A. Pnueli, Temporal verification of reactive systems -
safety. Springer, 1995.

[2] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable syn-
chronization on shared-memory multiprocessors,” ACM Trans. Comput.
Syst., vol. 9, no. 1, pp. 21–65, Feb. 1991.

[3] K. Ogata and K. Futatsugi, “Proof scores in the OTS/CafeOBJ method,”
in FMOODS 2003, 2003, pp. 170–184.

[4] R. Diaconescu and K. Futatsugi, Cafeobj Report, ser. AMAST Series in
Computing. World Scientific, 1998, vol. 6.

[5] K. Ogata and K. Futatsugi, “A combination of forward and backward
reachability analysis methods,” in 12th ICFEM, 2010, pp. 501–517.

[6] D. D. Bui and K. Ogata, “Better state pictures facilitating state machine
characteristic conjecture,” in Submitted for publication, 2020.

[7] J. M. Rushby, “Verification diagrams revisited: Disjunctive invariants for
easy verification,” in 12th CAV, 2000, pp. 508–520.

[8] F. Wang, “Automatic verification of pointer data-structure systems for
all numbers of processes,” in FM ’99, 1999, pp. 328–347.

[9] J. Kim, V. Sjöberg, R. Gu, and Z. Shao, “Safety and liveness of MCS
lock - layer by layer,” in 15th APLAS, 2017, pp. 273–297.

[10] A. R. Bradley, “Sat-based model checking without unrolling,” in Ver-
ification, Model Checking, and Abstract Interpretation, R. Jhala and
D. Schmidt, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 70–87.

[11] K. Ogata and K. Futatsugi, “Formal verification of the MCS list-based
queuing lock,” in 5th ASIAN, 1999, pp. 281–293.

[12] A. Riesco and K. Ogata, “Prove it! inferring formal proof scripts from
CafeOBJ proof scores,” ACM Trans. Softw. Eng. Methodol., vol. 27,
no. 2, pp. 6:1–6:32, 2018.

[13] M. Nakano, K. Ogata, M. Nakamura, and K. Futatsugi, “Crème: an
automatic invariant prover of behavioral specifications,” IJSEKE, vol. 17,
no. 6, pp. 783–804, 2007.

	Introduction
	Preliminaries
	Observational Transition Systems (OTSs)
	CafeOBJ and Proof Scores

	Lemma Strengthening (LS) and Lemma Weakening (LW)
	MCS Protocol and its Formal Specification in CafeOBJ
	MCS Protocol
	Formal Specification of MCS Protocol

	Formal Verification by Proof Scores
	Use of Lemma Strengthening (LS)
	The Other Lemmas
	Use of Lemma Weakening (LW)
	Case 1
	Case 2

	Related Work
	Conclusion
	References

